Skip to content
2000
image of Advancements in Nanostructured Smart Drug Delivery Systems in Cancer Treatment: Targeted Modification Strategies and Clinical Implications

Abstract

Although chemotherapy is frequently used against cancer, it has notable limitations. Patients often experience side effects which require them to limit their dosage or discontinue treatment altogether. One such issue is the accumulation of chemotherapy in healthy organs. Another is the lack of specificity by cancer cells, which leads to the use of non-targeted molecules. On the other hand, cancer cells may develop resistance mechanisms that prevent the treatment from working. To get over these restrictions and tackle therapeutic issues, smart drug delivery systems were created. One potential medication delivery platform for targeted cancer treatment is smart nanoparticles, which may either react to or be guided by biological signals. Furthermore, these strategies can be directed by surface molecules that bind to certain receptors on cancer cell membranes or to the tumour microenvironment, resulting in a strong affinity. Recent progress in cancer therapy medication delivery methods is summarised in this brief review. These methods include several smart nanocarriers that respond to single or multifunctional stimuli. Nanoparticles made of polymeric materials, micelles, dendrimers, protein, cell membrane, liposomes, quantum dots, mesoporous silica, carbon, black phosphorus, iron oxide, quantum dots, and MOF are just a few examples of the smart materials that have recently been developed. Additionally, we shared a brief overview of the many medication delivery modalities available for cancer therapy, including peptides, nucleic acids, small molecules, proteins, and even live cells. We covered the advantages and disadvantages of smart nanoparticles as well as their potential applications in medicine.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454366845250618053301
2025-06-30
2025-08-13
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Anand U. Dey A. Chandel A.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  3. Bajracharya R. Song J.G. Patil B.R. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv. 2022 29 1 1959 1970 10.1080/10717544.2022.2089296 35762636
    [Google Scholar]
  4. Sun L. Liu H. Ye Y. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  5. Argentiero A. Delvecchio A. Fasano R. The complexity of the tumor microenvironment in hepatocellular carcinoma and emerging therapeutic developments. J. Clin. Med. 2023 12 23 7469 10.3390/jcm12237469 38068521
    [Google Scholar]
  6. Wang X. Li C. Wang Y. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022 12 11 4098 4121 10.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  7. Ezike T.C. Okpala U.S. Onoja U.L. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  8. Vargason A.M. Anselmo A.C. Mitragotri S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 2021 5 9 951 967 10.1038/s41551‑021‑00698‑w 33795852
    [Google Scholar]
  9. Cook A.B. Decuzzi P. Harnessing endogenous stimuli for responsive materials in theranostics. ACS Nano 2021 15 2 2068 2098 10.1021/acsnano.0c09115 33555171
    [Google Scholar]
  10. Wei X. Song M. Li W. Huang J. Yang G. Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranostics 2021 11 13 6334 6354 10.7150/thno.59342 33995661
    [Google Scholar]
  11. Kenchegowda M. Rahamathulla M. Hani U. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules 2021 27 1 146 10.3390/molecules27010146 35011376
    [Google Scholar]
  12. Hossain M.K. Khan M.I. El-Denglawey A. A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl. Mater. Today 2021 24 101104 10.1016/j.apmt.2021.101104
    [Google Scholar]
  13. Hossen S. Hossain M.K. Basher M.K. Mia M.N.H. Rahman M.T. Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019 15 1 18 10.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  14. Singh S. Pandey V.K. Tewari R.P. Agarwal V. Nanoparticle based drug delivery system: Advantages and applications. Indian J. Sci. Technol. 2011 4 3 177 184 10.17485/ijst/2011/v4i3.16
    [Google Scholar]
  15. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  16. Sharma M. Transdermal and intravenous nano drug delivery systems: Present and future. In:Applications of Targeted Nano Drugs and Delivery Systems. Amsterdam Elsevier 2019 499 550 10.1016/B978‑0‑12‑814029‑1.00018‑1
    [Google Scholar]
  17. Hussein Kamareddine M. Ghosn Y. Tawk A. Organic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myeloid leukemia. Technol. Cancer Res. Treat. 2019 18 1533033819879902 10.1177/1533033819879902 31865865
    [Google Scholar]
  18. López-Dávila V. Seifalian A.M. Loizidou M. Organic nanocarriers for cancer drug delivery. Curr. Opin. Pharmacol. 2012 12 4 414 419 10.1016/j.coph.2012.02.011 22465543
    [Google Scholar]
  19. Kumar R. Dalvi S.V. Siril P.F. Nanoparticle-based drugs and formulations: cCurrent status and emerging applications. ACS Appl. Nano Mater. 2020 3 6 4944 4961 10.1021/acsanm.0c00606
    [Google Scholar]
  20. Machhi J. Shahjin F. Das S. Nanocarrier vaccines for SARS-CoV-2. Adv. Drug Deliv. Rev. 2021 171 215 239 10.1016/j.addr.2021.01.002 33428995
    [Google Scholar]
  21. Ghosn Y. Kamareddine M.H. Tawk A. Inorganic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myelogenous leukaemia. Technol. Cancer Res. Treat. 2019 18 1533033819853241 10.1177/1533033819853241 31138064
    [Google Scholar]
