Skip to content
2000
  • E-ISSN:

Abstract

Selective laser melting (SLM) is considered to be a widely promising additive manufacturing technology with the advantages of high machining precision, high manufacturing freedom, and short cycle time, which is widely used in aerospace, the integration of medicine, and industry, chemical, and other fields. The research progress on the temperature field, stress field, forming quality, and mechanical properties during the SLM manufacturing process is reviewed. The study aims to systematically analyze how SLM process parameters affect the temperature field, stress field, forming quality, and mechanical properties, and to discuss the importance of the selection of process parameters and performance regulation to achieve high-quality, high-performance metal parts. The effects of SLM process parameters on temperature field, stress field, surface roughness, densification, hardness, strength, and fatigue properties are analyzed and summarized. The importance of process parameters in the SLM forming procedure in the quality of formed components is emphasized, and conducting an in-depth study on the optimization and performance regulation of the process parameters is of great significance in achieving the high quality and performance of metal parts. With the rapid advancement of technology, the potential of SLM technology in terms of molding quality and mechanical performance has become increasingly significant, heralding significant breakthroughs. These potential breakthroughs will greatly promote the widespread application of SLM technology in various industries, thus more efficiently meeting the growing needs and expectations of industries such as petrochemicals, transportation, aerospace, nuclear energy, as well as food and medical sectors.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454327817240903071524
2025-01-01
2025-12-12
Loading full text...

Full text loading...

References

  1. VafadarA. GuzzomiF. RassauA. HaywardK. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges.Appl. Sci.2021113121310.3390/app11031213
    [Google Scholar]
  2. GokuldossP.K. KollaS. EckertJ. Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—selection guidelines.Materials201710667267210.3390/ma1006067228773031
    [Google Scholar]
  3. ChenK HaoJW SongB GuoXJ JiXY Exploring the development and application of additive manufacturing technologies.World Market for Manufacturing Technology and Equipment 20201766164
    [Google Scholar]
  4. SongH.C. ZhangQ.D. ZhouX.M. ZhangBY LiHQ Process condition design method for improving quality performance of selective laser melting parts.C.N. Patent 115659830A2023
  5. ZhouJ. HuangY. TongX. YangJ. WangX. Process and mechanical properties of CuCrCz alloy fabricated by selective laser melting.Appl Laser20224234352
    [Google Scholar]
  6. LuY. ZhaoZ. MingL. Effects of selective laser melting processing parameters on the densification and mechanical properties of Fe20Cr5Al alloy.Mater. Sci. Eng. Powder Metall.20192405422429
    [Google Scholar]
  7. HemmatiM. ModabberifarM. TaheriM. SajjadiM.A. Optimization of process parameters effects on mechanical properties of selective laser melted iron samples.Materialwiss. Werkstofftech.202354111330133910.1002/mawe.202200304
    [Google Scholar]
  8. RanJ.T. JiangF.C. ChenZ. ZhaoH. Effect of process parameters on forming quality and hardness of ta32 titanium alloy formed by selective laser melting.Mat. Mechan. Eng.2022460147115
    [Google Scholar]
  9. ZhangS. ZhangS. LiF. LiZ. WangY. LiuB. Selective laser melting of al-cu-mn-mg alloys: processing and mechanical properties.Metals2023139152010.3390/met13091520
    [Google Scholar]
  10. LiuY.H. YaoX.G. DongZ.G. Study on selective laser melting technology and properties of ti-6al-4v titanium alloy.Hot Working Technol.202150094044
