Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction/Objective

The modern Aluminium-Copper-Lithium (Al-Cu-li) based composites have a great demand in aerospace applications due to their lightweight, high strength, high stiffness, and superior mechanical properties. The present study explored the effect of reinforcements like graphite and boron carbide on the mechanical behaviour and microstructure of AA2195 composite.

Methods

The Medium Frequency Induction Furnace (MFIF) was used to fabricate the composites with two factors each at four levels ordered in Taguchi L16 orthogonal array.

Results

The microstructures revealed that the reinforcements were distributed uniformly throughout the composite. The elemental investigation observed by X-Ray Diffraction (XRD) revealed that the formed Intermetallic Compounds (IMCs) helped in refining the microstructure and further increasing the mechanical properties.

Conclusion

The composite fabricated at 8% Boron Carbide (BC) and 6% Graphite (Gr) exhibited better ultimate tensile strength, % elongation, and hardness as 190.74 MPa, 0.58, and 87.2 VHN, respectively.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230330082440
2023-05-05
2025-10-18
Loading full text...

Full text loading...

References

  1. GoyalK. MarwahaK. Processing and properties of aluminium matrix composites: a short review.European J Adv Eng Technol2016385459
    [Google Scholar]
  2. RaviB. Fabrication and mechanical properties of AA7075-SiC-TiC hybrid metal matrix composites.Int. J. Eng. Sci. Invent.20176101219
    [Google Scholar]
  3. MuralidharanN. ChockalingamK. DinaharanI. KalaiselvanK. Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles.J. Alloys Compd.20187352167217410.1016/j.jallcom.2017.11.371
    [Google Scholar]
  4. KandanR.J. KumarD. SudharssanamM. VenkadesanA. BadrinathR. Investigation of mechanical properties on newly formulated hybrid composite aluminium 8011 reinforced with B4C and Al2O3 by stir casting method. Int J Sci Res Develop201750196265
    [Google Scholar]
  5. PrasadS.V. AsthanaR. Aluminium metal-matrix composites for automotive applications: tribological Considerations.Tribol. Lett.200417344545310.1023/B:TRIL.0000044492.91991.f3
    [Google Scholar]
  6. SharmaP. SharmaS. KhandujaD. Production and some properties of Si 3 N 4 reinforced aluminium alloy composites.J Asian Ceramic Soci20153335235910.1016/j.jascer.2015.07.002
    [Google Scholar]
  7. RajeshM.A. KaleemullaMd. Experimental investigations on the mechanical behaviour of aluminium metal matrix CompositesIOP Conf Series:Material Science Engg2016111
    [Google Scholar]
  8. SoltaniS. Azari KhosroshahiR. Taherzadeh MousavianR. JiangZ-Y. Fadavi BoostaniA. BrabazonD. Stir casting process for manufacture of Al–SiC composites.Rare Met.201736758159010.1007/s12598‑015‑0565‑7
    [Google Scholar]
  9. MosesJ.J. DinaharanI. SekharS.J. Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting.Trans. Nonferrous Met. Soc. China20162661498151110.1016/S1003‑6326(16)64256‑5
    [Google Scholar]
  10. RajuP.V.K. RajeshS. RaoJ.B. BhargavaN.R.M.R. Tribological behaviour of Al-Cu alloys and innovative Al-Cu metal matrix composite fabricated using the stir-casting technique: In Proc.Mater. Today201851885896
    [Google Scholar]
  11. DursunT. SoutisC. Recent developments in advanced aircraft aluminium alloys.Mater. Des.20145686287110.1016/j.matdes.2013.12.002
    [Google Scholar]
