Skip to content
2000
image of Innovations in Self-Healing Polymers for Next-Generation Wearable Electronics: Materials, Mechanisms, and Future Direction

Abstract

In recent years, self-healing qualities have drawn a lot of attention for practical engineering uses in robotics, electronics, sports materials, building, construction, and aerospace. Self-healing is bio-inspiring and has been utilized to fix fractures and damage while maintaining the structural integrity of the material. The self-healing properties of polymers, such as thermosetting and thermoplastics, have been extensively proven by polymer composites and nanocomposites. The trend for composite material repair is autonomic healing systems, which is a technical departure from mechanical repair. With the goal of creating safe, dependable, and healthy medical devices employing flexible sensors with better bio-functionality and high sensing performance, advancements in digital health care have spurred innovations in smart sensors and high-performance wearables. Materials scientists and device engineers are interested in these devices because of their clever properties, which include self-healing, biocompatibility, and biodegradability. Self-healing polymer composites are naturally able to fix damage, either by themselves or with help from others. It has been demonstrated that inorganic nanoparticles significantly impact the fields of life sciences, energy harvesting and storage, microelectronics, and light manipulation. Inorganic nanoparticles and organic building blocks combine to form polymer nanocomposites, which have desirable properties including hydrophilicity, hydrophobicity, and mechanical toughness. Although rubbers composed of a supramolecular network of oligomers have shown a remarkable ability to mend themselves, their resistance to solvents and creep is limited by the lack of chemical cross-links.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454370527250624083558
2025-07-04
2025-09-27
Loading full text...

Full text loading...

References

  1. Idumah C.I. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym. Polymer Compos. 2021 29 4 246 258 10.1177/0967391120910882
    [Google Scholar]
  2. Zhai L. Narkar A. Ahn K. Self-healing polymers with nanomaterials and nanostructures. Nano Today 2020 30 10.1016/j.nantod.2019.100826
    [Google Scholar]
  3. Huynh T.P. Sonar P. Haick H. Advanced materials for use in soft self‐healing devices. Adv. Mater. 2017 29 19 10.1002/adma.201604973 28229499
    [Google Scholar]
  4. Scheiner M. Dickens T.J. Okoli O. Progress towards self-healing polymers for composite structural applications. Polymer (Guildf.) 2016 83 260 282 10.1016/j.polymer.2015.11.008
    [Google Scholar]
  5. Wang L. Lou Z. Jiang K. Shen G. Bio‐multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 2019 1 5 10.1002/aisy.201900040
    [Google Scholar]
  6. Hia I.L. Vahedi V. Pasbakhsh P. Self-healing polymer composites: Prospects, challenges, and applications. Polym. Rev. (Phila. Pa.) 2016 56 2 225 261 10.1080/15583724.2015.1106555
    [Google Scholar]
  7. Maes F. Montarnal D. Cantournet S. Tournilhac F. Corté L. Leibler L. Activation and deactivation of self-healing in supramolecular rubbers. Soft Matter 2012 8 5 1681 1687 10.1039/C2SM06715C
    [Google Scholar]
  8. Cerdan K. Thys M. Costa Cornellà A. Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks. Prog. Polym. Sci. 2024 152 10.1016/j.progpolymsci.2024.101816
    [Google Scholar]
  9. Liu Z. Zhong Y. Li S. Hybrid self‐repairing polymer composites based on a mixture of intrinsic and extrinsic self‐healing. Macromol. Chem. Phys. 2024 225 18 10.1002/macp.202400079
    [Google Scholar]
  10. Verma A Bhushan K Singh H Nanocomposites for extrinsic self-healing polymer Materials: A comprehensive review of their repair behaviour. Results Chem 2024 13 10.1016/j.rechem.2024.101973