    [Google Scholar]
  11. LiH.H. WuM.P. MaY.Q. HanJ.T. Effect of rescanning on microstructure and properties of TC4 titanium alloy prepared by selective laser melting.Heat Treat. Metal.20204589196
    [Google Scholar]
  12. LiJ.Y. LiuY.D. ZhouY.S. ShiW.T. ZhangM. Effect of laser remelting on quality and mechanical properties of selective laser melting of TC4.Laser Optoelectro. Prog.20225905239247
    [Google Scholar]
  13. SongB.Y. HanY.Q. WangW.S. Effect of laser power on mechanical properties of CeB6/AISi10mg by selective laser melting.Ord. Mat. Sci. Eng.202347015863
    [Google Scholar]
  14. WenS Research on temperature field and stress field in selective laser melting process of GH536 superalloy. D.Shanghai Jiao Tong University201810.27307/d.cnki.gsjtu.2018.001146
    [Google Scholar]
  15. MeinersW. WissenbachK.D. GasserA.D. Shaped body especially prototype or replacement part production.C.N. Patent 19649865A1998
  16. ShiY.S. YanC.Z. ZhouY. Metal materials for additive manufacturing.In: Materials for Additive ManufacturingAcademic Press202140359510.1016/B978‑0‑12‑819302‑0.00005‑5
    [Google Scholar]
  17. LiuY. LuoJ. ZhangJ. YanM. LaiY. Metal component 3D printing method based on SLM.CN Patent 113770379A2021
    [Google Scholar]
  18. XiuY. HeS. GuoS. Preparation method of high-strength and high-plasticity Inconel718 alloy based on SLM.CN Patent 113477942A2021
    [Google Scholar]
  19. YaoP. LiuK. WangW. Preparation method of SLM type 3D printing CuFe alloy.CN Patent 111822710B2020
    [Google Scholar]
  20. LiD. ZhaoN. YeY. SLM forming method of high-temperature alloy material.CN Patent 115488353A2022
    [Google Scholar]
  21. AmorosoT. MeyerE.M. BlatterA. Method for performing selective laser melting of metal powder.EP Patent 3900858A12021
    [Google Scholar]
  22. LiH. YangH. BaiJ. WangL. PengD. WangY. Method for forming a multi-material part by selective laser melting.US Patent 11607730B22023
    [Google Scholar]
  23. LiC. YaoZ. ChenG. Selective laser melting device and printing method.CN Patent 108788141A2018
    [Google Scholar]
  24. NaukaK. JangamJ.S.D. ChangS. Selective laser melting (SLM) additive manufacturing.US Patent 11400544B22022
    [Google Scholar]
  25. WangH.T. MaZ.Q. A metal 3D printer based on SLM technology.CN Patent 112846236B2022
    [Google Scholar]
  26. VeronF. VendierO. TailhadesP. Baco-CarlesV. KiryukhinaK. Method for manufacturing a multi-material part by additive manufacturing, using the technique of powder bed selective laser melting or selective laser sintering.US Patent 2023058595A12023
    [Google Scholar]
  27. HaoD. KongL. HanY. ZengG. Double-powder rapid switching type selective laser melting device.EP Patent 4140621A12023
    [Google Scholar]
  28. NikolaevichG.S. PetrovichN.A. VasilevnaT.T. AleksandrovichE.S. AleksandrovichG.E. Device for production of products by selective laser melting.RU Patent 2778389C12022
    [Google Scholar]
  29. MartinichJ. An installation for additive manufacturing by SLM or SLS.US Patent 2022402034A12022
    [Google Scholar]
  30. WanQ. HuX. ZhongW. HeX. CaiX. SLM metal 3D printer based on powder metallurgy.CN Patent 115533128A2022
    [Google Scholar]
  31. FasanoA.C. Selective laser melting system and method of using same.US Patent 11407034B22022
    [Google Scholar]
  32. DaiJ. ZhangZ. WeiD. Selective laser melting equipment.CN Patent 306297888S2021
    [Google Scholar]
  33. ZhouH. LiangY. ZhangY. Scraping device for SLM metal 3D printing.CN Patent 217749350U2022
    [Google Scholar]
  34. WangL. ChenW. Powder feeding device for SLM printers.CN Patent 115519122A2022
    [Google Scholar]
  35. SongH. ZhangQ. ZhouX. ZhangB. LiH. Process condition design method for improving quality performance of selective laser melting parts.CN Patent 115659830A2023
    [Google Scholar]