  12. WarnerT. Recently-developed aluminium solutions for aerospace applications.Mater. Sci. Forum2006519-5211271127810.4028/www.scientific.net/MSF.519‑521.1271
    [Google Scholar]
  13. LütjerinG. WilliamsJ.C. Titanium Matrix Composites.Titanium. Engineering Materials and Processes.BerlinSpringer2003
    [Google Scholar]
  14. SankaranK.K. GrantN.J. The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions.Mater. Sci. Eng.198044221322710.1016/0025‑5416(80)90122‑6
    [Google Scholar]
  15. GuptaR.K. NayanN. NagasireeshaG. SharmaS.C. Development and characterization of Al–Li alloys.Mater. Sci. Eng. A20064201-222823410.1016/j.msea.2006.01.045
    [Google Scholar]
  16. WanhillH. GokhaleA. PrasadE. Aluminium-lithium alloys: Processing, properties and applications, Butterworth-Heinemann.Elsevier Inc20142856
    [Google Scholar]
  17. Prasad, N. Eswara, Amol Gokhale, and R. J. H. Wanhill, eds. Aluminum-lithium alloys: processing, properties, and applications. Butterworth-Heinemann,2013
    [Google Scholar]
  18. RiojaR.J. ChoA. BretzP.E. Al_Li alloys having improved corrosion resistance containing Mg and Zn.U.S. Patent No. 4,961,7921990
    [Google Scholar]
  19. SuryaM.S. GugulothuS.K. Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite.Silicon20221452023203210.1007/s12633‑021‑00992‑x
    [Google Scholar]
  20. RathaurA. SinghJ.K. . Katiyar. VinayKumarP Experimental analysis of mechanical and structural properties of hybrid aluminium (7075) matrix composite using stir casting method.IOP Conf. Series Mater. Sci. Eng.20196531116
    [Google Scholar]
  21. SharmaS. NandaT. PandeyO.P. Effect of particle size on dry sliding wear behaviour of sillimanite reinforced aluminium matrix composites.Ceram. Int.201844110411410.1016/j.ceramint.2017.09.132
    [Google Scholar]
  22. Kumar D, Singh PK, Saini P. Morphological and mechanical characterization of the Al-4032/granite powder composites. J Comp Mat2022561524334210.1177/00219983221092837
    [Google Scholar]
  23. KumarD. SinghP.K. Microstructural and mechanical characterization of Al-4032 based metal matrix composites.Mater. Today Proc.2019182563257210.1016/j.matpr.2019.07.114
    [Google Scholar]
  24. GargP. JamwalA. KumarD. SadasivuniK.K. HussainC.M. GuptaP. Advance research progresses in aluminium matrix composites: manufacturing & applications.J. Mater. Res. Technol.2019854924493910.1016/j.jmrt.2019.06.028
    [Google Scholar]
  25. RejabM.R.B.M. HamdanM.H.B.M. QuanjinM. Historical development of hybrid materials.Encycl Renew Sustain Mater2019445455
    [Google Scholar]
  26. Hanish AnandS. VenkateshwaranN. Sai Prasanna KumarJ.V. KumarD. Ramesh KumarC. MariduraiT. Optimization of aging, coating temperature and reinforcement ratio on biosilica toughened in-situ Al-TiB2 metal matrix composite: A Taguchi Grey relational approach.Silicon20221484337434710.1007/s12633‑021‑01232‑y
    [Google Scholar]
  27. GobalakrishnanB. LakshminarayananP.R. VarahamoorthiR. Mechanical properties of Al 6061/TiB2 in-situ formed metal matrix composites.J Adv Micro Research201813112513010.1166/jamr.2018.1368
    [Google Scholar]
  28. AnandS. . Hanish. VenkateshwaranN. Effect of heat treatment and biosilica on mechanical, wear, and fatigue behavior of AlTiB 2 in-situ metal matrix composite.Biomass Convers Bior2021113
    [Google Scholar]
  29. SunJ. WangX. ChenY. WangF. WangH. Effect of Cu element on morphology of TiB2 particles in TiB2/Al−Cu composites.Trans. Nonferrous Met. Soc. China20203051148115610.1016/S1003‑6326(20)65285‑2
    [Google Scholar]