  22. Shi Y. van der Meel R. Chen X. Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020 10 17 7921 7924 10.7150/thno.49577 32685029
    [Google Scholar]
  23. Wen R. Umeano A.C. Chen P. Farooqi A.A. Polymer-based drug delivery systems for cancer. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 6 521 553 10.1615/CritRevTherDrugCarrierSyst.2018021124 30317968
    [Google Scholar]
  24. Senapati S. Mahanta A.K. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther. 2018 3 1 7 10.1038/s41392‑017‑0004‑3 29560283
    [Google Scholar]
  25. Montaño-Samaniego M. Bravo-Estupiñan D.M. Méndez-Guerrero O. Alarcón-Hernández E. Ibáñez-Hernández M. Strategies for targeting gene therapy in cancer cells with tumor-specific promoters. Front. Oncol. 2020 10 605380 10.3389/fonc.2020.605380 33381459
    [Google Scholar]
  26. Alavi M. Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019 34 1 1 8 10.1515/dmpt‑2018‑0032 30707682
    [Google Scholar]
  27. Kalyane D. Raval N. Maheshwari R. Tambe V. Kalia K. Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019 98 1252 1276 10.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  28. Shi Z. Zhou Y. Fan T. Lin Y. Zhang H. Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater Med 2020 1 32 47 10.1016/j.smaim.2020.05.002
    [Google Scholar]
  29. Fang J. Nakamura H. Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011 63 3 136 151 10.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  30. Danhier F. Feron O. Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010 148 2 135 146 10.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  31. Bazak R. Houri M. El Achy S. Kamel S. Refaat T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015 141 5 769 784 10.1007/s00432‑014‑1767‑3 25005786
    [Google Scholar]
  32. Kumari P. Ghosh B. Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016 24 3 179 191 10.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  33. Nag O.K. Delehanty J.B. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 2019 11 10 543 549 10.3390/pharmaceutics11100543 31635367
    [Google Scholar]
  34. Zhao Z. Ukidve A. Kim J. Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020 181 1 151 167 10.1016/j.cell.2020.02.001 32243788
    [Google Scholar]
  35. Pearce A.K. O’Reilly R.K. Insights into active targeting of nanoparticles in drug delivery: Advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug. Chem. 2019 30 9 2300 2311 10.1021/acs.bioconjchem.9b00456 31441642
    [Google Scholar]
  36. Sundararaj S.C. Al-Sabbagh M. Rabek C.L. Dziubla T.D. Thomas M.V. Puleo D.A. Comparison of sequential drug release in vitro and in vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2016 104 7 1302 1310 10.1002/jbm.b.33472 26111338
    [Google Scholar]
  37. Sun T. Zhang Y.S. Pang B. Hyun D.C. Yang M. Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014 53 46 12320 12364 10.1002/anie.201403036 25294565
    [Google Scholar]
  38. Jain P. Satapathy T. Pandey R.K. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides. Indian J. Nat. Prod. Resour. 2020 11 12 217 223
    [Google Scholar]
  39. Rathore P Rao SP Roy A Satapathy T Singh V Jain P Hepatoprotective activity of isolated herbal compounds. Research. Res J Pharm Technol 2014 7 2
    [Google Scholar]
  40. Sanchez L. Yi Y. Yu Y. Effect of partial PEGylation on particle uptake by macrophages. Nanoscale 2017 9 1 288 297 10.1039/C6NR07353K 27909711
    [Google Scholar]
  41. Sahin N.O. Niosomes as nanocarrier systems. In:Nanomaterials and Nanosystems for Biomedical Applications. Netherlands Springer 2007 67 81 10.1007/978‑1‑4020‑6289‑6_4
    [Google Scholar]
  42. Abdelkader H. Alani A.W.G. Alany R.G. Recent advances in non-ionic surfactant vesicles (niosomes): Self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014 21 2 87 100 10.3109/10717544.2013.838077 24156390
    [Google Scholar]
  43. Khan R. Irchhaiya R. Niosomes: A potential tool for novel drug delivery. J. Pharm. Investig. 2016 46 3 195 204 10.1007/s40005‑016‑0249‑9
    [Google Scholar]
  44. Muzzalupo R. Mazzotta E. Do niosomes have a place in the field of drug delivery? Expert Opin. Drug Deliv. 2019 16 11 1145 1147 10.1080/17425247.2019.1663821 31496311
    [Google Scholar]
  45. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  46. Islam M. Huang Y. Jain P. Fan B. Tong L. Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal. Agric. Biotechnol. 2023 50 102700 10.1016/j.bcab.2023.102700
    [Google Scholar]
  47. Jain P. Satapathy T. Pandey R.K. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet. Parasitol. 2021 296 June 109508 10.1016/j.vetpar.2021.109508 34218174
    [Google Scholar]
  48. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  49. Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv. Drug Deliv. Rev. 2008 60 15 1663 1673 10.1016/j.addr.2008.09.002
    [Google Scholar]
  50. Ag Seleci D. Seleci M. Walter J-G. Stahl F. Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016 2016 1 13 10.1155/2016/7372306
    [Google Scholar]
  51. Junyaprasert V.B. Teeranachaideekul V. Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech 2008 9 3 851 859 10.1208/s12249‑008‑9121‑1 18636334
    [Google Scholar]
  52. Elliott J.A. Flam B. Muffly K. Strom J.A. Hood E. VanAuker M.D. Targeted drug delivery with PEGylated immuno- niosomes. 25th southern biomedical engineering conference. Miami, Florida, USA, 17 May 2009 363e366 10.1007/978‑3‑642‑01697‑4_124