  36. WangH. PengY. ZhaoL. TianZ.L. Research progress and prospecton selective melting 3D printing of TiAl-based alloys.Sur Technol2021501173186
    [Google Scholar]
  37. ZhangY. LvX.F. YangK. MaoY.Y. Relationship between defects and mechanical properties of titanium alloy parts formed by selective laser melting.MW Metal Forming20238583111
    [Google Scholar]
  38. ZhouJ. WangX. ChengJ. WangL. Reliability-based optimization of selected laser melting process parameters for Co-Cr alloy.Acta Armamentarii202445124530
    [Google Scholar]
  39. JiaL. WuL. Study on optimisation of process parameters that affect the quality of 3D printing with laser melting selection.Laser J.20214205166170
    [Google Scholar]
  40. ZhouX. LiuX. ZhangD. ShenZ. LiuW. Balling phenomena in selective laser melted tungsten.J. Mater. Process. Technol.2015222334210.1016/j.jmatprotec.2015.02.032
    [Google Scholar]
  41. BaiB. CaiX.Y. HuJ.Q. ChengZ.H. DongD.P. YuanC.F. Effect of selective laser melting process parameters on forming quality of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy.Hot Work. Technol.202416
    [Google Scholar]
  42. ZhaoJ.M. LuL. WangJ.R. ZhangL. WuW.H. Effect of process parameters on compactness of Ti6Al4V alloy formed by laser selective melting.Mat. Mech. Eng.20224608100104
    [Google Scholar]
  43. Du PlessisA. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography.Addit. Manuf.20193010087110087110.1016/j.addma.2019.100871
    [Google Scholar]
  44. YangK.V. RometschP. JarvisT. RaoJ. CaoS. DaviesC. WuX. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting.Mater. Sci. Eng. A201871216617410.1016/j.msea.2017.11.078
    [Google Scholar]
  45. LouvisE. FoxP. SutcliffeC.J. Selective laser melting of aluminium components.J. Mater. Process. Technol.2011211227528410.1016/j.jmatprotec.2010.09.019
    [Google Scholar]
  46. LiZ. KuaiZ. BaiP. NieY. FuG. LiuW. YangS. Microstructure and tensile properties of alsi10mg alloy manufactured by multi-laser beam selective laser melting (SLM).Metals20199121337133710.3390/met9121337
    [Google Scholar]
  47. GrecoS. GutzeitK. HotzH. KirschB. AurichJ.C. Selective laser melting (SLM) of AISI 316L—impact of laser power, layer thickness, and hatch spacing on roughness, density, and microhardness at constant input energy density.Int. J. Adv. Manuf. Technol.20201085-61551156210.1007/s00170‑020‑05510‑8
    [Google Scholar]
  48. YanT.Q. ChenB.Q. LiangJ.Y. SunB.B. GuoS.Q. Quality optimization of TC4 alloy fabrication via selective laser melting.Laser Optoelec. Prog.20225917327335
    [Google Scholar]
  49. LiuY. CaiY.S. JiangM.C. Study on microstructure and mechanical properties of high temperature titanium alloys formed by laser selective melting.Rare Met. Cement. Carbi.20235127884+89
    [Google Scholar]
  50. XiaT. HuH.X. Process optimization of selective laser melting formed 316L stainless steel under large layer thickness.Mat. Mech. Eng.20234711104110
    [Google Scholar]
  51. ZhengZ.J. PengL. Effect of SLM preparation process on density of 316L stainless steel.Journal of Central South University (Science and Technology)202253103859386810.11817/j.issn.1672‑7207.2022.10.007
    [Google Scholar]
  52. ShiY. WangL.F. DuY. LiK. ShiX.L. Defect control and surface quality optimisation of AlSi10Mg aluminium alloy manufactured by selective laser melting.Applied Laser202343031925
    [Google Scholar]
  53. TangG.D. FengT. DuanG.Q. FengY.L. GuoD.H. WuP.Y. Process and properties of AlSi7Mg alloy fabricated by selected laser melting.Foundry Technol.20204103219222
    [Google Scholar]
  54. HuangR.K. DaiN. ChengX.C. Optimization of support structures based on numerical simulation of slm temperature field.China Mech. Eng.2020311923462354
    [Google Scholar]
  55. HanS.J. GaoX.Q. DuS.H. LiuZ. The invention relates to a numerical simulation method for temperature field of SLM multi-layer multi-channel forming.C.N. Patent 117216962A2023