  30. VenkateshV.S.S. DeoghareA.B. Microstructural characterization and mechanical behaviour of SiC and kaoline reinforced aluminium metal matrix composites fabricated through powder metallurgy technique.Silicon20221473723373710.1007/s12633‑021‑01154‑9
    [Google Scholar]
  31. VenkateshV.S.S. DeoghareA.B. Fabrication and mechanical behaviour of Al-Kaoline metal matrix composite fabricated through powder metallurgy technique.Mat. Today Proc.20213832919610.1016/j.matpr.2020.10.021
    [Google Scholar]
  32. SinghN. BelokarR.M. WaliaR.S. A critical review on advanced reinforcements and base materials on hybrid metal matrix composites.Silicon202214233535810.1007/s12633‑020‑00853‑z
    [Google Scholar]
  33. ErturunV. CetinS. SahinO. Investigation of microstructure of aluminum based composite material obtained by mechanical alloying.Met. Mater. Int.202127Jun16627010.1007/s12540‑019‑00583‑x
    [Google Scholar]
  34. GranesanS. Deepak GaneshS. Arul Marcel MoshiA. GaneshS. MoshiA.A.M Characterization of metal matrix composites reinforced with suitable reinforcement agents–A comprehensive review.IOP Conf. Series Mater. Sci. Eng.2020988101202910.1088/1757‑899X/988/1/012029
    [Google Scholar]
  35. ShilA. RoyS. BalajiP.S. Kumar KatiyarJ. PramanikS. Kumar SharmaA. Experimental analysis of mechanical properties of stir casted aluminium-graphene nanocomposites.IOP Conf. Series Mater. Sci. Eng.2019653101202110.1088/1757‑899X/653/1/012021
    [Google Scholar]
  36. RajakD.K. PagarD.D. KumarR. PruncuC.I. Recent progress of reinforcement materials: a comprehensive overview of composite materials.J. Mater. Res. Technol.2019866354637410.1016/j.jmrt.2019.09.068
    [Google Scholar]
  37. SharmaD.K. MahantD. UpadhyayG. Manufacturing of metal matrix composites: A state of review.Mater. Today Proc.20202650651910.1016/j.matpr.2019.12.128
    [Google Scholar]
  38. Singh, Nikhilesh, and R. M. Belokar. Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: A state-of-art review.Mat Today Proc202144460610.1016/j.matpr.2020.09.757
    [Google Scholar]
  39. RamanathanA. KrishnanP.K. MuralirajaR. A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities.J. Manuf. Process.20194221324510.1016/j.jmapro.2019.04.017
    [Google Scholar]
  40. SinghN. Influence of stir casting technique on HMMCs- a literature survey.J. Emerg. Technol. Innov. Res.20207616361642
    [Google Scholar]
  41. AhamadN. MohammadA. RinawaM.L. SadasivuniK.K. GuptaP. Correlation of structural and mechanical properties for Al-Al 2 O 3 -SiC hybrid metal matrix composites.J. Compos. Mater.202155233267328010.1177/00219983211011537
    [Google Scholar]
  42. HossainS. Mamunur RahmanM.D. ChawlaD. KumarA. SethP.P. GuptaP. KumarD. AgrawalR. JamwalA. Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites.Mater. Today Proc.2020211458146110.1016/j.matpr.2019.10.089
    [Google Scholar]
  43. AhamadN. MohammadA. SadasivuniK.K. GuptaP. Structural and mechanical characterization of stir cast Al–Al 2 O 3 –TiO 2 hybrid metal matrix composites.J. Compos. Mater.202054212985299710.1177/0021998320906207
    [Google Scholar]
  44. AhamadN. MohammadA. SadasivuniK.K. GuptaP. Phase, microstructure and tensile strength of Al–Al 2 O 3 –C hybrid metal matrix composites.Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci.2020234132681269310.1177/0954406220909846
    [Google Scholar]
  45. AhamadN. MohammadA. GuptaP. Wear characteristics of Al matrix reinforced with Al2O3-carbon hybrid metal matrix composites.Mater. Today Proc.202138636810.1016/j.matpr.2020.05.739