    [Google Scholar]
  11. Chen C. Shen T. Yang J. Cao W. Wei J. Li W. Room-temperature intrinsic self-healing materials: A review. Chem. Eng. J. 2024 498 10.1016/j.cej.2024.155158
    [Google Scholar]
  12. Paez-Amieva Y. Martín-Martínez J.M. Influence of the molecular weight of the polycarbonate polyol on the intrinsic self-healing at 20 C of polyurethanes. Polymers 2024 16 19 2724 10.3390/polym16192724 39408435
    [Google Scholar]
  13. Mashkoor F. Lee S.J. Yi H. Noh S.M. Jeong C. Self-healing materials for electronics applications. Int. J. Mol. Sci. 2022 23 2 622 10.3390/ijms23020622 35054803
    [Google Scholar]
  14. Qin T. Liao W. Yu L. Zhu J. Wu M. Peng Q. Recent progress in conductive self-healing hydrogels for flexible sensors. J Polymer Science 2022 60 18 2607 2634
    [Google Scholar]
  15. Thangavel G. Tan M.W.M. Lee P.S. Advances in self-healing supramolecular soft materials and nanocomposites. Nano Converg. 2019 6 1 29 10.1186/s40580‑019‑0199‑9 31414249
    [Google Scholar]
  16. Zhang Q. Shi C.Y. Qu D.H. Long Y.T. Feringa B.L. Tian H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci. Adv. 2018 4 7 10.1126/sciadv.aat8192 30062126
    [Google Scholar]
  17. Goor O.J.G.M. Hendrikse S.I.S. Dankers P.Y.W. Meijer E.W. From supramolecular polymers to multi-component biomaterials. Chem. Soc. Rev. 2017 46 21 6621 6637 10.1039/C7CS00564D 28991958
    [Google Scholar]
  18. Yang L. Tan X. Wang Z. Zhang X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev. 2015 115 15 7196 7239 [PMID: 25768045
    [Google Scholar]
  19. Brunsveld L. Folmer B.J.B. Meijer E.W. Sijbesma R.P. Supramolecular polymers. Chem. Rev. 2001 101 12 4071 4098 10.1021/cr990125q 11740927
    [Google Scholar]
  20. Murray T.J. Zimmerman S.C. New triply hydrogen bonded complexes with highly variable stabilities. J. Am. Chem. Soc. 1992 114 10 4010 4011 10.1021/ja00036a079
    [Google Scholar]
  21. Folmer B.J.B. Sijbesma R.P. Versteegen R.M. Van Der Rijt J.A.J. Meijer E.W. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 2000 12 12 874 878 10.1002/1521‑4095(200006)12:12<874:AID‑ADMA874>3.0.CO;2‑C
    [Google Scholar]
  22. Herbst F. Schröter K. Gunkel I. Aggregation and chain dynamics in supramolecular polymers by dynamic rheology: Cluster formation and self-Aggregation. Macromolecules 2010 43 23 10006 10016 10.1021/ma101962y
    [Google Scholar]
  23. Herbst F. Döhler D. Michael P. Binder W.H. Self-healing polymers via supramolecular forces. Macromol. Rapid Commun. 2013 34 3 203 220 10.1002/marc.201200675 23315930
    [Google Scholar]
  24. Yan X. Liu Z. Zhang Q. Quadruple H-Bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes. J. Am. Chem. Soc. 2018 140 15 5280 5289 10.1021/jacs.8b01682 29595956
    [Google Scholar]
  25. Guo M. Pitet L.M. Wyss H.M. Vos M. Dankers P.Y.W. Meijer E.W. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 2014 136 19 6969 6977 10.1021/ja500205v 24803288
    [Google Scholar]
  26. Liu M. Liu P. Lu G. Xu Z. Yao X. Multiphase‐assembly of siloxane oligomers with improved mechanical strength and water‐enhanced healing. Angew. Chem. Int. Ed. 2018 57 35 11242 11246 10.1002/anie.201805206 29993173
    [Google Scholar]
  27. Keizer H.M. Sijbesma R.P. Jansen J.F.G.A. Pasternack G. Meijer E.W. Polymerization-induced phase separation using hydrogen-bonded supramolecular polymers. Macromolecules 2003 36 15 5602 5606 10.1021/ma034284u
    [Google Scholar]
  28. Xie Z. Hu B.L. Li R.W. Zhang Q. Hydrogen bonding in self-healing elastomers. ACS Omega 2021 6 14 9319 9333 10.1021/acsomega.1c00462 33869912
    [Google Scholar]
  29. Li Y. Jin Y. Zeng W. Mechanically robust and fast room-temperature self-healing waterborne polyurethane constructed by coordination bond and hydrogen bond with antibacterial and photoluminescence functions. Prog. Org. Coat. 2023 174 10.1016/j.porgcoat.2022.107256
