Skip to content
2000
image of Current and Advanced Strategies for Diabetes Mellitus Management-Review

Abstract

Diabetes mellitus (DM) is an increasing pandemic that causes an immense economic strain on societies across the world. Although traditional treatment approaches have not fully addressed the underlying causes of the disease and are associated with serious side effects, new therapy options for the management of diabetes mellitus have been emerging rapidly. Treatment for Type 1 diabetes mellitus (T1DM) and many cases of Type 2 diabetes mellitus (T2DM) require insulin. In order to maintain normal glucose levels and avert vascular problems, long-term anti-diabetic medication treatment is required. Diabetes mellitus is marked by abnormally elevated blood glucose levels during postprandial and fasting periods. Improvements in technology and a deeper comprehension of the illness itself are driving the creation of novel strategies aimed at improving glycemic management. There are many challenges in the current approach for treating DM. One difficulty in treating diabetes is the considerable variation in insulin needs amongst patients, even for the same individual under various circumstances, to keep their blood sugar levels within normal ranges. Drug delivery methods utilizing nanoparticles have a lot of promise for treating diabetes nowadays. The various routes used nowadays for insulin delivery are subcutaneous route, buccal route, oral route, nasal route, pulmonary route, vaginal and rectal delivery of insulin. The main goals of the present research are therefore to reduce invasiveness during hospitalization, improve existing medications through pharmacokinetic modifications, and develop a fully automated device that emulates the pancreas's insulin delivery.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454370942250705063324
2025-07-17
2025-08-27
Loading full text...

Full text loading...

References

  1. Forouhi N.G. Wareham N.J. Epidemiology of diabetes. In: Medicine 2014 42 pp. (12) 698 702 10.1016/j.mpmed.2014.09.007
    [Google Scholar]
  2. Rai V.K. Mishra N. Agrawal A.K. Jain S. Yadav N.P. Novel drug delivery system: an immense hope for diabetics. Drug Deliv. 2016 23 7 2371 2390 10.3109/10717544.2014.991001 25544604
    [Google Scholar]
  3. Cichocka E. Wietchy A. Nabrdalik K. Gumprecht J. Insulin therapy - new directions of research. Endokrynol. Pol. 2016 67 3 314 324 10.5603/EP.2016.0044 27364374
    [Google Scholar]
  4. Shah R. Shah V.N. Patel M. Maahs D.M. Insulin delivery methods: Past, present and future. Int. J. Pharm. Investig. 2016 6 1 1 9 10.4103/2230‑973X.176456 27014614
    [Google Scholar]
  5. Castle J.R. DeVries J.H. Kovatchev B. Future of Automated Insulin Delivery Systems. Diabetes Technol. Ther. 2017 19 S3 S-67 S-72 10.1089/dia.2017.0012 28585877
    [Google Scholar]
  6. Ergun-Longmire B. Maclaren N.K. In:Etiology and Pathogenesis of Diabetes Mellitus IN Children. Endotext 2000
    [Google Scholar]
  7. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009 32 (Suppl 1) S62-7 (Suppl 1) 19118289
  8. Lebovitz H.E. Etiology and pathogenesis of diabetes mellitus. Pediatr. Clin. North Am. 1984 31 3 521 530 10.1016/S0031‑3955(16)34604‑1 6374587
    [Google Scholar]
  9. Liao Z.X. Liu M.C. Kempson I. Fa Y.C. Huang K.Y. Light-triggered methylcellulose gold nanoparticle hydrogels for leptin release to inhibit fat stores in adipocytes. Int. J. Nanomedicine 2017 12 7603 7611 10.2147/IJN.S144986 29089758
    [Google Scholar]
  10. MacLean H. Some observations on diabetes and insulin in general practice. Postgrad. Med. J. 1926 1 6 73 77 10.1136/pgmj.1.6.73 21312442
    [Google Scholar]
  11. Clinical practice guidelines for treatment of diabetes mellitus. CMAJ 1992 147 5 697 712 [PMID: 1521215
    [Google Scholar]
  12. Butterfield W.J.H. Camp J.L. Hardwick C. Holling H.E. Clinical studies on the hypoglycaemic action of the sulphonylureas. Lancet 1957 269 6972 753 756 10.1016/S0140‑6736(57)91023‑1 13417585
