Current Molecular Medicine - Volume 16, Issue 7, 2016
Volume 16, Issue 7, 2016
-
-
The Emerging Role of Regucalcin as a Tumor Suppressor: Facts and Views
Authors: C. V. Vaz, S. Correia, H. J. Cardoso, M. I. Figueira, R. Marques, C. J. Maia and S. SocorroRegucalcin (RGN) is a multifunctional protein that was first described as a calcium (Ca2+)-binding protein playing a relevant role in the maintenance of intracellular Ca2+ concentration. However, due to its downregulated expression with aging, RGN is also known as senescence marker protein-30. The RGN protein is an X-chromosome gene product, whose transcription is regulated by a myriad of hormonal and non-hormonal factors. Besides the well-known role in Ca2+ homeostasis, RGN has also been linked to the control of several intracellular signaling pathways, and basic biological processes, such as oxidative stress, cell proliferation, apoptosis, and metabolism. RGN has been shown to have antioxidant properties by its activity reducing the production of reactive oxygen species and increasing the antioxidant defenses. The role of RGN suppressing cell proliferation is associated with the regulation of expression of oncogenes and tumor suppressor genes. It results clear that all the existent knowledge implicates RGN in the control of the main biological processes actually recognized as the hallmarks of cancer. Moreover, it has been shown that tumor onset and progression are underpinned by the loss of RGN expression, whereas RGN overexpression showed to have a protective role against the development of chemicallyinduced tumors. This review describes the mechanisms that control the tissue expression of RGN and discusses the experimental evidence that indicate RGN as a new tumor suppressor protein.
-
-
-
Current Progress of Reelin in Development, Inflammation and Tissue Remodeling: From Nervous to Visual Systems
Authors: A. Micera, B. O. Balzamino, F. Biamonte, G. Esposito, R. Marino, F. Fanelli and F. KellerReelin is a matrix glycoprotein that plays a pivotal role for the positioning of neurons throughout brain development. In the early developing cortex Reelin regulates radial migration of cortical neurons while later in development, Reelin promotes maturation of dendrites and dendritic spines. Low Reelin levels characterize healthy adult brain while increased Reelin levels have been associated with cellular events underlying response to injury. Reelin has been detected in structural and immune cells outside brain (liver, gut/colon tracts, kidney, testis, ovary, lung, retina and cornea). In the Visual system, Reelin was first described in the retina and thereafter in the cornea. Increased Reelin levels were observed during retinogenesis, low levels were found in adulthood and a significant increase was detected upon injury. Insult-driven Reelin changes occur after upregulation of adhesion molecules, cytokines, neurotrophins, growth factors, neuropeptides and other mediators as well as their receptors. These soluble factors contribute to the development of nervous and visual system and promote survival/recovery of neurons/accessory cells populating the injured visual system. Likewise, Reelin might modulate these factors by driving different multiple effects on homeostasis/plasticity, inflammation, healing and remodeling at different physiopathological levels. Very low-density lipoprotein receptor, apolipoprotein E receptor 2, integrins and the adaptor molecule Disabled 1 trigger Reelin pathway. Recent advances highlight some Reelin activities during inflammation and tissue remodeling and point out to a crucial Reelin activity in the visual system. A better understanding of Reelin function in retinal development might open to new attractive perspective for counteracting retina degeneration.
-
-
-
Endogenous Factors in the Recovery of Reproductive Function After Testicular Injury and Cancer
Authors: A. M.S. Silva, S. Correia, S. Socorro and C. J. MaiaThe testes are one of the most delicate organs in the male body and highly susceptible to the exogenous influences capable of inducing cell damage. Cancer therapies are well known to negatively affect the male reproductive tract with a severe impairment of spermatogenesis and infertility. The present work aimed to systematically review the available information about the different endogenous factors (hormonal and nonhormonal) that may have protective or advantageous properties on the recovery of male reproductive function after gonadal injury. Furthermore, the perspective that these endogenous molecules could act as cryoprotectants to improve the quality of cryopreserved semen samples was also discussed. The knowledge reviewed herein allowed to identify promising factors able to mitigate the male fertility problems arising either from oncological treatments or other gonadal damage, and opened new possibilities to ameliorate the recovery of spermatogenesis or to preserve fertility.
-
-
-
Putative Mechanisms of Viral Transmission and Molecular Dysregulation of Mammary Epithelial Cells by Human Papillomavirus: Implications for Breast Cancer
Breast cancer is the most common cancer in women worldwide. Several studies have demonstrated the presence of Human papillomavirus (HPV) DNA in breast cancer samples. However, the role of HPV in breast carcinogenesis is not clear, and the interaction mechanisms between this infectious agent and the breast cancer cell need to be more fully clarified. In this article, we discuss the putative roles of HPV infection in breast carcinogenesis.