    [Google Scholar]
  30. Huang Y. Zhong M. Huang Y. Zhu M. Pei Z. Wang Z. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 2015 6 1 10310 10.1038/ncomms10310
    [Google Scholar]
  31. Li C.H. Zuo J.L. Self‐healing polymers based on coordination bonds. Adv. Mater. 2020 32 27 10.1002/adma.201903762 31599045
    [Google Scholar]
  32. Chen C. Pang X. Li Y. Yu X. Ultrafast self‐healing, superstretchable, and ultra‐strong polymer cluster‐based adhesive based on aromatic acid cross‐linkers for excellent hydrogel strain sensors. Small 2024 20 19 10.1002/smll.202305875 38054799
    [Google Scholar]
  33. Peng Y. Gu S. Wu Q. Xie Z. Wu J. High-performance self-healing polymers. Account Material Res 2023 4 4 323 333 10.1021/accountsmr.2c00174
    [Google Scholar]
  34. Fugolin A.P.P. Ferracane J.L. Pfeifer C.S. Fatigue-crack propagation behavior in microcapsule-containing self-healing polymeric networks. Mater. Des. 2022 223 10.1016/j.matdes.2022.111142 36381607
    [Google Scholar]
  35. Cioffi M.O.H. Bomfim A.S.C. Ambrogi V. Advani S.G. A review on self‐healing polymers and polymer composites for structural applications. Polym. Compos. 2022 43 11 7643 7668 10.1002/pc.26887
    [Google Scholar]
  36. Santos A.N.B. Santos D.J. Carastan D.J. Microencapsulation of reactive isocyanates for application in self-healing materials: a review. J. Microencapsul. 2021 38 5 338 356 10.1080/02652048.2021.1921068 33938373
    [Google Scholar]
  37. Li H. Wang X. Preparation of microcapsules with IPDI monomer and isocyanate prepolymer as self-healing agent and their application in self-healing materials. Polymer (Guildf.) 2022 262 10.1016/j.polymer.2022.125478
    [Google Scholar]
  38. Althaqafi K.A. Satterthwaite J. Silikas N. A review and current state of autonomic self-healing microcapsules-based dental resin composites. Dent. Mater. 2020 36 3 329 342 10.1016/j.dental.2019.12.005 31883618
    [Google Scholar]
  39. Wu K. Chen Y. Luo J. Liu R. Sun G. Liu X. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency. J. Colloid Interface Sci. 2021 600 660 669 10.1016/j.jcis.2021.05.066 34049021
    [Google Scholar]
  40. Song Y. Chen K. Wang J. Antibacterial self‐healing anticorrosion coatings from single capsule system. J. Appl. Polym. Sci. 2021 138 41 51214 10.1002/app.51214
    [Google Scholar]
  41. Tezel Ö. Beyler Çiğil A. Kahraman M.V. Dual microcapsules based epoxy/polyethyleneimine autonomous self‐healing system for photo‐curable coating. Polym. Adv. Technol. 2021 32 2 553 563 10.1002/pat.5109
    [Google Scholar]
  42. Sun C. Yarmohammadi A. Isfahani R.B. Self-healing polymers using electrosprayed microcapsules containing oil: Molecular dynamics simulation and experimental studies. J. Mol. Liq. 2021 325 10.1016/j.molliq.2020.115182
    [Google Scholar]
  43. Kothari J. Iroh J.O. Self-healing poly (urea formaldehyde) microcapsules: Synthesis and characterization. Polymers 2023 15 7 1668 10.3390/polym15071668 37050281
    [Google Scholar]
  44. Song Q. Chen H. Zhou S. Zhao K. Wang B. Hu P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016 7 9 1739 1746 10.1039/C5PY02010G
    [Google Scholar]
  45. Zhu K. Song Q. Chen H. Hu P. Thermally assisted self‐healing polyurethane containing carboxyl groups. J. Appl. Polym. Sci. 2018 135 9 45929 10.1002/app.45929
    [Google Scholar]
  46. Liu G. Guan C. Xia H. Guo F. Ding X. Peng Y. Novel shape‐memory polymer based on hydrogen bonding. Macromol. Rapid Commun. 2006 27 14 1100 1104 10.1002/marc.200600189
    [Google Scholar]
  47. Park S. Thangavel G. Parida K. Li S. Lee P.S. A stretchable and self‐healing energy storage device based on mechanically and electrically restorative liquid‐metal particles and carboxylated polyurethane composites. Adv. Mater. 2019 31 1 10.1002/adma.201805536 30387213