    [Google Scholar]
  13. Krall L.P. White P. Bradley R.F. Clinical use of the biguanides and their role in stabilizing juvenile-type diabetes. Diabetes 1958 7 6 468 477 10.2337/diab.7.6.468 13597741
    [Google Scholar]
  14. Weatherall James When insulin degludec enhances quality of life in patients with type 2 diabetes: a qualitative investigation. Health Qual. Life Outcomes 2018 16 1 87 10.1186/s12955‑018‑0883‑1
    [Google Scholar]
  15. Vora J. Christensen T. Rana A. Bain S.C. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a meta-analysis of endpoints in phase 3a trials. Diabetes Ther. 2014 5 2 435 446 10.1007/s13300‑014‑0076‑9 25081590
    [Google Scholar]
  16. Johnston S.S. Conner C. Aagren M. Smith D.M. Bouchard J. Brett J. Evidence linking hypoglycemic events to an increased risk of acute cardiovascular events in patients with type 2 diabetes. Diabetes Care 2011 34 5 1164 1170 10.2337/dc10‑1915 21421802
    [Google Scholar]
  17. Rys P.M. Ludwig-Slomczynska A.H. Cyganek K. Malecki M.T. Continuous subcutaneous insulin infusion vs multiple daily injections in pregnant women with type 1 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials and observational studies. Eur. J. Endocrinol. 2018 178 5 545 563 10.1530/EJE‑17‑0804 29545258
    [Google Scholar]
  18. Continuous S.I.I. Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations: An Evidence-Based Analysis. Ont. Health Technol. Assess. Ser. 2009 9 20 1 58 [PMID: 23074525
    [Google Scholar]
  19. Atkinson M.A. Eisenbarth G.S. Michels A.W. Type 1 diabetes. Lancet 2014 383 9911 69 82 10.1016/S0140‑6736(13)60591‑7 23890997
    [Google Scholar]
  20. Bariya S.H. Gohel M.C. Mehta T.A. Sharma O.P. Microneedles: an emerging transdermal drug delivery system. J. Pharm. Pharmacol. 2012 64 1 11 29 10.1111/j.2042‑7158.2011.01369.x 22150668
    [Google Scholar]
  21. Kochba E. Levin Y. Raz I. Cahn A. Improved Insulin Pharmacokinetics Using a Novel Microneedle Device for Intradermal Delivery in Patients with Type 2 Diabetes. Diabetes Technol. Ther. 2016 18 9 525 531 10.1089/dia.2016.0156 27500713
    [Google Scholar]
  22. Campisi G. Paderni C. Saccone R. Fede O. Wolff A. Giannola L. Human buccal mucosa as an innovative site of drug delivery. Curr. Pharm. Des. 2010 16 6 641 652 10.2174/138161210790883778 20388074
    [Google Scholar]
  23. Kraan H. Vrieling H. Czerkinsky C. Jiskoot W. Kersten G. Amorij J.P. Buccal and sublingual vaccine delivery. J. Control. Release 2014 190 580 592 10.1016/j.jconrel.2014.05.060 24911355
    [Google Scholar]
  24. Henkin R.I. Inhaled insulin-Intrapulmonary, intranasal, and other routes of administration: Mechanisms of action. Nutrition 2010 26 1 33 39 10.1016/j.nut.2009.08.001 20005465
    [Google Scholar]
  25. Iyire A. Alaayedi M. Mohammed A.R. Pre-formulation and systematic evaluation of amino acid assisted permeability of insulin across in vitro buccal cell layers. Sci Rep 2016 6 32498 Sonia TA. P. Sharma Chandra. Oral delivery of insulin In:Sci Rep. Netherlands: Elsevier 2014. 10.1038/srep32498
    [Google Scholar]
  26. Shojaei A.H. Buccal mucosa as a route for systemic drug delivery: a review. J. Pharm. Pharm. Sci. 1998 1 1 15 30 [PMID: 10942969
    [Google Scholar]
  27. Xie J. Lee S. Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010 62 11 1064 1079 10.1016/j.addr.2010.07.009 20691229
    [Google Scholar]
  28. Hao J. Heng P.W.S. Buccal delivery systems. Drug Dev. Ind. Pharm. 2003 29 8 821 832 10.1081/DDC‑120024178 14570303
    [Google Scholar]
  29. Caon T. Jin L. Simões C.M.O. Norton R.S. Nicolazzo J.A. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm. Res. 2015 32 1 1 21 10.1007/s11095‑014‑1485‑1 25168518
    [Google Scholar]
  30. Chiou G.C. Chuang C.Y. Chang M.S. Systemic delivery of insulin through eyes to lower the glucose concentration. J. Ocul. Pharmacol. Ther. 1989 5 1 81 91 10.1089/jop.1989.5.81 2654305