-
-
-
The Male Abnormal Gene Family 21 (Mab21) Members Regulate Eye Development
Authors: Z.-X. Huang, J.-W. Xiang, L. Zhou, Q. Nie, L. Wang, Z.-G. Chen, X.-H. Hu, Y. Xiao, W.-J. Qing, Y.-F. Liu, Q. Sun, X.-C. Tang, F.-Y. Liu, Z.-W. Luo, W.-B. Liu and D. W.-C. LiThe male abnormal gene family contains 3 members, named mab21l1, mab21l2 and mab21l3. Since their first discovery in C. elegans, homologues of mab21l1 and mab21l2 have been found in Drosophila, Zebrafish, Xenopus, chicken, mouse and human. A number of studies have revealed that mab21 gene family members, mab21l1 and mab21l2, play important roles in regulating eye development. Here, we review the functions of the mab genes in regulating ocular development.
-
-
-
High-Dose Linoleic Acid Activated JAK2-STAT3 Signaling Pathway Involved in Cytokine Production and Lipogenesis in Pancreatic Exocrine Cells
More LessBackground: Linoleic acid has been implicated in the pathogenesis of acute pancreatitis. However, molecular mechanisms underlying adverse effects of large-dose linoleic acid remain unclear. Current study aimed to explore the impact of high-dose linoleic acid on the activation of Janus kinase 2 (JAK2)-signal transducers and activators of transcription 3 (STAT3) pathway, cytokine production, and lipogenesis in pancreatic exocrine cells. Methods: MTT assay was used to detect the viability of AR42J rat pancreatic exocrine cells, and lactate dehydrogenase assay was utilized to detect cytotoxicity. Concentrations of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were detected by ELISA, and protein expression of JAK2, p-JAK2, STAT3, p- STAT3, and fatty acid synthase (FAS) was examined by Western Blot. The impact of highdose linoleic acid on JAK2-STAT3 pathway was also examined when JAK2 was inhibited by AG490, and STAT3 expression was interrupted by siRNA. Results: The cell viability of AR42J rat pancreatic exocrine cells was inhibited, and cytotoxicity was increased by high-dose linoleic acid. JAK2 and STAT3 proteins in pancreatic exocrine cells were activated by high-dose linoleic acid via phosphorylation and nuclear localization of phosphorylated STAT3. Moreover, the expression of downstream proteins in JAK2-STAT3 pathway (IL-6, TNF-α and FAS) was up-regulated by high-dose linoleic acid. The increased levels of IL-6 and TNF-α caused by high-dose linoleic acid were attenuated by JAK2 inhibitor AG490. p-JAK2 protein was up-regulated, whereas p-STAT3, STAT3 and FAS proteins were down-regulated by high-dose linoleic acid in the presence of STAT3-siRNA. Conclusion: The cytotoxicity was increased and JAK2-STAT3 signaling pathway was activated by high-dose linoleic acid through cytokine production and lipogenesis in rat pancreatic exocrine cells.
-
-
-
Resistin-Like Molecule-α Causes Lung Injury in Rats with Acute Pancreatitis by Activating the PI-3K/Akt-NF-κB Pathway and Promoting Inflammatory Cytokine Release
Authors: W.-Y. Wang, Y. Chen, X. Su, D. Tang, Q.-W. Ben, W.-Y. Yao, P. Chen and Y.-Z. YuanBackground: Resistin-like molecule-α (RELMα) has diverse regulatory functions in inflammation, but its role in severe acute pancreatitis (SAP) and acute pancreatitis associated lung injury (APALI) remains unclear. Methods: SAP was induced in rats. RELMα protein expression was detected in lung tissue of rats to determine the relationship between APALI and RELMα. To investigate the effect of RELMα overexpression or knockdown on APALI, rats were given an intravenous injection of adenovirus vector before SAP induction. Lung and pancreatic samples were harvested 16 h after induction. After detection of RELMα protein levels, the severity of pancreatic and pulmonary injury was scored histologically, and serum and tissue levels of inflammatory mediators were measured. TUNEL assay and immunofluorescence were used to estimate pulmonary apoptosis and endothelial barrier integrity in lung tissue of SAP rats with RELMα knockdown. Results: RELMα expression was significantly up-regulated in APALI and was related to the lung injury index. RELMα overexpression aggravated the release of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, and serum C-reaction protein; the expression of inflammatory mediators phosphorylated (p)-AKT, p-P65, p-P38 mitogen activated protein kinase, p-extracellular regulated kinase, and intracellular adhesion molecule-1; and lung injury. RELMα knockdown had opposite effects. In addition, RELMα knockdown improved expression of proliferative cellular nuclear antigen, Bcl-2, zonal occluding-1 and Claudin-1 in lung tissue of SAP rats. Conclusion: RELMα is associated with lung injury severity in SAP. RELMα augments inflammatory activity by increasing inflammatory cytokine release.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