    [Google Scholar]
  53. Rinaldi F. Del Favero E. Rondelli V. pH-sensitive niosomes: Effects on cytotoxicity and on inflammation and pain in murine models. J. Enzyme Inhib. Med. Chem. 2017 32 1 538 546 10.1080/14756366.2016.1268607 28114822
    [Google Scholar]
  54. Guler E. Demir B. Guler B. Demirkol D.O. Timur S. Bio-functionalized nanomaterials for targeting cancer cells. Nanostructures for Cancer Therapy. Elsevier 2017 51 86 10.1016/B978‑0‑323‑46144‑3.00003‑9
    [Google Scholar]
  55. Marianecci C. Di Marzio L. Rinaldi F. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014 205 187 206 10.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  56. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  57. Huang Z. Li X. Zhang T. Progress involving new techniques for liposome preparation. Asian J Pharm Sci 2014 9 4 176 182 10.1016/j.ajps.2014.06.001
    [Google Scholar]
  58. Otake K. Shimomura T. Goto T. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir 2006 22 6 2543 2550 10.1021/la051654u 16519453
    [Google Scholar]
  59. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  60. Jin Y. Liang X. An Y. Dai Z. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyper- thermia and chemotherapy of cancer. Bioconjug. Chem. 2016 27 12 2931 2942 10.1021/acs.bioconjchem.6b00603 27998076
    [Google Scholar]
  61. Xiao Q. Li X. Liu C. Liposome-based anchoring and core-encapsulation for combinatorial cancer therapy. Chin. Chem. Lett. 2022 33 9 4191 4196 10.1016/j.cclet.2022.01.083
    [Google Scholar]
  62. Petersen A.L. Hansen A.E. Gabizon A. Andresen T.L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 2012 64 13 1417 1435 10.1016/j.addr.2012.09.003 22982406
    [Google Scholar]
  63. Børresen B. Henriksen J.R. Clergeaud G. Theranostic imaging may vaccinate against the therapeutic benefit of long circulating PEGylated liposomes and change cargo pharmaco- kinetics. ACS Nano 2018 12 11 11386 11398 10.1021/acsnano.8b06266 30372038
    [Google Scholar]
  64. Zununi Vahed S. Salehi R. Davaran S. Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Eng. C 2017 71 1327 1341 10.1016/j.msec.2016.11.073 27987688
    [Google Scholar]
  65. Zhang D. Wang G. Yu X. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 2022 17 7 777 787 10.1038/s41565‑022‑01122‑3 35551240
    [Google Scholar]
  66. Sun L. Fan Z. Yue T. Yin J. Fu J. Zhang M. Additive nanomanufacturing of lab-on-a-chip fluorescent peptide nanoparticle arrays for Alzheimer’s disease diagnosis. Biodes. Manuf. 2018 1 3 182 194 10.1007/s42242‑018‑0019‑9
    [Google Scholar]
  67. Sun L. Liu D. Fu D. Yue T. Scharre D. Zhang L. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem. Eng. J. 2021 405 126733 10.1016/j.cej.2020.126733
    [Google Scholar]
  68. Liu D. Fu D. Zhang L. Sun L. Detection of amyloid-beta by Fmoc-KLVFF self-assembled fluorescent nanoparticles for Alzheimer’s disease diagnosis. Chin. Chem. Lett. 2021 32 3 1066 1070 10.1016/j.cclet.2020.09.009
    [Google Scholar]
  69. Sun L. Lei Y. Wang Y. Liu D. Blood-based Alzheimer’s disease diagnosis using fluorescent peptide nanoparticle arrays. Chin. Chem. Lett. 2022 33 4 1946 1950 10.1016/j.cclet.2021.10.071
    [Google Scholar]
  70. Fan Z. Sun L. Huang Y. Wang Y. Zhang M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016 11 4 388 394 10.1038/nnano.2015.312 26751169
    [Google Scholar]
  71. Sun M. Hu H. Sun L. Fan Z. The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: A mini-review. Chin. Chem. Lett. 2020 31 7 1729 1736 10.1016/j.cclet.2020.02.035
    [Google Scholar]
  72. Iglesias J. Nab-Paclitaxel (Abraxane®): An albumin-bound cytotoxic exploiting natural delivery mechanisms into tumors. Breast Cancer Res. 2009 11 S1 S21 10.1186/bcr2282
    [Google Scholar]
  73. Hawkins M.J. Soon-Shiong P. Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev. 2008 60 8 876 885 10.1016/j.addr.2007.08.044 18423779
    [Google Scholar]
  74. Chime S.A. Kenechukwu F.C. Attama A.A. Nanoemulsionsdadvances in formulation, char- acterization and applications in drug delivery. In:Application of nanotechnology in drug delivery. 2014 InTech 10.5772/58673
    [Google Scholar]
  75. Chongprakobkit S. Tachaboonyakiat W. A thermal controlled release of naproxen from sodium phosphorylated chitosan nanoemulsion. Adv. Mat. Res. 2013 701 217 221 10.4028/www.scientific.net/AMR.701.217
    [Google Scholar]
  76. Bazán Henostroza M.A. Curo Melo K.J. Nishitani Yukuyama M. Löbenberg R. Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Asp. 2020 597 124755 10.1016/j.colsurfa.2020.124755
    [Google Scholar]
  77. Date A.A. Desai N. Dixit R. Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010 5 10 1595 1616 10.2217/nnm.10.126 21143036
    [Google Scholar]
  78. Seo Y.G. Kim D.H. Ramasamy T. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int. J. Pharm. 2013 452 1–2 412 420 10.1016/j.ijpharm.2013.05.034
    [Google Scholar]
  79. Usmani A. Mishra A. Arshad M. Jafri A. Development and evaluation of doxorubicin self nanoemulsifying drug delivery system with Nigella Sativa oil against human hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 2019 47 1 933 944 10.1080/21691401.2019.1581791 30888204
    [Google Scholar]
  80. Osman M. Al-Kreathy H.M. Al-Zahrani A. Ahmed O.A. Ramadan W.S. ElShal M.F. Enhancement of efficacy and reduced toxicity of cisplatin through self nanoemulsifying drug delivery system (SNEDDS). Int. J. Pharmacol. 2017 13 3 292 302 10.3923/ijp.2017.292.302