    [Google Scholar]
  31. Xuan B. McClellan D.A. Moore R. Chiou G.C.Y. Alternative delivery of insulin via eye drops. Diabetes Technol. Ther. 2005 7 5 695 698 10.1089/dia.2005.7.695 16241870
    [Google Scholar]
  32. Chan J. Cheng-Lai A. Inhaled insulin: A clinical and historical review. Cardiol. Rev. 2017 25 3 140 146 10.1097/CRD.0000000000000143
    [Google Scholar]
  33. Gillis J. Inhaled form of Insulin is approved. In: Diabetics must weight risk vs convinience. Washington: The Washington Post 2006. Santos Cavaiola T, Edelman S. Inhaled insulin: a breath of fresh air? A review of inhaled insulin. Clin Ther 2014 36 8 1275 89 10.1016/j.clinthera.2014.06.025 25044021
    [Google Scholar]
  34. DiSanto R.M. Subramanian V. Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015 7 4 548 564 10.1002/wnan.1329 25641955
    [Google Scholar]
  35. Mastrandrea L. Inhaled insulin: overview of a novel route of insulin administration. Vasc. Health Risk Manag. 2010 6 47 58 10.2147/VHRM.S6098 20234779
    [Google Scholar]
  36. Ledet G. Graves R.A. Bostanian L.A. Mandal T.K. A second-generation inhaled insulin for diabetes mellitus. American journal of health-system pharmacy. Am. J. Health Promot. 2015 72 1181 1187
    [Google Scholar]
  37. Li J. Yang L. Ferguson S.M. In vitro evaluation of dissolution behavior for a colon-specific drug delivery system (CODES™) in multi-pH media using United States Pharmacopeia apparatus II and III. AAPS PharmSciTech 2002 3 4 59 10.1208/pt030433 12916927
    [Google Scholar]
  38. Krauland A.H. Guggi D. Bernkop-Schnurch A. Oral insulin delivery: the potential of thiolated chitosan-insulin tablets on nondiabetic rats. J. Control. Release 2004 95 3 547 5 10.1016/j.jconrel.2003.12.017
    [Google Scholar]
  39. Khan M.Z.I. Prebeg Ž. Kurjaković N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. J. Control. Release 1999 58 2 215 222 10.1016/S0168‑3659(98)00151‑5 10053194
    [Google Scholar]
  40. Fonte P. Araújo F. Reis S. Sarmento B. Oral insulin delivery: how far are we? J. Diabetes Sci. Technol. 2013 7 2 520 531 10.1177/193229681300700228 23567010
    [Google Scholar]
  41. Kamei N. Nielsen E.J.B. Khafagy E.S. Takeda-Morishita M. Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther. Deliv. 2013 4 3 315 326 10.4155/tde.12.164 23442079
    [Google Scholar]
  42. Kullmann S. Veit R. Peter A. Dose-dependent effects of intranasal insulin on resting-state brain activity. J. Clin. Endocrinol. Metab. 2018 103 1 253 262 10.1210/jc.2017‑01976 29095982
    [Google Scholar]
  43. Benedict C. Hallschmid M. Schmitz K. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 2007 32 1 239 243 10.1038/sj.npp.1301193 16936707
    [Google Scholar]
  44. Born J. Lange T. Kern W. McGregor G.P. Bickel U. Fehm H.L. Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 2002 5 6 514 516 10.1038/nn0602‑849 11992114
    [Google Scholar]
  45. Schöpf V. Kollndorfer K. Pollak M. Mueller C.A. Freiherr J. Intranasal insulin influences the olfactory performance of patients with smell loss, dependent on the body mass index: A pilot study. Rhinology 2015 53 4 371 378 10.4193/Rhino15.065 26275583
    [Google Scholar]
  46. Schmid V. Kullmann S. Gfrörer W. Safety of intranasal human insulin: A review. Diabetes Obes. Metab. 2018 20 7 1563 1577 10.1111/dom.13279 29508509
    [Google Scholar]
  47. O’Regan B. Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991 353 6346 737 740 10.1038/353737a0
    [Google Scholar]
  48. Vermani K. Garg S. The scope and potential of vaginal drug delivery. Pharm. Sci. Technol. Today 2000 3 10 359 364 10.1016/S1461‑5347(00)00296‑0 11050460
    [Google Scholar]
  49. Ensign L.M. Cone R. Hanes J. Nanoparticle-based drug delivery to the vagina: A review. J Control Release 2014; 190: 500-14. Delivery Systems for Insulin Current Pharmaceutical Design 2019 25 2 173
    [Google Scholar]