  56. DuY. QiaoF.B. GuoL.J. LiP. ZhuX.G. Numerical simulation of selective laser melting temperature field of AlSi10Mg powder.Elec. Weld. Mach.201848083443
    [Google Scholar]
  57. HertleinN. DeshpandeS. VenugopalV. KumarM. AnandS. Prediction of selective laser melting part quality using hybrid Bayesian network.Addit. Manuf.20203210108910108910.1016/j.addma.2020.101089
    [Google Scholar]
  58. ChenG.Y. HuangC.Z. Finite element analysis on temperature field of micro devices forming by selective laser melting.Tool Eng.201852021822
    [Google Scholar]
  59. XuG.C. Numerical simulation of the temperature field of pure AL/AM60 lamellar composites based on SLM.J. Wuhu Inst. Technol.201719043944
    [Google Scholar]
  60. LiH. RamezaniM. ChenZ. SingamneniS. Effects of process parameters on temperature and stress distributions during selective laser melting of Ti–6Al–4V.Trans. Indian Inst. Met.201972123201321410.1007/s12666‑019‑01785‑y
    [Google Scholar]
  61. DuanC.H. HaoX.J. LuoX.P. Study on temperature field of selective laser melting.Appl. Laser20183805748753
    [Google Scholar]
  62. ZhangH. ZhuS. ZhaoY.Z. LiD.C. GengJ.L. Numerical simulation method of temperature field in SLM forming process.C.N. Patent 111199098B2022
  63. XieY.X. JiangW.J. WuS.F. Simulation study on temperature field for WC 12Co composite material by selective laser melting.Forg. Technol.20234809130141
    [Google Scholar]
  64. WangY.F. JiX. LiangY.S. Simulation of temperature field in selective laser melting considering melt pool flow effect.Appl. Laser202242083043
    [Google Scholar]
  65. KongS. LiY.Q. CaoS.H. LiJ.L. LinX.X. WuB.P. Temperature field simulation and temperature control of selective laser melting.Mod. Machin.2023052529
    [Google Scholar]
  66. ChenX. DuanX. JiangG. Numerical investigation of transient temperature field on the selective laser melting process with Al6063.Mater. Sci. Eng.2019677303207010.1088/1757‑899X/677/3/032070
    [Google Scholar]
  67. HuY. ChuC. HuY.Q. ZhangH.Y. WangL.H. ZhangD. Numerical simulation and experimental research on the temperature field of selective laser melting of IN738LC alloy.Rare Met. Mater. Eng.2023520724342443
    [Google Scholar]
  68. ChenD. WangP. SunK. TangY. KongS. FanJ. Simulation and prediction of the temperature field of copper alloys fabricated by selective laser melting.J. Laser Appl.202234404200110.2351/7.0000718
    [Google Scholar]
  69. ShiY. Impacts of laser power and scan speed on temperature field and molten pool of zl104 aluminum alloy selective laser melting.J. Phys. Conf. Ser.20222386101208110.1088/1742‑6596/2386/1/012081
    [Google Scholar]
  70. ZhengZ.J. ZhengX. Temperature field simulation and process optimization of SLM forming of 316L stainless steel based on laser remelting.Mat. Report.202438112
    [Google Scholar]
  71. MaL. LinX. CaoY. WeiL. KangN. ZhengM. A fast calculation method of SLM thermal stress.C.N. Patent 111666663B2022
  72. QingxiaoFE DuoshengLI YinYE. Numerical simulation on the effect of inter layer idle time on stress field of Ti6Al4V fabricated by SLM.Appl. Laser2021410612491256
    [Google Scholar]
  73. WangC.S. WangQ.S. LinX. ZhuK.P. Thermalmechanical-coupled finite element analysis of multi-heat source scanning in SLM process.J.Wuhan Uni. Sci. Technol.2023460645145610.1007/s11595‑023‑2717‑1
    [Google Scholar]
  74. WangL. JiangX. ZhuY. ZhuX. SunJ. YanB. An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts.Int. J. Adv. Manuf. Technol.2018979-123535354610.1007/s00170‑018‑2207‑3
    [Google Scholar]
  75. LiB.Q. LiZ.H. BaiP.K. NieY.F. KuaiZ.Y. XuC.D. Numerical simulation of stress field for AlSi10Mg fabricated by selective laser melting.Appl. Laser20193902211216
    [Google Scholar]