    [Google Scholar]
  81. Cho H.Y. Kang J.H. Ngo L. Tran P. Lee Y.B. Preparation and evaluation of solid-self- emulsifying drug delivery system containing paclitaxel for lymphatic delivery. J. Nanomater. 2016 2016 1 14 10.1155/2016/3642418
    [Google Scholar]
  82. Alshahrani S.M. Alshetaili A.S. Alalaiwe A. Anticancer efficacy of self-nanoemulsifying drug delivery system of sunitinib malate. AAPS PharmSciTech 2018 19 1 123 133 10.1208/s12249‑017‑0826‑x 28620763
    [Google Scholar]
  83. Nottingham E. Sekar V. Mondal A. Safe S. Rishi A.K. Singh M. The role of self- nanoemulsifying drug delivery systems of CDODA-me in sensitizing erlotinib-resistant nonesmall cell lung cancer. J. Pharm. Sci. 2020 109 6 1867 1882 10.1016/j.xphs.2020.01.010 31954111
    [Google Scholar]
  84. Sandhya P. Poornima P. Bhikshapathi D.V.R.N. Self nanoemulsifying drug delivery system of Sorafenib tosylate: Development and in vivo studies. Pharm. Nanotechnol. 2020 8 6 471 484 10.2174/2211738508666201016151406 33069205
    [Google Scholar]
  85. Ansari M.J. Alnakhli M. Al-Otaibi T. Formulation and evaluation of self-nanoemulsifying drug delivery system of brigatinib: Improvement of solubility, in vitro release, ex-vivo permeation and anticancer activity. J. Drug Deliv. Sci. Technol. 2021 61 102204 10.1016/j.jddst.2020.102204
    [Google Scholar]
  86. Jeevana Jyothi B. Sreelakshmi K. Design and evaluation of self-nanoemulsifying drug delivery system of flutamide. J. Young Pharm. 2011 3 1 4 8 10.4103/0975‑1483.76413 21607048
    [Google Scholar]
  87. Rehman F.U. Shah K.U. Shah S.U. Khan I.U. Khan G.M. Khan A. From nanoemulsions to self-nanoemulsions, with recent advances in self-nanoemulsifying drug delivery systems (SNEDDS). Expert Opin. Drug Deliv. 2017 14 11 1325 1340 10.1080/17425247.2016.1218462 27485144
    [Google Scholar]
  88. Biswas M.C. Chowdhury A. Hossain M.M. Hossain M.K. Applications, drawbacks and future scope of nanoparticles-based polymer composites. In:Metal Nanoparticle-Based Polymer Composites. 1st ed Elsevier 2022 10.1016/B978‑0‑12‑824272‑8.00002‑6
    [Google Scholar]
  89. Parvej M.S. Khan M.I. Hossain M.K. 3 - Preparation of nanoparticle-based polymer composites. In:Nanoparticle-Based Polymer Composites. Woodhead Publishing 2022 55 94 10.1016/B978‑0‑12‑824272‑8.00013‑0
    [Google Scholar]
  90. Zielińska A. Carreiró F. Oliveira A.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  91. Taghipour-Sabzevar V. Sharifi T. Bagheri-Khoulenjani S. Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: An in vitro study. J. Nanopart. Res. 2020 22 5 99 10.1007/s11051‑020‑04838‑2
    [Google Scholar]
  92. He Y. Xue C. Yu Y. CD44 is overexpressed and correlated with tumor progression in gallbladder cancer. Cancer Manag. Res. 2018 10 3857 3865 10.2147/CMAR.S175681 30288117
    [Google Scholar]
  93. Crayton S.H. Chen A.K. Liu J.F. 3.20 molecular imaging. Comprehensive Biomaterials II. Elsevier 2017 424 466 10.1016/B978‑0‑12‑803581‑8.10222‑X
    [Google Scholar]
  94. Kulthe S.S. Choudhari Y.M. Inamdar N.N. Mourya V. Polymeric micelles: Authoritative aspects for drug delivery. Des. Monomers Polym. 2012 15 5 465 521 10.1080/1385772X.2012.688328
    [Google Scholar]
  95. Wi’sniewska-Becker A. Gruszecki W.I. Biomembrane models. In:Drug-biomembrane interaction studies. Elsevier 2013 47 95 10.1533/9781908818348.47
    [Google Scholar]
  96. Cholkar K. Patel A. Vadlapudi A.D. Mitra A.K. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat. Nanomed. 2012 2 2 82 95 10.2174/1877912311202020082 25400717
    [Google Scholar]
  97. Xu W. Ling P. Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv. 2013 2013 1 15 10.1155/2013/340315 23936656
    [Google Scholar]
  98. Majumder N.G. Das N. Das S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020 11 10 613 635 10.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  99. Jo M.J. Jin I.S. Park C.W. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch. Pharm. Res. 2020 43 1 100 109 10.1007/s12272‑020‑01215‑4 31989478
    [Google Scholar]
  100. Fisher O.Z. Khademhosseini A. Peppas N.A. Drug delivery: Nanoscale devices. In:Encyclo- pedia of materials: Science and technology.2010 Elsevier 2010 1 9 10.1016/B978‑008043152‑9.02233‑8
    [Google Scholar]
  101. Discher B.M. Won Y.Y. Ege D.S. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999 284 5417 1143 1146 10.1126/science.284.5417.1143 10325219
    [Google Scholar]
  102. Zhao L. Li N. Wang K. Shi C. Zhang L. Luan Y. A review of polypeptide-based polymersomes. Biomaterials 2014 35 4 1284 1301 10.1016/j.biomaterials.2013.10.063
    [Google Scholar]
  103. Lin J.J. Ghoroghchian P.P. Zhang Y. Hammer D.A. Adhesion of antibody-functionalized polymersomes. Langmuir 2006 22 9 3975 3979 10.1021/la052445c 16618135
    [Google Scholar]
  104. Robbins G.P. Saunders R.L. Haun J.B. Rawson J. Therien M.J. Hammer D.A. Tunable leuko-polymersomes that adhere specifically to inflammatory markers. Langmuir 2010 26 17 14089 14096 10.1021/la1017032 20704280
    [Google Scholar]
  105. Lee J.S. Groothuis T. Cusan C. Mink D. Feijen J. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials 2011 32 34 9144 9153 10.1016/j.biomaterials.2011.08.036 21872328
    [Google Scholar]
  106. Egli S. Nussbaumer M.G. Balasubramanian V. Biocompatible functionalization of polymersome surfaces: A new approach to surface immobilization and cell targeting using polymersomes. J. Am. Chem. Soc. 2011 133 12 4476 4483 10.1021/ja110275f 21370858