  50. Ning M. Guo Y. Pan H. Yu H. Gu Z. Niosomes with sorbitan monoester as a carrier for vaginal delivery of insulin: studies in rats. Drug Deliv. 2005 12 6 399 407 10.1080/10717540590968891 16253956
    [Google Scholar]
  51. Yun M. Choi H. Jung J. Kim C. Development of a thermo-reversible insulin liquid suppository with bioavailability enhancement. Int. J. Pharm. 1999 189 2 137 145 10.1016/S0378‑5173(99)00227‑6 10536242
    [Google Scholar]
  52. Yamasaki Y. Shichiri M. Kawamori R. The effectiveness of rectal administration of insulin suppository on normal and diabetic subjects. Diabetes Care 1981 4 4 454 458 10.2337/diacare.4.4.454 7049629
    [Google Scholar]
  53. Soares S. Costa A. Sarmento B. Novel non-invasive methods of insulin delivery. Expert Opin. Drug Deliv. 2012 9 12 1539 1558 10.1517/17425247.2012.737779 23098366
    [Google Scholar]
  54. Alarcón C.H. Pennadam S. Alexander C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005 34 3 276 285 10.1039/B406727D 15726163
    [Google Scholar]
  55. des Rieux A. Fievez V. Garinot M. Schneider Y.J. Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 2006 116 1 1 27 10.1016/j.jconrel.2006.08.013 17050027
    [Google Scholar]
  56. Alai M.S. Lin W.J. Pingale S.S. Application of polymeric nanoparticles and micelles in insulin oral delivery. Yao Wu Shi Pin Fen Xi 2015 23 3 351 358 [PMID: 28911691
    [Google Scholar]
  57. Xu Y. Zheng Y. Wu L. Zhu X. Zhang Z. Huang Y. Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Appl. Mater. Interfaces 2018 10 11 9315 9324 10.1021/acsami.8b00507 29484890
    [Google Scholar]
  58. Morishita M. Morishita I. Takayama K. Machida Y. Nagai T. Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int. J. Pharm. 1992 78 1-3 1 7 10.1016/0378‑5173(92)90348‑6
    [Google Scholar]
  59. Zaric B.L. Obradovic M. Sudar-Milovanovic E. Nedeljkovic J. Lazic V. Isenovic E.R. Drug Delivery Systems for Diabetes Treatment. Curr. Pharm. Des. 2019 25 2 166 173 10.2174/1381612825666190306153838 30848184
    [Google Scholar]
  60. Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008 132 3 171 183 10.1016/j.jconrel.2008.05.010 18582981
    [Google Scholar]
  61. Liu Z. Jiao Y. Wang Y. Zhou C. Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008 60 15 1650 1662 10.1016/j.addr.2008.09.001 18848591
    [Google Scholar]
  62. Danhier F. Ansorena E. Silva J.M. Coco R. Le Breton A. Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012 161 2 505 522 10.1016/j.jconrel.2012.01.043 22353619
    [Google Scholar]
  63. Sharma G. Sharma A.R. Nam J.S. Doss G.P. Lee S.S. Chakraborty C. Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J. Nanobiotechnology 2015 13 74 10.1186/s12951‑015‑0136‑y
    [Google Scholar]
  64. Yu F. Li Y. Liu C.S. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin. Int. J. Pharm. 2015 484 1-2 181 191 10.1016/j.ijpharm.2015.02.055
    [Google Scholar]
  65. Wong C.Y. Al-Salami H. Dass C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release 2017 264 247 275 10.1016/j.jconrel.2017.09.003 28887133
    [Google Scholar]
  66. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  67. Karimi M. Eslami M. Sahandi-Zangabad P. pH ‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 5 696 716 10.1002/wnan.1389 26762467
    [Google Scholar]
  68. Davidović S. Lazić V. Vukoje I. Dextran coated silver nanoparticles - Chemical sensor for selective cysteine detection. Colloids Surf. B Biointerfaces 2017 160 184 191 10.1016/j.colsurfb.2017.09.031 28934661
    [Google Scholar]
  69. He Z. Liu Z. Tian H. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 2018 10 7 3307 3319 10.1039/C7NR08047F 29384554
    [Google Scholar]
  70. Hamidi M. Azadi A. Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008 60 15 1638 1649 10.1016/j.addr.2008.08.002 18840488
    [Google Scholar]
/content/journals/cms/10.2174/0126661454370942250705063324
Loading
/content/journals/cms/10.2174/0126661454370942250705063324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test