    [Google Scholar]
  48. Xia N.N. Xiong X.M. Rong M.Z. Zhang M.Q. Kong F. Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl. Mater. Interfaces 2017 9 42 37300 37309 10.1021/acsami.7b11230 28984125
    [Google Scholar]
  49. Yang Y. Urban M.W. Self‐Healing of polymers via supramolecular chemistry. Adv. Mater. Interfaces 2018 5 17 10.1002/admi.201800384
    [Google Scholar]
  50. Bentz K.C. Cohen S.M. Supramolecular metallopolymers: From linear materials to infinite networks. Angew. Chem. Int. Ed. 2018 57 46 14992 15001 10.1002/anie.201806912 30098277
    [Google Scholar]
  51. Mauro M. Bellemin-Laponnaz S. Cebrián C. Metal‐containing polymers as light‐emitting and light‐responsive materials and beyond. Chemistry 2017 23 70 17626 17636 10.1002/chem.201702936 28857379
    [Google Scholar]
  52. Burnworth M. Tang L. Kumpfer J.R. Duncan A.J. Beyer F.L. Fiore G.L. Optically healable supramolecular polymers. Nature 2011 472 7343 334 337 10.1038/nature09963 21512571
    [Google Scholar]
  53. Li C.H. Wang C. Keplinger C. Zuo J.L. Jin L. Sun Y. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016 8 6 618 624 10.1038/nchem.2492 27219708
    [Google Scholar]
  54. Ahn B.K. Lee D.W. Israelachvili J.N. Waite J.H. Surface-initiated self-healing of polymers in aqueous media. Nat. Mater. 2014 13 9 867 872 10.1038/nmat4037 25064231
    [Google Scholar]
  55. Zhang Q. Niu S. Wang L. An elastic autonomous self‐healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018 30 33 10.1002/adma.201801435 29978512
    [Google Scholar]
  56. Wang Z. Xie C. Yu C. Fei G. Wang Z. Xia H. A facile strategy for self‐healing polyurethanes containing multiple metal–ligand bonds. Macromol. Rapid Commun. 2018 39 6 10.1002/marc.201700678 29314347
    [Google Scholar]
  57. Kloxin C.J. Scott T.F. Adzima B.J. Bowman C.N. Covalent adaptable networks [CANs]: A unique paradigm in cross-linked polymers. Macromolecules 2010 43 6 2643 2653 10.1021/ma902596s 20305795
    [Google Scholar]
  58. Jia Y. Delaittre G. Tsotsalas M. Covalent adaptable networks based on dynamic alkoxyamine bonds. Macromol. Mater. Eng. 2022 307 9 10.1002/mame.202200178
    [Google Scholar]
  59. Chakma P Konkolewicz D Dynamic covalent bonds in polymeric materials. Angew Chem Int Ed Engl 2019 58 29 9682 95 30624845 10.1002/anie.201813525
    [Google Scholar]
  60. Ahmed N. Kausar A. Muhammad B. Advances in shape memory polyurethanes and composites: A review. Polym. Plast. Technol. Eng. 2015 54 13 1410 1423 10.1080/03602559.2015.1021490
    [Google Scholar]
  61. Ahmed N. Kausar A. Muhammad B. Shape memory properties of electrically conductive multi-walled carbon nanotube-filled polyurethane/modified polystyrene blends. J. Plast. Film Sheeting 2015 32 3 10.1177/8756087915595454
    [Google Scholar]
  62. Luo C. Zhang B. Zhang W. Yuan C. Dunn M. Ge Q. Chemomechanics of dual-stage reprocessable thermosets. J. Mech. Phys. Solids 2019 126 168 186 10.1016/j.jmps.2019.02.013
    [Google Scholar]
  63. Zhou D. Huang H. Wang Y. Yu J. Hu Z. Design and synthesis of an amide-containing crosslinked network based on Diels-Alder chemistry for fully recyclable aramid fabric reinforced composites. Compos. Sci. Technol. 2020 197
    [Google Scholar]
  64. Hayashi M. Implantation of recyclability and healability into cross-linked commercial polymers by applying the vitrimer concept. Polymers 2020 12 6 1322 10.3390/polym12061322 32531918
    [Google Scholar]
  65. Alabiso W. Schlögl S. The impact of vitrimers on the industry of the future: Chemistry, properties and sustainable forward-looking applications. Polymers 2020 12 8 1660 10.3390/polym12081660 32722554
    [Google Scholar]
  66. Pratama PA Sharifi M Peterson AM Palmese GR Room temperature self-healing thermoset based on the Diels-Alder reaction. ACS Appl Mater Interfaces 2013 5 23 12425 31 24215583 10.1021/am403459e
