Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

The stomach is a crucial digestive organ in the human body, highly susceptible to inflammation or pathogen invasion, which can lead to various gastric diseases, including gastric cancer. Toll-like receptors (TLRs) are the first line of defense against pathogen invasion. TLR4, a member of the TLRs family, recognizes pathogen and danger-related molecular patterns to induce inflammatory responses. () is a significant factor in gastric health, and TLR4 recognizes -LPS to trigger an inflammatory response. Downstream TLR4 signaling generates proinflammatory cytokines that initiate inflammation in the gastric mucosa. In addition, TLR4 gene polymorphisms can increase health risks. This study aims to investigate the contribution of TLR4 to the inflammatory response in gastric diseases and the relation between TLR4 and , TLR4 gene polymorphisms, and how TLR4 affects gastric diseases’ possible pathways to provide further insight for future prevention and clinical treatment strategies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240276139231206071742
2024-01-09
2025-10-01
Loading full text...

Full text loading...

References

  1. O’ConnorA. O’MoráinC. Digestive function of the stomach.Dig. Dis.201432318619110.1159/000357848 24732181
    [Google Scholar]
  2. IlicM. IlicI. Epidemiology of stomach cancer.World J. Gastroenterol.202228121187120310.3748/wjg.v28.i12.1187 35431510
    [Google Scholar]
  3. CamiloV. SugiyamaT. TouatiE. Pathogenesis of Helicobacter pylori infection.Helicobacter201722S1Suppl. 1e1240510.1111/hel.12405 28891130
    [Google Scholar]
  4. KouzuK. TsujimotoH. KishiY. UenoH. ShinomiyaN. Role of microbial infection-induced inflammation in the development of gastrointestinal cancers.Medicines2021884510.3390/medicines8080045 34436224
    [Google Scholar]
  5. LeeH.W. HuangD. ShinW.K. Frequent low dose alcohol intake increases gastric cancer risk: The Health Examinees-Gem (HEXA-G) study.Cancer Biol. Med.20221981224123410.20892/j.issn.2095‑3941.2021.0642 35484712
    [Google Scholar]
  6. ShahD. BentremD. Environmental and genetic risk factors for gastric cancer.J. Surg. Oncol.202212571096110310.1002/jso.26869 35481919
    [Google Scholar]
  7. TakeuchiC. SatoJ. YamashitaS. Autoimmune gastritis induces aberrant DNA methylation reflecting its carcinogenic potential.J. Gastroenterol.202257314415510.1007/s00535‑021‑01848‑2 35034200
    [Google Scholar]
  8. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106610.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  9. ZhangT. ZhangK. JiK. microRNA-365 inhibits YAP through TLR4-mediated IRF3 phosphorylation and thereby alleviates gastric precancerous lesions.Cancer Cell Int.202020154910.1186/s12935‑020‑01578‑0 33292210
    [Google Scholar]
  10. LiQ. WuW. GongD. ShangR. WangJ. YuH. Propioni-bacterium acnes overabundance in gastric cancer promote M2 polarization of macrophages via a TLR4/PI3K/Akt signaling.Gastric Cancer20212461242125310.1007/s10120‑021‑01202‑8 34076786
    [Google Scholar]
  11. YouL. HuangL. JangJ. Callerya atropurpurea suppresses inflammation in vitro and ameliorates gastric injury as well as septic shock in vivo via TLR4/MyD88-dependent cascade.Phytomedicine202210515433810.1016/j.phymed.2022.154338 35921773
    [Google Scholar]
  12. Pimentel-NunesP. GonçalvesN. Boal-CarvalhoI. Helicobacter pylori induces increased expression of Toll-like receptors and decreased Toll-interacting protein in gastric mucosa that persists throughout gastric carcinogenesis.Helicobacter2013181223210.1111/hel.12008 23061653
    [Google Scholar]
  13. UnoK. KatoK. ShimosegawaT. Novel role of toll-like receptors in Helicobacter pylori - induced gastric malignancy.World J. Gastroenterol.201420185244525110.3748/wjg.v20.i18.5244 24833854