  76. LiuY. YangY. WangD. A study on the residual stress during Selective Laser Melting (SLM) of metallic powder.Int. J. Adv. Manuf. Technol.2016871-464765610.1007/s00170‑016‑8466‑y
    [Google Scholar]
  77. WuA.S. BrownD.W. KumarM. GallegosG.F. KingW.E. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel.Metallurg. Mat. Trans.201445136260627010.1007/s11661‑014‑2549‑x
    [Google Scholar]
  78. KeL.D. YinJ. ZhuH.H. Numerical simulation of stress evolution of thin-wall titanium parts fabricated by selective laser melting.Acta Metall. Sinica2020563374384
    [Google Scholar]
  79. WaqarS. GuoK. SunJ. FEM analysis of thermal and residual stress profile in selective laser melting of 316L stainless steel.J. Manuf. Process.2021668110010.1016/j.jmapro.2021.03.040
    [Google Scholar]
  80. WenS. DongA.P. LuY.L. ZhuG.L. ShuD. SunB.D. Finite element simulation of the temperature field and residual stress in GH536 super alloy treated by selective laser melting.Acta Metall. Sinica 2018543393403
    [Google Scholar]
  81. AnC. ZhangY.M. ZhangJ.S. The research of influence of selective laser melting process parameters on density and surface roughness of Co-Cr alloy molding parts.Appl. Laser20183803328333
    [Google Scholar]
  82. LiZ.Y. ZhangX.G. WenH. LiuY. ZhangH. Study on upper surface roughness of pure copper formed parts by selective laser melting.Appl. Laser20183802170176
    [Google Scholar]
  83. ZakrzewskiT. KozakJ. WittM. Dębowska-WąsakM. Dimensional analysis of the effect of SLM parameters on surface roughness and material density.Procedia CIRP20209511512010.1016/j.procir.2020.01.182
    [Google Scholar]
  84. HuangW.D. ZhangW.J. LianG.F. ChenX.Y. LaiZ.P. Effect of SLM forming process parameters on surface roughness of 316L stainless steel parts.Appl. Laser20204013541
    [Google Scholar]
  85. DadbakhshS. HaoL. JerrardP.G. ZhangD.Z. Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture.Powder Technol.201223111212110.1016/j.powtec.2012.07.061
    [Google Scholar]
  86. WangD. LiuY. YangY. XiaoD. Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting.Rapid Prototyp. J.201622470671610.1108/RPJ‑06‑2015‑0078
    [Google Scholar]
  87. GhorbaniJ. LiJ. SrivastavaA.K. Application of optimized laser surface re-melting process on selective laser melted 316L stainless steel inclined parts.J. Manuf. Process.20205672673410.1016/j.jmapro.2020.05.025
    [Google Scholar]
  88. WangL. YaoL.H. MaW. WangH.Y. SuY.Q. A method of controlling the surface roughness during laser selective melting.C.N. Patent 109513924B2021
  89. WangD. LvJ. WeiX. LuD. ChenC. Study on surface roughness improvement of selective laser melted Ti6Al4v alloy.Crystals202313230630610.3390/cryst13020306
    [Google Scholar]
  90. MeierH. HaberlandC. Experimental studies on selective laser melting of metallic parts.Mat. Sci. Eng. Technol.200839966567010.1002/mawe.200800327
    [Google Scholar]
  91. WangP HuangZH QiWJ ZhouYX XuCJ LiuJY Effect of the 3D printing process parameters based on SLM technology on the structural defect of 316 stainless steel.J Mach Manuf Abstr-Weld Sub-Book2016227
    [Google Scholar]
  92. ZhangS WeiXU YongZA Effects of selective laser melting parameters on surface quality and densification behaviours of pure nickel.Transactions of nonferrous metals society of china202232826342647
    [Google Scholar]
  93. OkoOE. MbakaanC. BarkiE. Experimental investigation of the effect of processing parameters on densification, microstructure and hardness of selective laser melted 7075 aluminium alloy.Mater. Res. Express20207303651203651210.1088/2053‑1591/ab7c25
    [Google Scholar]
  94. KamathC. El-dasherB. GallegosG.F. KingW.E. SistoA. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W.Int. J. Adv. Manuf. Technol.2014741-4657810.1007/s00170‑014‑5954‑9
    [Google Scholar]