    [Google Scholar]
  67. Chen X. Dam M.A. Ono K. Mal A. Shen H. Nutt S.R. A thermally re-mendable cross-linked polymeric material. Science 2002 295 5560 1698 1702 10.1126/science.1065879 11872836
    [Google Scholar]
  68. Mphahlele K. Ray S.S. Kolesnikov A. Self-healing polymeric composite material design, failure analysis and future outlook: A review. Polymers 2017 9 10 535 10.3390/polym9100535 30965836
    [Google Scholar]
  69. Yu H. Chen C. Sun J. Highly thermally conductive polymer/graphene composites with rapid room-temperature self-healing capacity. Nano-Micro Lett. 2022 14 1 135 [PMID: 35704244
    [Google Scholar]
  70. Idumah CI Odera SR Recent advancement in self-healing graphene polymer nanocomposites, shape memory, and coating materials. Polym -Plast Technol Mater 2020 59 (11) 1167 90 10.1080/25740881.2020.1725816
    [Google Scholar]
  71. Wang T. Yu W.C. Zhou C.G. Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos., Part B Eng. 2020 193
    [Google Scholar]
  72. Cui X. Chen J. Zhu Y. Jiang W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem. Eng. J. 2020 382
    [Google Scholar]
  73. Li H. Ru X. Song Y. Flexible and self-healing 3D MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding. Compos. Sci. Technol. 2022 227
    [Google Scholar]
  74. Yin Y. Zhao H. Prabhakar M. Rohwerder M. Organic composite coatings containing mesoporous silica particles: Degradation of the SiO2 leading to self-healing of the delaminated interface. Corros. Sci. 2022 200
    [Google Scholar]
  75. Li P. Guo W. Lu Z. Tian J. Li X. Wang H. UV-responsive single-microcapsule self-healing material with enhanced UV-shielding SiO2/ZnO hybrid shell for potential application in space coatings. Prog. Org. Coat. 2021 151
    [Google Scholar]
  76. Zhang M.Q. Rong M.Z. Theoretical consideration and modeling of self‐healing polymers. J. Polym. Sci., B, Polym. Phys. 2012 50 4 229 241 10.1002/polb.22387 [Internet].
    [Google Scholar]
  77. Clasky A.J. Watchorn J.D. Chen P.Z. Gu F.X. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater. 2021 122 1 25 10.1016/j.actbio.2020.12.030 33352300
    [Google Scholar]
  78. Mou L. Qi J. Tang L. Highly stretchable and biocompatible liquid metal‐elastomer conductors for self‐healing electronics. Small 2020 16 51 [PMID: 33236828
    [Google Scholar]
  79. Wool R.P. Self-healing materials: A review. Soft Matter 2008 4 3 400 418 10.1039/b711716g 32907199
    [Google Scholar]
  80. Thakur V.K. Kessler M.R. Self-healing polymer nanocomposite materials: A review. Polymer (Guildf.) 2015 69 369 383 10.1016/j.polymer.2015.04.086
    [Google Scholar]
  81. Urdl K. Kandelbauer A. Kern W. Müller U. Thebault M. Zikulnig-Rusch E. Self-healing of densely crosslinked thermoset polymers: A critical review. Prog. Org. Coat. 2017 104 232 249 10.1016/j.porgcoat.2016.11.010
    [Google Scholar]
  82. Kuhl N. Bode S. Hager M.D. Schubert U.S. Self-healing polymers based on reversible covalent bonds. Adv. Polym. Sci. 2015 273 1 58 10.1007/12_2015_336
    [Google Scholar]
  83. Orellana J. Moreno‐villoslada I. Bose R.K. Picchioni F. Flores M.E. Araya‐hermosilla R. Self-healing polymer nanocomposite materials by joule effect. Polymers 2021 13 4 649 10.3390/polym13040649 33671610
    [Google Scholar]
  84. Hopewell J. Dvorak R. Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009 364 1526 2115 2126 10.1098/rstb.2008.0311 19528059
    [Google Scholar]
  85. Schneiderman D.K. Hillmyer M.A. 50th anniversary perspective: There is a great future in sustainable polymers. Macromolecules 2017 50 10 3733 3749 10.1021/acs.macromol.7b00293
    [Google Scholar]
  86. Zhang Q. Liu L. Pan C. Li D. Review of recent achievements in self-healing conductive materials and their applications. J. Mater. Sci. 2018 53 1 27 46 10.1007/s10853‑017‑1388‑8 [Internet].