    [Google Scholar]
  107. Demirgöz D. Pangburn T.O. Davis K.P. Lee S. Bates F.S. Kokkoli E.P.R. _b-targeted delivery of tumor necrosis factor-α by polymersomes for the treatment of prostate cancer. Soft Matter 2009 5 10 2011 10.1039/b814217c
    [Google Scholar]
  108. Lai M.H. Jeong J.H. DeVolder R.J. Brockman C. Schroeder C. Kong H. Ellipsoidal poly- aspartamide polymersomes with enhanced cell-targeting ability. Adv. Funct. Mater. 2012 22 15 3239 3246 10.1002/adfm.201102664 23976892
    [Google Scholar]
  109. Petersen M.A. Yin L. Kokkoli E. Hillmyer M.A. Synthesis and characterization of reactive PEO–PMCL polymersomes. Polym. Chem. 2010 1 8 1281 10.1039/c0py00143k
    [Google Scholar]
  110. Stojanov K. Georgieva J.V. Brinkhuis R.P. In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice. Mol. Pharm. 2012 9 6 1620 1627 10.1021/mp200621v 22536790
    [Google Scholar]
  111. Gao H. Pang Z. Fan L. Hu K. Wu B. Jiang X. Effect of lactoferrin- and transferrin-conjugated polymersomes in brain targeting: In vitro and in vivo evaluations. Acta Pharmacol. Sin. 2010 31 2 237 243 10.1038/aps.2009.199 20139907
    [Google Scholar]
  112. Chen Y.C. Chiang C.F. Chen L.F. Liang P.C. Hsieh W.Y. Lin W.L. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials 2014 35 13 4066 4081 10.1016/j.biomaterials.2014.01.042 24513319
    [Google Scholar]
  113. Avti P.K. Kakkar A. Dendrimers as anti-inflammatory agents. Braz. J. Pharm. Sci. 2013 49 57 65 10.1590/S1984‑82502013000700006
    [Google Scholar]
  114. Chen C.Z. Cooper S.L. Recent advances in antimicrobial dendrimers. Adv. Mater. 2000 12 11 843 846 10.1002/(SICI)1521‑4095(200006)12:11<843:AID‑ADMA843>3.0.CO;2‑T
    [Google Scholar]
  115. Ambekar R.S. Choudhary M. Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: A review. Eur. Polym. J. 2020 126 109546 10.1016/j.eurpolymj.2020.109546
    [Google Scholar]
  116. Sahu B. Comprehensive review on Non-Alcoholic Fatty Liver Disease (NAFLD). Clin Adv Drug Treatm Prob Sci 2024 1 1 1 7
    [Google Scholar]
  117. Sinha L. Jain S.K. Choudhary R. Current trends in the treatment of hepatocellular carcinoma: Clinical applications and advancement. Prob Sci 2024 1 1 24 33
    [Google Scholar]
  118. Kumar M.K. Narayan S. Singh P.K. A review on advancement of mouth dissolving tablets. Prob Sci 2024 1 1 34 49
    [Google Scholar]
  119. Munavalli B.B. Naik S.R. Torvi A.I. Kariduraganavar M.Y. Dendrimers. In:Functional Polymers. Cham Springer 2019 289 345 10.1007/978‑3‑319‑95987‑0_9
    [Google Scholar]
  120. Kesharwani P. Amin M.C.I.M. Giri N. Jain A. Gajbhiye V. Dendrimers in targeting and delivery of drugs. In:Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. Academic Press 2017 363 388 10.1016/B978‑0‑12‑809717‑5.00013‑0
    [Google Scholar]
  121. Choi Y. Thomas T. Kotlyar A. Islam M.T. Baker J.R. Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem. Biol. 2005 12 1 35 43 10.1016/j.chembiol.2004.10.016 15664513
    [Google Scholar]
  122. Le N.T.T. Nguyen T.N.Q. Cao V.D. Hoang D.T. Ngo V.C. Hoang Thi T.T. Recent progress and advances of multi-stimuli-responsive dendrimers in drug delivery for cancer treatment. Pharmaceutics 2019 11 11 591 10.3390/pharmaceutics11110591 31717376
    [Google Scholar]
  123. Shirata C. Kaneko J. Inagaki Y. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Sci. Rep. 2017 7 1 13958 10.1038/s41598‑017‑14401‑0 29066756
    [Google Scholar]
  124. Lee Y. Thompson D.H. Stimuli‐responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017 9 5 e1450 10.1002/wnan.1450 28198148
    [Google Scholar]
  125. Hefnawy A. Khalil I.H. Arafa K. Emara M. El-Sherbiny I.M. Dual-ligand functionalized core-shell chitosan-based nanocarrier for hepatocellular carcinoma-targeted drug delivery. Int. J. Nanomedicine 2020 15 821 837 10.2147/IJN.S240359 32103939
    [Google Scholar]
  126. Gong Z. Chen M. Ren Q. Yue X. Dai Z. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther. 2020 5 1 12 10.1038/s41392‑019‑0104‑3 32296050
    [Google Scholar]
  127. Zhang F. Li M. Su Y. Zhou J. Wang W. A dual-targeting drug co-delivery system for tumor chemo- and gene combined therapy. Mater. Sci. Eng. C 2016 64 208 218 10.1016/j.msec.2016.03.083 27127046
    [Google Scholar]
  128. Yang Y. Li Y. Chen K. Dual receptor-targeted and redox-sensitive polymeric micelles self-assembled from a folic acid-hyaluronic acid-SS-vitamin E succinate polymer for precise cancer therapy. Int. J. Nanomedicine 2020 15 2885 2902 10.2147/IJN.S249205 32425522
    [Google Scholar]
  129. Chen Z. Wan L. Yuan Y. pH/GSH-dual-sensitive hollow mesoporous silica nanoparticle-based drug delivery system for targeted cancer therapy. ACS Biomater. Sci. Eng. 2020 6 6 3375 3387 10.1021/acsbiomaterials.0c00073 33463161
    [Google Scholar]
  130. Wang M. Wu J. Li Y. A tumor targeted near-infrared light-controlled nanocomposite to combat with multidrug resistance of cancer. J. Control. Release 2018 288 34 44 10.1016/j.jconrel.2018.08.037 30171977
    [Google Scholar]
  131. Liu M. Du H. Khan A.R. Ji J. Yu A. Zhai G. Redox/enzyme sensitive chondroitin sulfate-based self-assembled nanoparticles loading docetaxel for the inhibition of metastasis and growth of melanoma. Carbohydr. Polym. 2018 184 82 93 10.1016/j.carbpol.2017.12.047 29352946
    [Google Scholar]
  132. Zhen X. Cheng P. Pu K. Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small 2019 15 1 1804105 10.1002/smll.201804105 30457701