    [Google Scholar]
  46. BandilK. VashisthH. KumarS. VermaL. JamwalA. KumarD. SinghN. SadasivuniK.K. GuptaP. Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite.J. Compos. Mater.20195328-304215422310.1177/0021998319856679
    [Google Scholar]
  47. JamwalA. VatesU.K. GuptaP. Fabrication and characterization of Al2O3–TiC-reinforced aluminum matrix composites: Advances in industrial and production engineering.SingaporeSpringer201934935610.1007/978‑981‑13‑6412‑9_33
    [Google Scholar]
  48. KumarA. Yeasin ArafathM. GuptaP. KumarD. Mustansar HussainC. JamwalA. Microstructural and mechano-tribological behavior of Al reinforced SiC-TiC hybrid metal matrix composite.Mater. Today Proc.2020211417142010.1016/j.matpr.2019.08.186
    [Google Scholar]
  49. NatrayanL. Senthil KumarM. ChaudhariM. Optimization of squeeze casting process parameters to investigate the mechanical properties of aa6061/al2o3/sic hybrid metal matrix composites by taguchi and anova approach.Adv Int Sys Comp202094939340610.1007/978‑981‑13‑8196‑6_35
    [Google Scholar]
  50. KumarV. NaveenN. KishoreN. RameshB.P. Effect of reinforcement and fabrication of Al6061 nanosilica composite prepared using single-and two-step methods.Adv Mater Process Technol202012
    [Google Scholar]
  51. NatrayanL. SenthilK.M. PalaniK.K. Optimization of squeeze cast process parameters on mechanical properties of Al2O3/SiC reinforced hybrid metal matrix composites using taguchi technique.Mater. Res. Express2018506651610.1088/2053‑1591/aac873
    [Google Scholar]
  52. JadhavP.R. SridharB.R. NagaralM. HartiJ.I. Mechanical behavior and fractography of graphite and boron carbide particulates reinforced A356 alloy hybrid metal matrix composites.Adv. Compos. Hybrid Mater.20203111411910.1007/s42114‑020‑00143‑7
    [Google Scholar]
  53. VinodB. RamanathanS. AnandajothiM. Effect of organic and inorganic reinforcement on tribological behaviour of aluminium A356 matrix hybrid composite.J. Bio Tribocorros.2018434510.1007/s40735‑018‑0157‑9
    [Google Scholar]
  54. RamanathanB.V.S. SelvakumarV.A.N. Fabrication and characterization of organic and inorganic reinforced a356 aluminium matrix hybrid composite by improved double-stir.Silicon201911817829
    [Google Scholar]
  55. CoyalA. YuvarajN. ButolaR. TyagiL. An experimental analysis of tensile, hardness and wear properties of aluminium metal matrix composite through stir casting process.SN Appl Sci20202589210.1007/s42452‑020‑2657‑8
    [Google Scholar]
  56. RavichandranM. MeignanamoorthyM. ChellasivamG.P. VairamuthuJ. KumarA.S. StalinB. Effect of stir casting parameters on properties of cast metal matrix composite.Mater. Today Proc.20202242606261310.1016/j.matpr.2020.03.391
    [Google Scholar]
  57. BoppanaS.B. DayanandS. Anil KumarM.R. KumarV. AravindaT. Synthesis and characterization of nano graphene and ZrO2 reinforced Al 6061 metal matrix composites.J. Mater. Res. Technol.2020947354736210.1016/j.jmrt.2020.05.013
    [Google Scholar]
  58. ArunaK. DiwakarK. BhargavK.K Development and characterization of Al6061-ZrO2 reinforced metal matrix composites.Int. J. Adv. Res. Comput. Sci. Softw. Eng.20188270275
    [Google Scholar]
  59. RajaK. Chandra SekarV.S. Vignesh KumarV. RamkumarT. GaneshanP. Microstructure characterization and performance evaluation on AA7075 metal matrix composites using RSM technique.Arab. J. Sci. Eng.202045119481949510.1007/s13369‑020‑04752‑8
    [Google Scholar]