    [Google Scholar]
  87. Li S. Zhou X. Dong Y. Li J. Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels. Macromol. Rapid Commun. 2020 41 23 [PMID: 32996221
    [Google Scholar]
  88. Tong X. Tian Z. Sun J. Tung V. Kaner R.B. Shao Y. Self-healing flexible/stretchable energy storage devices. Mater. Today 2021 44 78 104 10.1016/j.mattod.2020.10.026
    [Google Scholar]
  89. Song T. Jiang B. Li Y. Ji Z. Zhou H. Jiang D. Self-healing Materials: A review of recent developments. ES Material Manufacturing 2021 14 1 19 10.30919/esmm5f465
    [Google Scholar]
  90. Wan X. Mu T. Yin G. Intrinsic self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 2023 15 1 99 10.1007/s40820‑023‑01075‑9 37037957
    [Google Scholar]
  91. Salvatierra L.M. Kovalevski L.I. Dammig Quina P.L. Irurzun I.M. Mola E.E. Dodd S.J. Self-healing during electrical treeing: A feature of the two-phase liquid-solid nature of silicone gels. IEEE Trans. Dielectr. Electr. Insul. 2016 23 2 757 767 10.1109/TDEI.2015.004813
    [Google Scholar]
  92. Tanaka T. Okamoto T. Nakanishi K. Miyamoto T. Aging and related phenomena in modern electric power systems. IEEE Trans. Electr. Insul. 1993 28 5 826 844 10.1109/14.237744
    [Google Scholar]
  93. Dissado F. Dissado L.A. Fothergill J.C. Electrical Degradation and Breakdown in Polymers. London IET 1992
    [Google Scholar]
  94. Reed C.W. Cichanowski S.W. The Fundamentals of Aging in HV Polymer-film Capacitors. IEEE Trans. Dielectr. Electr. Insul. 1994 1 5 904 922 10.1109/94.326658
    [Google Scholar]
  95. Yang Y. Dang Z.M. Li Q. He J. Self-healing of electrical damage in polymers. Adv. Sci. (Weinh.) 2020 7 21 [PMID: 33173739
    [Google Scholar]
  96. Zhao J. Gong J. Wang G. Zhu K. Ye K. Yan J. A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chem. Eng. J. 2020 401 10.1016/j.cej.2020.125456
    [Google Scholar]
  97. Wang Q. Pan X. Lin C. Ma X. Cao S. Ni Y. Ultrafast gelling using sulfonated lignin-Fe3+ chelates to produce dynamic crosslinked hydrogel/coating with charming stretchable, conductive, self-healing, and ultraviolet-blocking properties. Chem. Eng. J. 2020 396 10.1016/j.cej.2020.125341
    [Google Scholar]
  98. Yu R. Zhang Y. Barboiu M. Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydr. Polym. 2020 244 10.1016/j.carbpol.2020.116471 32536386
    [Google Scholar]
  99. Sun H. Zhao Y. Jiao S. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021 31 24 10.1002/adfm.202101696
    [Google Scholar]
  100. Liu Z. Zheng Y. Jin L. Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Adv. Funct. Mater. 2021 31 14 10.1002/adfm.202007622
    [Google Scholar]
  101. Mannsfeld S.C.B. Tee B.C.K. Stoltenberg R.M. Chen C.V.H.H. Barman S. Muir B.V.O. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010 9 10 859 864 10.1038/nmat2834 20835231
    [Google Scholar]
  102. Rim Y.S. Bae S.H. Chen H. De Marco N. Yang Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 2016 28 22 4415 4440 [PMID: 26898945
    [Google Scholar]
  103. Han S. Liu C. Lin X. Zheng J. Wu J. Liu C. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl. Polym. Mater. 2020 2 2 996 1005 10.1021/acsapm.9b01198 [Internet].