    [Google Scholar]
  133. Sahu S. Ghosh V. Jain P. Recent advancement of novel drug delivery systems for topical anaesthesia formulations. Curr. Nanomed. 2025 15 1 17
    [Google Scholar]
  134. Hu C.M.J. Zhang L. Aryal S. Cheung C. Fang R.H. Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011 108 27 10980 10985 10.1073/pnas.1106634108 21690347
    [Google Scholar]
  135. Gupta A. Jain P. Nagori K. Adnan M. Ajazuddin. Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine. Pharmacol Res -Mod Chin Med 2024 12 100463 10.1016/j.prmcm.2024.100463
    [Google Scholar]
  136. Li R. He Y. Zhang S. Qin J. Wang J. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B 2018 8 1 14 22 10.1016/j.apsb.2017.11.009 29872619
    [Google Scholar]
  137. Hu Q. Sun W. Qian C. Wang C. Bomba H.N. Gu Z. Anticancer platelet-mimicking nanovehicles. Adv. Mater. 2015 27 44 7043 7050 10.1002/adma.201503323 26416431
    [Google Scholar]
  138. Yang S. Zhou L. Su Y. Zhang R. Dong C.M. One-pot photoreduction to prepare NIR-absorbing plasmonic gold nanoparticles tethered by amphiphilic polypeptide copolymer for synergistic photothermal-chemotherapy. Chin. Chem. Lett. 2019 30 1 187 191 10.1016/j.cclet.2018.02.015
    [Google Scholar]
  139. Singh P. Pandit S. Mokkapati V.R.S.S. Garg A. Ravikumar V. Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018 19 7 1979 10.3390/ijms19071979 29986450
    [Google Scholar]
  140. Singh P. Ahn S. Kang J.P. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: A green synthetic approach. Artif. Cells Nanomed. Biotechnol. 2018 46 8 2022 2032 [PMID: 29190154
    [Google Scholar]
  141. Singh P. Kim Y.J. Wang C. Mathiyalagan R. El-Agamy Farh M. Yang D.C. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif. Cells Nanomed. Biotechnol. 2016 44 3 811 816 [PMID: 25706249
    [Google Scholar]
  142. Aldewachi H. Chalati T. Woodroofe M.N. Bricklebank N. Sharrack B. Gardiner P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018 10 1 18 33 10.1039/C7NR06367A 29211091
    [Google Scholar]
  143. Singh P. Singh H. Kim Y.J. Mathiyalagan R. Wang C. Yang D.C. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzyme Microb. Technol. 2016 86 75 83 10.1016/j.enzmictec.2016.02.005 26992796
    [Google Scholar]
  144. Menon J.U. Jadeja P. Tambe P. Vu K. Yuan B. Nguyen K.T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 2013 3 3 152 166 10.7150/thno.5327 23471164
    [Google Scholar]
  145. Ali M.R.K. Rahman M.A. Wu Y. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017 114 15 E3110 E3118 10.1073/pnas.1619302114 28356516
    [Google Scholar]
  146. Chang X. Wu Q. Wu Y. Multifunctional Au modified Ti3C2-MXene for photothermal/ enzyme dynamic/immune synergistic therapy. Nano Lett. 2022 22 20 8321 8330 10.1021/acs.nanolett.2c03260 36222477
    [Google Scholar]
  147. Kumar D. Saini N. Jain N. Sareen R. Pandit V. Gold nanoparticles: An era in bionanotechnology. Expert Opin. Drug Deliv. 2013 10 3 397 409 10.1517/17425247.2013.749854 23289421
    [Google Scholar]
  148. Liu T. Zhu M. Chang X. Tumor-specific photothermal-therapy-assisted immunomodulation via multiresponsive adjuvant nanoparticles. Adv. Mater. 2023 35 18 2300086 10.1002/adma.202300086 36782382
    [Google Scholar]
  149. Gasparri A.M. Sacchi A. Basso V. Boosting interleukin-12 antitumor activity and synergism with immunotherapy by targeted delivery with isoDGR-tagged nanogold. Small 2019 15 45 1903462 10.1002/smll.201903462 31523920
    [Google Scholar]
  150. Kong F.Y. Zhang J.W. Li R.F. Wang Z.X. Wang W.J. Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017 22 9 1445 10.3390/molecules22091445 28858253
    [Google Scholar]
  151. Bridgman P.W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914 36 7 1344 1363 10.1021/ja02184a002
    [Google Scholar]
  152. Wu F. Zhang M. Chu X. Black phosphorus nanosheets-based nanocarriers for enhancing chemotherapy drug sensitiveness via depleting mutant p53 and resistant cancer multimodal therapy. Chem. Eng. J. 2019 370 387 399 10.1016/j.cej.2019.03.228
    [Google Scholar]
  153. Fojtů M. Chia X. Sofer Z. Masařík M. Pumera M. Black phosphorus nano-particles potentiate the anticancer effect of oxaliplatin in ovarian cancer cell line. Adv. Funct. Mater. 2017 27 36 1701955 10.1002/adfm.201701955
    [Google Scholar]
  154. Deng L. Xu Y. Sun C. Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Sci. Bull. 2018 63 14 917 924 10.1016/j.scib.2018.05.022 36658973
    [Google Scholar]
  155. Sun C. Wen L. Zeng J. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 2016 91 81 89 10.1016/j.biomaterials.2016.03.022 27017578
    [Google Scholar]
  156. Oliva González C.M. Kharisov B.I. Kharissova O.V. Serrano Quezada T.E. Synthesis and applications of MOF-derived nanohybrids: A review. Mater. Today Proc. 2021 46 3018 3029 10.1016/j.matpr.2020.12.1231
    [Google Scholar]
  157. Zhang H. Liu X. Wu Y. Guan C. Cheetham A.K. Wang J. MOF-derived nanohybrids for electrocatalysis and energy storage: current status and perspectives. Chem. Commun. 2018 54 42 5268 5288 10.1039/C8CC00789F 29582028
    [Google Scholar]
  158. Wuttke S. Lismont M. Escudero A. Rungtaweevoranit B. Parak W.J. Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials 2017 123 172 183 10.1016/j.biomaterials.2017.01.025 28182958
    [Google Scholar]
  159. Liu J. Huang J. Zhang L. Lei J. Multifunctional metal–organic framework heterostructures for enhanced cancer therapy. Chem. Soc. Rev. 2021 50 2 1188 1218 10.1039/D0CS00178C 33283806