  60. Sunil Kumar ReddyS. SreedharC. SureshS. Investigations on Al 7075 /nano-SiC/ B4C hybrid reinforcements using liquid casting method.Mater. Today Proc.2021468540854710.1016/j.matpr.2021.03.536
    [Google Scholar]
  61. AksözS. KanerS. KaplanY. Tribological and aging behavior of hybrid Al 7075 composite reinforced with B4C, SiC, and TiB2.Sci. Sinter.202153331132110.2298/SOS2103311A
    [Google Scholar]
  62. JoM.C. ChoiJ.H. YooJ. LeeD. ShinS. JoI. LeeS-K. LeeS. Novel dynamic compressive and ballistic properties in 7075-T6 Al-matrix hybrid composite reinforced with SiC and B4C particulates.Compos., Part B Eng.201917410704110.1016/j.compositesb.2019.107041
    [Google Scholar]
  63. DevanathanR. RavikumarJ. BoopathiS. Christopher SelvamD. AniciaS.A. Influence in mechanical properties of stir cast aluminium (AA6061) Hybrid Metal matrix Composite (HMMC) with Silicon Carbide, Fly Ash and coconut coir ash reinforcement.Mater. Today Proc.20202243136314410.1016/j.matpr.2020.03.450
    [Google Scholar]
  64. SarapureS. ShivakumarB.P. HanamantraygoudaM.B. Investigation of corrosion behavior of SiC-Reinforced Al 6061/SiC metal matrix composites using taguchi technique.J. Bio Tribocorros.2020623110.1007/s40735‑020‑0328‑3
    [Google Scholar]
  65. Jamwal A, Prakash P, Kumar D, Singh N, Sadasivuni KK, Harshit K, Gupta S, Gupta P. Microstructure, wear and corrosion characteristics of Cu matrix reinforced SiC-graphite hybrid compositesJ. Comp Mat2019531825455310.1177/002199831983
    [Google Scholar]
  66. JamwalA. VatesU.K. GuptaP. AggarwalA. SharmaB.P. Fabrication and Characterization of Al2O3–TiC-Reinforced Aluminum Matrix Composites: Advances in Industrial and Production Engineering. Lecture Notes in Mechanical Engineering.SingaporeSpringer201934935610.1007/978‑981‑13‑6412‑9_33
    [Google Scholar]
  67. Kaya, Esad, Mohammad Rauf Sheikhi, Selim Gürgen, and Melih Cemal Kuşhan. Aluminum-Lithium Alloys in Aircraft Structures.In Materials, Structures and Manufacturing for Aircraftpp. 1-25. Cham: Springer International Publishing2022https://link.springer.com/chapter/10.1007/978-3-030-91873-6_1
    [Google Scholar]
  68. ChenD Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 al-li alloys sheet undergoing different strain rates and fibre orientation: a comparative Study.Procedia Engineering20172071318
    [Google Scholar]
  69. AntipovV. KnyazevM. BetsofenS. Al–cu–li and al–mg–li alloys: phase composition, texture, and anisotropy of mechanical properties review.Russ. metall.20164326341
    [Google Scholar]
  70. LiuJ. RiojaR. The evolution of Al-Li base products for aerospace and space applications.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.2012434933253337
    [Google Scholar]
  71. Lavernia, E. J.; Srivatsan, Tirumalai S.; and Mohamed, F. A. Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys (1990)J. Mater. Sci.199025113750. 581https://ideaexchange.uakron.edu/mechanical_ideas/581
    [Google Scholar]
  72. Russell, Alan, and Kok Loong Lee. Structure-property relations in nonferrous metals. John Wiley & Sons, 2005.283210.1002/0471708542
    [Google Scholar]
  73. LuoP. McDonaldD.T. XuW. PalanisamyS. DarguschM.S. XiaK. A modified Hall–Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing.Scr. Mater.2012661078578810.1016/j.scriptamat.2012.02.008
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230330082440
Loading
/content/journals/cms/10.2174/2666145416666230330082440
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test