    [Google Scholar]
  104. Xia S. Song S. Jia F. Gao G. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B Mater. Biol. Med. 2019 7 30 4638 4648 10.1039/C9TB01039D 31364689
    [Google Scholar]
  105. Luo X. Tan H. Wen W. Recent advances in wearable healthcare devices: From material to application. Bioengineering 2024 11 4 358 10.3390/bioengineering11040358 38671780
    [Google Scholar]
  106. Chen J. Wang L. Xu X. Liu G. Liu H. Qiao Y. Self-healing materials-based electronic skin: Mechanism, development and applications. Gels 2022 8 6 356 10.3390/gels8060356 35735699
    [Google Scholar]
  107. Benight S.J. Wang C. Tok J.B.H. Bao Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 2013 38 12 1961 1977 10.1016/j.progpolymsci.2013.08.001
    [Google Scholar]
  108. Kang J. Son D. Vardoulis O. Mun J. Matsuhisa N. Kim Y. Modular and reconfigurable stretchable electronic systems. Adv. Mater. Technol. 2019 4 3 1800417 10.1002/admt.201800417
    [Google Scholar]
  109. He L. Shi J. Tian B. Zhu H. Wu W. Self-healing materials for flexible and stretchable electronics. Mater Today Phys 2024 44
    [Google Scholar]
  110. Oh J.Y. Rondeau-Gagné S. Chiu Y.C. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 2016 539 7629 411 415 [PMID: 27853213
    [Google Scholar]
  111. Tan X. Chu K. Chen Z. Han N. Zhang X. Pan H. Recent advances in self-healing hydrogel composites for flexible wearable electronic devices. Nano Research Energy 2024 3 3 10.26599/NRE.2024.9120123
    [Google Scholar]
  112. Gu C. Wang M. Zhang K. A full‐device autonomous self‐healing stretchable soft battery from self‐bonded eutectogels. Adv. Mater. 2023 35 6 10.1002/adma.202208392 36401607
    [Google Scholar]
  113. Tan Y.J. Wu J. Li H. Tee B.C.K. Self-Healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 2018 10 18 15331 15345 10.1021/acsami.7b19511 29668251
    [Google Scholar]
  114. Dannehl A. Buhr A. Leyton A.S. Hellweg L. Beer M. Sabantina L. Self-healing materials for potential use in textile and clothing applications. CDATP 2023 4 1 27 41 10.25367/cdatp.2023.4.p27‑41
    [Google Scholar]
  115. Cai A. Abdali Z. Saldanha D.J. Aminzare M. Dorval Courchesne N.M. Endowing textiles with self-repairing ability through the fabrication of composites with a bacterial biofilm. Sci. Rep. 2023 13 1 11389 10.1038/s41598‑023‑38501‑2 37452128
    [Google Scholar]
  116. Self Repairing Textiles 2024 Avaialable from https://www.fibre2fashion.com/industry-article/7447/self-repairing-textiles-mending-its-way-into-future
    [Google Scholar]
  117. Vu V.P. Sinh L.H. Choa S.H. Recent progress in self‐healing materials for sensor arrays. ChemNanoMat 2020 6 11 1522 1538 10.1002/cnma.202000361
    [Google Scholar]
  118. Perepelkin N.V. Martin-Martinez J.M. Kovalev A.E. Borodich F.M. Gorb S.N. Experimental testing of self-healing ability of soft polymer materials. Meccanica 2019 54 13 1959 1970
    [Google Scholar]
  119. Abend M. Zechel S. Schubert U.S. Hager M.D. Detailed analysis of the influencing parameters on the self-healing behavior of dynamic urea-crosslinked poly(methacrylate)s. Molecules 2019 24 19 3597 10.3390/molecules24193597 31590469
    [Google Scholar]
  120. Ramesh S. Khan S. Park Y. Ford E. Menegatti S. Genzer J. Self-healing and repair of fabrics: A comprehensive review of the application toolkit. Mater. Today 2022 54 90 109 10.1016/j.mattod.2021.11.016 [Internet]
    [Google Scholar]
  121. Parihar S. Gaur B. High performance self-healing polymeric nanocomposite coatings. Prog. Org. Coat. 2023 182 10.1016/j.porgcoat.2023.107626 [Internet].