  95. LvJ.J. JiaC.Z. YangJ.C. Effect of laser energy density on forming quality of selective laser melting.Hot Working Technol20184720156159
    [Google Scholar]
  96. YangL.J. ZhengH. LiJ. Study on the influence densification and surface hardness of 316l alloy parts by laser selective melting process parameters.Appl. Laser20204001712
    [Google Scholar]
  97. HuJ. Influence of laser power on the density of IN 738LC Ni-based superalloy fabricared by selective laser melting.Mat. Reports202236S2426429
    [Google Scholar]
  98. WangWZ JianZY Influence of selective laser melting parameters on relative density and microhardness of SiCp/AlSil0Mg composites by selective laser melting.J Xi'an Technol Univ2021411606610.16410/j.issn.1000‑8365.2020.02.007
    [Google Scholar]
  99. ZhangJ. YangG.L. XuX. YaoJ.H. KovalenkoV. The influence of powder coating thickness on the density and surface morphology of 316l deposited layer by selective laser melting.Surf. Technol.20220328629510.16490/j.cnki.issn.1001‑3660.2022.03.031
    [Google Scholar]
  100. AnC. ZhangY.M. ZhangJ.S. LvD.X. RuanL. Resaerch on influences of process parameters on density formation and pore defect mechanism of cobalt-chromium alloy formed by selective laser melting.Laser J.201839076871
    [Google Scholar]
  101. WangG.W. SunM.Y. QinY. Method and system for predicting density of selective laser melting forming part.C.N. Patent 117010210A2023
  102. KrakhmalevP. FredrikssonG. SvenssonK. YadroitsevI. YadroitsavaI. ThuvanderM. PengR. Microstructure, solidification texture, and thermal stability of 316L stainless steel manufactured by laser powder bed fusion.Metals20188864310.3390/met8080643
    [Google Scholar]
  103. JiW.B. XuL.K. DaiS.J. ZhangZ.Y. Effect of process parameters on hardness and microstructure of 316L stainless steel manufactured by selective laser melting.Mater Reports202135222212522131
    [Google Scholar]
  104. HuangJ.G. YuH. XuZ.F. WangZ.T. LiuZ.Q. Effects of processing parameters on performance of tc4 alloy samples by selective laser melting.Spec. Cast. Nonferrous Alloys20183804375379
    [Google Scholar]
  105. ZhuY. PengT. JiaG. ZhangH. XuS. YangH. Electrical energy consumption and mechanical properties of selective-laser-melting-produced 316L stainless steel samples using various processing parameters.J. Clean. Prod.2019208778510.1016/j.jclepro.2018.10.109
    [Google Scholar]
  106. MaM. WangZ. ZengX. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition.Mater. Sci. Eng. A201768526527310.1016/j.msea.2016.12.112
    [Google Scholar]
  107. LiveraniE. ToschiS. CeschiniL. FortunatoA. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel.J. Mater. Process. Technol.201724925526310.1016/j.jmatprotec.2017.05.042
    [Google Scholar]
  108. CuiL. YangT.Y. NieZ.R. HuangH. HeD.Y. AISi10Mg powder and selective laser melting manufacturing process.C.N. Patent 112853168A2021
  109. YadollahiA. ShamsaeiN. ThompsonS.M. SeelyD.W. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel.Mater. Sci. Eng. A201564417118310.1016/j.msea.2015.07.056
    [Google Scholar]
  110. HajnysJ. PagacM. KoteraO. PetruJ. ScholzS. Influence of basic process parameters on mechanical and internal properties of 316l steel in SLM process for renishaw AM400.MM Sci. J.201927902794
    [Google Scholar]
  111. YaoY.S. TangJ.P. WangJ. GeZ.S. ZhangC.L. Forming technology and properties of 316L stainless steel by selective laser melting.Laser Optoelect. Prog.20215801239247
    [Google Scholar]
  112. KhorasaniA. GibsonI. AwanU.S. GhaderiA. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V.Addit. Manuf.20192517618610.1016/j.addma.2018.09.002
    [Google Scholar]
  113. ZhuJ.L. WangK. MaG.D. JiaoX.D. CaiY.C. Study on TC4 titanium alloy selective laser melting forming mechanical properties.Appl. Laser2017376793800
    [Google Scholar]