    [Google Scholar]
  160. Li Y. Zhou J. Wang L. Xie Z. Endogenous hydrogen sulfide-triggered MOF-based nanoenzyme for synergic cancer therapy. ACS Appl. Mater. Interfaces 2020 12 27 30213 30220 10.1021/acsami.0c08659 32515188
    [Google Scholar]
  161. Maeda H. Nakamura H. Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013 65 1 71 79 10.1016/j.addr.2012.10.002 23088862
    [Google Scholar]
  162. Maeda H. The 35th Anniversary of the Discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects. J. Pers. Med. 2021 11 3 229 10.3390/jpm11030229 33810037
    [Google Scholar]
  163. McDaid W.J. Greene M.K. Johnston M.C. Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. Nanoscale 2019 11 42 20261 20273 10.1039/C9NR07257H 31626255
    [Google Scholar]
  164. Chen R. Huang Y. Wang L. Cetuximab functionalization strategy for combining active targeting and antimigration capacities of a hybrid composite nanoplatform applied to deliver 5-fluorouracil: Toward colorectal cancer treatment. Biomater. Sci. 2021 9 6 2279 2294 10.1039/D0BM01904F 33538278
    [Google Scholar]
  165. Hirata Y. Tashima R. Mitsuhashi N. A simple, fast, and orientation-controllable technology for preparing antibody-modified liposomes. Int. J. Pharm. 2021 607 120966 10.1016/j.ijpharm.2021.120966 34352337
    [Google Scholar]
  166. Grinberg O. Gedanken A. Mukhopadhyay D. Patra C.R. Antibody modified Bovine Serum Albumin microspheres for targeted delivery of anticancer agent Gemcitabine. Polym. Adv. Technol. 2013 24 3 294 299 10.1002/pat.3081
    [Google Scholar]
  167. Zheng M. Pan M. Zhang W. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact. Mater. 2021 6 7 1878 1909 10.1016/j.bioactmat.2020.12.001 33364529
    [Google Scholar]
  168. Liu D. Liu F. Liu Z. Wang L. Zhang N. Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol. Pharm. 2011 8 6 2291 2301 10.1021/mp200402e 21923159
    [Google Scholar]
  169. Chen H. Gao J. Lu Y. Preparation and characterization of PE38KDEL-loaded anti-HER2 nanoparticles for targeted cancer therapy. J. Control. Release 2008 128 3 209 216 10.1016/j.jconrel.2008.03.010 18450313
    [Google Scholar]
  170. Niza E. Noblejas-López M.M. Bravo I. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. Nanomaterials 2019 9 12 1793 10.3390/nano9121793 31888247
    [Google Scholar]
  171. Fu Q. Wang J. Liu H. Chemo-immune synergetic therapy of esophageal carcinoma: trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles. Drug Deliv. 2020 27 1 1535 1543 10.1080/10717544.2020.1837294 33118428
    [Google Scholar]
  172. Tang X. Chen L. Li A. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv. 2018 25 1 1484 1494 10.1080/10717544.2018.1477859 29916268
    [Google Scholar]
  173. Li Y. Lu Q. Liu H. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv. Mater. 2015 27 43 6848 6854 10.1002/adma.201502615 26426823
    [Google Scholar]
  174. Liu D. Hong Y. Li Y. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics 2020 10 3 1181 1196 10.7150/thno.38989 31938059
    [Google Scholar]
  175. Jain A. Jain P. Mathur S. Parihar D.K. Curcuma species DNA fingerprinting of wild and cultivated genotypes from different agroclimatic zones. Pharmacol Res Mod Chin Med 2024 12 100474 10.1016/j.prmcm.2024.100474
    [Google Scholar]
  176. Sahu N. Jain P. Nagori K. Ajazuddin. Recent advancement and novel treatment strategies for breast fibroadenoma: Clinical approach and prospects. Curr. Cancer Ther. Rev. 2024 20 1 11 10.2174/0115733947318171240802100419
    [Google Scholar]
  177. Ma X. Zhao Z. Wang H. P‐Glycoprotein antibody decorated porous hydrogel particles for capture and release of drug‐resistant tumor cells. Adv. Healthc. Mater. 2019 8 13 1900136 10.1002/adhm.201900136 30985092
    [Google Scholar]
  178. Zhao N. Qin Y. Liu H. Cheng Z. Tumor-targeting peptides: Ligands for molecular imaging and therapy. Anticancer. Agents Med. Chem. 2018 18 1 74 86 10.2174/1871520617666170419143459 28425855
    [Google Scholar]
  179. Gao H. Chu C. Cheng Y. In situ formation of nanotheranostics to overcome the blood–brain barrier and enhance treatment of orthotopic glioma. ACS Appl. Mater. Interfaces 2020 12 24 26880 26892 10.1021/acsami.0c03873 32441504
    [Google Scholar]
  180. Liang G. Jin X. Zhang S. Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 2017 144 95 104 10.1016/j.biomaterials.2017.08.017 28834765
    [Google Scholar]
  181. Chernenko T. Buyukozturk F. Miljkovic M. Carrier R. Diem M. Amiji M. Label-free Raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Deliv. Transl. Res. 2013 3 6 575 586 10.1007/s13346‑013‑0178‑3 24298430
    [Google Scholar]
  182. Chen Q. Long M. Qiu L. Decoration of pH-sensitive copolymer micelles with tumor-specific peptide for enhanced cellular uptake of doxorubicin. Int. J. Nanomedicine 2016 11 5415 5427 10.2147/IJN.S111950 27799766
    [Google Scholar]
  183. Negishi Y. Hamano N. Sato H. Development of a screening system for targeting carriers using peptide-modified liposomes and tissue sections. Biol. Pharm. Bull. 2018 41 7 1107 1111 10.1248/bpb.b18‑00151 29962407
    [Google Scholar]
  184. Zhang S. Sun Q. Peng X. A pH-sensitive T7 peptide-decorated liposome system for HER2 inhibitor extracellular delivery: An application for the efficient suppression of HER2+ breast cancer. J. Mater. Chem. B Mater. Biol. Med. 2021 9 42 8768 8778 10.1039/D1TB01619A 34585713
    [Google Scholar]