    [Google Scholar]
  14. AlexanderC. RietschelE.T. Bacterial lipopolysaccharides and innate immunity.J. Endotoxin Res.200173167202 11581570
    [Google Scholar]
  15. ZhangX ZhangK YanL WangP ZhaoF HuS The role of toll‐like receptors in immune tolerance induced by Helicobacter pylori infection.Helicobacter2023e13020: e1302010.1111/hel.1302037691007
    [Google Scholar]
  16. GargusM. NiuC. ValloneJ.G. BinkleyJ. RubinD.C. ShakerA. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands.Am. J. Physiol. Gastrointest. Liver Physiol.201530811G904G92310.1152/ajpgi.00333.2014 25882613
    [Google Scholar]
  17. GuoY. ZhouK. ZhuangX. LiJ. ShenX. CDCA7‐ regulated inflammatory mechanism through TLR4/NF‐κB signaling pathway in stomach adenocarcinoma.Biofactors202147586587810.1002/biof.1773 34339079
    [Google Scholar]
  18. ShamsS.G.E. EissaR.G. Amelioration of ethanol-induced gastric ulcer in rats by quercetin: implication of Nrf2/HO1 and HMGB1/TLR4/NF-κB pathways.Heliyon2022810e1115910.1016/j.heliyon.2022.e11159 36311358
    [Google Scholar]
  19. SalamaR.M. AhmedR.H. FaridA.A. Gastroprotective effect of dapagliflozin in ethanol-induced gastric lesions in rats: Crosstalk between HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF signaling pathways.Int. Immunopharmacol.202311510968610.1016/j.intimp.2023.109686 36623411
    [Google Scholar]
  20. ChenY. HuangJ. XuC. Lipopolysaccharide-induced DC-SIGN/TLR4 crosstalk activates NLRP3 inflammasomes via MyD88-independent signaling in gastric epithelial cells.Exp. Cell Res.2020396111229210.1016/j.yexcr.2020.112292 32961144
    [Google Scholar]
  21. YangX. YangL. PanD. Wheat peptide protects against ethanol-induced gastric mucosal damage through downregulation of TLR4 and MAPK.J. Funct. Foods20207510427110.1016/j.jff.2020.104271
    [Google Scholar]
  22. WangX. YangQ. ZhouX. Shenling baizhu powder inhibits RV-SA11-Induced inflammation and rotavirus enteritis via TLR4/MyD88/NF-κB Signaling Pathway.Front. Pharmacol.20211264268510.3389/fphar.2021.642685 33897431
    [Google Scholar]
  23. OspeltC. GayS. TLRs and chronic inflammation.Int. J. Biochem. Cell Biol.201042449550510.1016/j.biocel.2009.10.010 19840864
    [Google Scholar]
  24. VuA. CalzadillaA. GidfarS. Calderon-CandelarioR. MirsaeidiM. Toll-like receptors in mycobacterial infection.Eur. J. Pharmacol.20178081710.1016/j.ejphar.2016.10.018 27756604
    [Google Scholar]
  25. KambaA. LeeI.A. MizoguchiE. Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL-40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer.Curr. Mol. Med.20131371110112110.2174/1566524011313070006 23170831
    [Google Scholar]
  26. MitchellJ.A. Paul-ClarkM.J. ClarkeG.W. McMasterS.K. CartwrightN. Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease.J. Endocrinol.2007193332333010.1677/JOE‑07‑0067 17535871
    [Google Scholar]
  27. WangL. GengG. ZhuT. Progress in Research on TLR4-Mediated inflammatory response mechanisms in brain injury after subarachnoid hemorrhage.Cells20221123378110.3390/cells11233781 36497041
    [Google Scholar]
  28. RochaD.M. CaldasA.P. OliveiraL.L. BressanJ. HermsdorffH.H. Saturated fatty acids trigger TLR4-mediated inflammatory response.Atherosclerosis201624421121510.1016/j.atherosclerosis.2015.11.015 26687466
    [Google Scholar]
  29. PirasV. SelvarajooK. Beyond MyD88 and TRIF pathways in toll-like receptor signaling.Front. Immunol.201457010.3389/fimmu.2014.00070 24605113
    [Google Scholar]
  30. MaedaS. AkanumaM. MitsunoY. Distinct mechanism of Helicobacter pylori-mediated NF-kappa B activation between gastric cancer cells and monocytic cells.J. Biol. Chem.200127648448564486410.1074/jbc.M105381200 11546774
    [Google Scholar]