  114. JiangX.Y. XiaW.L. LouD.J. Effect of scanning speed on internal defects and mechanical properties of Ti-6Al-4v alloy processed by selective laser melting.Mat. Mech. Eng.202044114145
    [Google Scholar]
  115. LiuY. LiZ.Y. ZhangX.G. ZhangH. Selective laser melting forming process of 316L stainless steel powder and properties of formed parts.Mat. Mech. Eng.201842054044
    [Google Scholar]
  116. GirelliL. TocciM. GelfiM. PolaA. Method for improving strength of selective laser melting AlSi10Mg alloy.Mater. Sci. Eng. A201973931732810.1016/j.msea.2018.10.026
    [Google Scholar]
  117. TangP.J. LiP.Y. ChenB.Q. WangJ.G. YanT.Q. ChenJ.Z. The invention relates to a method for improving the intensity of laser selective melting of ALSI 10mg alloy.C.N. Patent 115141989A2022
  118. GuoY. LiaoH. ChangC. YanX. DengZ. DongD. ChuQ. DengY. LiuM. Effects of solute atoms re-dissolution on precipitation behavior and mechanical properties of selective laser melted Al–Mg-Sc-Zr alloys.Mater. Sci. Eng. A202285414387010.1016/j.msea.2022.143870
    [Google Scholar]
  119. SunX. LiuX. WangL. QianY. Influence of solution annealing on lntergranular corrosion resistance of 316L stainless steel.Corrosion Sci Protec Technol2014263228232
    [Google Scholar]
  120. SekbanD.M. YaylacıE.U. ÖzdemirM.E. YaylacıM. TounsiA. Investigating formability behavior of friction stir-welded high-strength shipbuilding steel using experimental, finite element, and artificial neural network methods.J. Mater. Eng. Perform.202420241910.1007/s11665‑024‑09501‑8
    [Google Scholar]
  121. GargA. AggarwalP. AggarwalY. Machine learning models for predicting the compressive strength of concrete containing nano silica.Computers and Concrete20223013342
    [Google Scholar]
  122. GargA. BelarbiM.O. TounsiA. LiL. SinghA. MukhopadhyayT. Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model.Eng. Anal. Bound. Elem.202214377979510.1016/j.enganabound.2022.08.001
    [Google Scholar]
  123. SongM. WuL. LiuJ. HuY. Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin.Opt. Laser Technol.202113310653110.1016/j.optlastec.2020.106531
    [Google Scholar]
  124. WangZ. WuW. QianG. SunL. LiX. CorreiaJ.A. In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature.Eng. Fract. Mech.201921414916310.1016/j.engfracmech.2019.03.040
    [Google Scholar]
  125. BeeversE. BrandãoA.D. GumpingerJ. GschweitlM. SeyfertC. HofbauerP. RohrT. GhidiniT. Fatigue properties and material characteristics of additively manufactured AlSi10Mg – Effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties.Int. J. Fatigue201811714816210.1016/j.ijfatigue.2018.08.023
    [Google Scholar]
  126. TangM. PistoriusP.C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting.Int. J. Fatigue20179419220110.1016/j.ijfatigue.2016.06.002
    [Google Scholar]
  127. ZhaoX. ZhangH. LiuY. Effect of laser surface remelting on the fatigue crack propagation rate of 40Cr steel.Results Phys.20191242443110.1016/j.rinp.2018.11.097
    [Google Scholar]
  128. FengF. YangB. ChenD.D. Effect of defects on high cycle fatigue properties of selective laser melting 316L stainless steel.Chinese J. Mat. Res.20233712907914
    [Google Scholar]
  129. VaiyssetteB. Surface roughness of Ti6AI4V parts obtained by SLM and EBM:effect on the high cycle fatigue life.Procedia Eng.2018213899710.1016/j.proeng.2018.02.010
    [Google Scholar]
  130. YanT.Q. ChenB.Q. SunB.B. LeiY. ZhangG.H. Heat treatment method for improving fatigue performance of selective laser melting alpha-beta type titanium alloy.C.N. Patent 113996812B2023
  131. LeonA. AghionE. Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM).Mater. Charact.201713118819410.1016/j.matchar.2017.06.029
    [Google Scholar]
/content/journals/cms/10.2174/0126661454327817240903071524
Loading
/content/journals/cms/10.2174/0126661454327817240903071524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test