  185. Gao L.Y. Liu X.Y. Chen C.J. Core-Shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials 2014 35 6 2066 2078 10.1016/j.biomaterials.2013.11.046 24315577
    [Google Scholar]
  186. Mercier M.C. Dontenwill M. Choulier L. Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 2017 9 6 69 10.3390/cancers9060069 28635657
    [Google Scholar]
  187. Ellington A.D. Szostak J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990 346 6287 818 822 10.1038/346818a0 1697402
    [Google Scholar]
  188. Patel A. Jain P. Thakur A. Ajazuddin. Recent review of herbs and medicinal plant-based nanotechnological approach in treating Psoriasis. Curr. Bioact. Compd. 2024 20 1 18 10.2174/0115734072312903240523060831
    [Google Scholar]
  189. Cruz-Toledo J. McKeague M. Zhang X. Aptamer base: A collaborative knowledge base to describe aptamers and SELEX experiments. Database 2012 2012 bas006 10.1093/database/bas006 22434840
    [Google Scholar]
  190. Shahin N. Jain P. Ajazuddin, Nagori K. Advancements in natural alkaloid-loaded drug delivery systems for enhanced peptic ulcer treatment: A review. Curr. Drug Ther. 2024 19 1 13 10.2174/0115748855312609240628110440
    [Google Scholar]
  191. Lao Y.H. Phua K.K.L. Leong K.W. Aptamer nanomedicine for cancer therapeutics: Barriers and potential for translation. ACS Nano 2015 9 3 2235 2254 10.1021/nn507494p 25731717
    [Google Scholar]
  192. Zou L. Ding W. Zhang Y. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials 2018 182 1 12 10.1016/j.biomaterials.2018.08.013 30096444
    [Google Scholar]
  193. Lv T. Li Z. Xu L. Zhang Y. Chen H. Gao Y. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater. 2018 76 257 274 10.1016/j.actbio.2018.06.034 29960010
    [Google Scholar]
  194. Li F. Mei H. Gao Y. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017 145 56 71 10.1016/j.biomaterials.2017.08.030 28843733
    [Google Scholar]
  195. Tortorella S. Karagiannis T. The significance of transferrin receptors in oncology: The development of functional nano-based drug delivery systems. Curr. Drug Deliv. 2014 11 4 427 443 10.2174/1567201810666140106115436 24387131
    [Google Scholar]
  196. Koneru T. McCord E. Pawar S. Tatiparti K. Sau S. Iyer A.K. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega 2021 6 13 8727 8733 10.1021/acsomega.0c05848 33842744
    [Google Scholar]
  197. Liu D.Z. Cheng Y. Cai R.Q. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine 2018 14 3 991 1003 10.1016/j.nano.2018.01.004 29339188
    [Google Scholar]
  198. Hou L. Shan X. Hao L. Feng Q. Zhang Z. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform. Acta Biomater. 2017 54 307 320 10.1016/j.actbio.2017.03.005 28274767
    [Google Scholar]
  199. Cheng L.C. Chen H.M. Lai T.C. Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 2013 5 9 3931 3940 10.1039/c3nr34091k 23536050
    [Google Scholar]
  200. Pandey R.K. Jain P. Shukla S.S. Gidwani B. Jain A. Ajazuddin. Ethnomedicinal value of medicinal plants found in chhattisgarh: Recent scenario and advancement. Curr. Tradit. Med. 2024 10 1 9 10.2174/0122150838278588240123084611
    [Google Scholar]
  201. Shifana A.S. Adnan M. Gupta A. Ajazuddin, Jain P. A Comprehensive review on novel pathways in cancer treatment: Clinical applications and future prospects. Curr. Cancer Drug Targets 2024 24 10.2174/0115680096312603240709112520
    [Google Scholar]
  202. Raza M.A. Sharma M.K. Nagori K. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int. J. Pharm. 2024 666 124734 10.1016/j.ijpharm.2024.124734 39343332
    [Google Scholar]
  203. Wang H. Yan Y.Q. Yi Y. Supra- molecular peptide therapeutics: Host-guest interaction-assisted systemic delivery of anticancer peptides. CCS Chemistry 2020 2 6 739 748 10.31635/ccschem.020.202000283
    [Google Scholar]
  204. Pan C. Wu J. Qing S. Biosynthesis of self-assembled proteinaceous nanoparticles for vaccination. Adv. Mater. 2020 32 42 2002940 10.1002/adma.202002940 32881121
    [Google Scholar]
  205. Liu J. Wu T. Lu X. A self- assembled platform based on branched DNA for sgRNA/Cas9/anti- sense delivery. J. Am. Chem. Soc. 2019 141 48 19032 19037 10.1021/jacs.9b09043 31729871
    [Google Scholar]
  206. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  207. Kuwar U.C. Pradhan M. Dhote N.S. Patel R. Sinha A. Jain P. Novel approaches and applications of nanotechnology in the delivery of topical drugs for psoriasis via nanocarriers. Curr. Nanosci. 2024 20 1 27
    [Google Scholar]
  208. Rao N.G.R. Majumdar A. Mishra S. Jain P. Jain A. Talath S. Biomaterials in the design of nanosensors for disease diagnosis. Biomaterial-Inspired Nanomedicines for Targeted Therapies. Pradhan M. Yadav K. Singh Chauhan N. Singapore Springer Nature Singapore 2024 209 236 10.1007/978‑981‑97‑3925‑7_8
    [Google Scholar]
  209. Li F. Han J. Cao T. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proc. Natl. Acad. Sci. USA 2019 116 23 11259 11264 10.1073/pnas.1903376116 31110004
    [Google Scholar]
  210. López Mendoza C.M. Alcántara Quintana L.E. Smart drug delivery strategies for cancer therapy. In: Front Nanotechnol 2021 3 10.3389/fnano.2021.753766
    [Google Scholar]
/content/journals/cms/10.2174/0126661454366845250618053301
Loading
/content/journals/cms/10.2174/0126661454366845250618053301
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: tumor environment ; Smart nanoparticles ; protein ; cancer ; peptides ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test