Skip to content
2000
Volume 9, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Schizophrenia is a multifactorial disease characterized by a high heritability. Several candidate genes have been suggested, with the strongest evidences for genes encoding dystrobrevin binding protein 1 (DTNBP1), neuregulin 1 (NRG1), neuregulin 1 receptor (ERBB4) and disrupted in schizophrenia 1 (DISC1), as well as several neurotrophic factors. These genes are involved in neuronal plasticity and play also a role in adult neurogenesis. Therefore, the genetic basis of schizophrenia could involve different factors more or less specifically required for neuroplasticity, including the synapse maturation, potentiation and plasticity as well as neurogenesis. Following the model of Knudson in tumors, we propose a two-hit hypothesis of schizophrenia. In this model of gene-environment interaction, a variant in a gene related to neurogenesis is transmitted to the descent (first hit), and, secondarily, an environmental factor occurs during the development of the central nervous system (second hit). Both of these vulnerability and trigger factors are probably necessary to generate a deficit in neurogenesis and therefore to cause schizophrenia. The literature supporting this gene x environment hypothesis is reviewed, with emphasis on some molecular pathways, raising the possibility to propose more specific molecular medicine.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/156652409788167104
2009-05-01
2025-09-06
Loading full text...

Full text loading...

/content/journals/cmm/10.2174/156652409788167104
Loading

  • Article Type:
    Research Article
Keyword(s): association; Genetics; neuron; plasticity; schizophrenia; single nucleotide polymorphism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test