    [Google Scholar]
  122. Wittmer A. Wellen R. Saalwächter K. Koschek K. Moisture-mediated self-healing kinetics and molecular dynamics in modified polyurethane urea polymers. Polymer (Guildf.) 2018 151 125 135 10.1016/j.polymer.2018.07.059 [Internet]
    [Google Scholar]
  123. Snyder A.D. Phillips Z.J. Turicek J.S. Diesendruck C.E. Nakshatrala K.B. Patrick J.F. Prolonged in situ self-healing in structural composites via thermo-reversible entanglement. Nat. Commun. 2022 13 1 6511 36316323
    [Google Scholar]
  124. Irzhak V.I. Uflyand I.E. Dzhardimalieva G.I. Self-healing of polymers and polymer composites. Polymers 2022 14 24 5404 10.3390/polym14245404 36559772
    [Google Scholar]
  125. Xu M. Cheng B. Sheng Y. High-performance cross-linked self-healing material based on multiple dynamic bonds. ACS Appl. Polym. Mater. 2020 2 6 2228 2237 [Internet]. [http://dx.doi.org/10.1021/acsapm.0c00154
    [Google Scholar]
  126. Song K. Polak R. Zhang S. Rubner M.F. Cohen R.E. Askar K.A. Reversible Self-Healing for preserving optical transparency and repairing mechanical damage in composites. ACS Appl. Mater. Interfaces 2019 11 13 12797 12807 10.1021/acsami.9b00967 30848876
    [Google Scholar]
  127. Wang W. Moreau N.G. Yuan Y. Race P.R. Pang W. Towards machine learning approaches for predicting the self-healing efficiency of materials. Comput. Mater. Sci. 2019 168 180 187 10.1016/j.commatsci.2019.05.050
    [Google Scholar]
  128. Dallaev R. Advances in materials with self-healing properties: A brief review. Materials 2024 17 10 2464 10.3390/ma17102464 38793530
    [Google Scholar]
  129. Reddy K.R. El-Zein A. Airey D.W. Alonso-Marroquin F. Schubel P. Manalo A. Self-healing polymers: Synthesis methods and applications. Nano-Struct Nano-Obj 2020 23 10.1016/j.nanoso.2020.100500
    [Google Scholar]
  130. Li P. Zhong Y. Wang X. Hao J. Enzyme-regulated healable polymeric hydrogels. ACS Cent. Sci. 2020 6 9 1507 1522 10.1021/acscentsci.0c00768 32999926
    [Google Scholar]
  131. Zafeer M.K. Bhat K.S. Chemical approaches for fabrication of self-healing polymers. Discover Appl Sci 2024 6 7 373 10.1007/s42452‑024‑06058‑y
    [Google Scholar]
  132. Ekeocha J. Ellingford C. Pan M. Wemyss A.M. Bowen C. Wan C. Challenges and opportunities of Self‐Healing Polymers and devices for extreme and hostile environments. Adv. Mater. 2021 33 33 10.1002/adma.202008052 34165832
    [Google Scholar]
  133. Song M.M. Wang Y.M. Liang X.Y. Zhang X.Q. Zhang S. Li B.J. Functional materials with self-healing properties: A review. Soft Matter 2019 15 33 6615 6625 10.1039/C9SM00948E 31406972
    [Google Scholar]
  134. Yue L. Zhang X. Wang Y. Li W. Tang Y. Bai Y. Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property. Eur. Polym. J. 2021 146 10.1016/j.eurpolymj.2020.110258 [Internet].
    [Google Scholar]
  135. Liu R. Lai Y. Li S. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 2022 95 10.1016/j.nanoen.2022.107056 [Internet].
    [Google Scholar]
  136. Yue H. Wang Z. Zhen Y. Recent advances of self-healing electronic materials applied in organic field-effect transistors. ACS Omega 2022 7 22 18197 18205 10.1021/acsomega.2c00580 35694519
    [Google Scholar]
  137. Mobaraki M. Ghaffari M. Mozafari M. Basics of self-healing composite materials. In:Self-Healing Composite Materials. Woodhead Publishing Series 2019 15 31 10.1016/B978‑0‑12‑817354‑1.00002‑8
    [Google Scholar]
  138. Khatib M. Zohar O. Saliba W. Haick H. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self‐healing in designated locations. Adv. Mater. 2020 32 17 10.1002/adma.202000246 32173928
    [Google Scholar]
  139. Wen N. Song T. Ji Z. Recent advancements in self-healing materials: Mechanicals, performances and features. React. Funct. Polym. 2021 168 10.1016/j.reactfunctpolym.2021.105041
    [Google Scholar]
  140. Geng Y. Zhong W. Zhou S. Yao B. Fu J. Electrically functional self‐healing polymers: Design, assessment, and progress. Macromol. Mater. Eng. 2023 308 9 10.1002/mame.202300058
    [Google Scholar]
/content/journals/cms/10.2174/0126661454370527250624083558
Loading
/content/journals/cms/10.2174/0126661454370527250624083558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test