  31. PeekR.M.Jr FiskeC. WilsonK.T. Role of innate immunity in Helicobacter pylori-induced gastric malignancy.Physiol. Rev.201090383185810.1152/physrev.00039.2009 20664074
    [Google Scholar]
  32. SukriA. HanafiahA. Mohamad ZinN. KosaiN.R. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis.APMIS2020128215016110.1111/apm.13034 32352605
    [Google Scholar]
  33. WenS. FelleyC.P. BouzoureneH. ReimersM. MichettiP. Pan-HammarströmQ. Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans.J. Immunol.200417242595260610.4049/jimmunol.172.4.2595 14764733
    [Google Scholar]
  34. ZargariS. BahariA. GoodarziM.T. MahmoodiM. ValadanR. TLR2 and TLR4 signaling pathways and gastric cancer: Insights from transcriptomics and sample validation.Iran. Biomed. J.2022261364310.52547/ibj.26.1.36 34773930
    [Google Scholar]
  35. ShimazuR. AkashiS. OgataH. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4.J. Exp. Med.1999189111777178210.1084/jem.189.11.1777 10359581
    [Google Scholar]
  36. LiH. LiaoT. DebowskiA.W. Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori.Helicobacter201621644546110.1111/hel.12301 26934862
    [Google Scholar]
  37. IshiharaS. RumiM.A.K. KadowakiY. Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis.J. Immunol.200417321406141610.4049/jimmunol.173.2.1406 15240737
    [Google Scholar]
  38. KimH.M. ParkB.S. KimJ.I. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran.Cell2007130590691710.1016/j.cell.2007.08.002 17803912
    [Google Scholar]
  39. CullenT.W. GilesD.K. WolfL.N. EcobichonC. BonecaI.G. TrentM.S. Helicobacter pylori versus the host: Remodeling of the bacterial outer membrane is required for survival in the gastric mucosa.PLoS Pathog.2011712e100245410.1371/journal.ppat.1002454 22216004
    [Google Scholar]
  40. KawaharaT. TeshimaS. OkaA. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells.Infect. Immun.20016974382438910.1128/IAI.69.7.4382‑4389.2001 11401977
    [Google Scholar]
  41. RaetzC.R.H. ReynoldsC.M. TrentM.S. BishopR.E. Lipid A modification systems in gram-negative bacteria.Annu. Rev. Biochem.200776129532910.1146/annurev.biochem.76.010307.145803 17362200
    [Google Scholar]
  42. NeuperT. FrauenlobT. SarajlicM. PosseltG. WesslerS. Horejs-HoeckJ. TLR2, TLR4 and TLR10 Shape the Cytokine and Chemokine Release of H. pylori-Infected Human DCs.Int. J. Mol. Sci.20202111389710.3390/ijms21113897 32486097
    [Google Scholar]
  43. GongY. TaoL. JingL. Association of TLR4 and Treg in helicobacter pylori colonization and inflammation in mice.PLoS One2016112e014962910.1371/journal.pone.0149629 26901645
    [Google Scholar]
  44. MandellL. MoranA.P. CocchiarellaA. Intact gram-negative helicobacter pylori, helicobacter felis, and helicobacter hepaticus bacteria activate innate immunity via toll-like receptor 2 but not toll-like receptor 4.Infect. Immun.200472116446645410.1128/IAI.72.11.6446‑6454.2004 15501775
    [Google Scholar]
  45. SmithM.F.Jr MitchellA. LiG. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells.J. Biol. Chem.200327835325523256010.1074/jbc.M305536200 12807870
    [Google Scholar]
  46. UnoK. KatoK. AtsumiT. Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated by Helicobacter pylori cooperatively amplifies iNOS induction in gastric epithelial cells.Am. J. Physiol. Gastrointest. Liver Physiol.20072935G1004G101210.1152/ajpgi.00096.2007 17855767
    [Google Scholar]
  47. Alvarez-ArellanoL. Camorlinga-PonceM. Maldonado-BernalC. TorresJ. Activation of human neutrophils with Helicobacter pylori and the role of Toll-like receptors 2 and 4 in the response.FEMS Immunol. Med. Microbiol.200751347347910.1111/j.1574‑695X.2007.00327.x 17892476
    [Google Scholar]
  48. TakenakaR. YokotaK. AyadaK. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells.Microbiology (Reading)2004150123913392210.1099/mic.0.27527‑0 15583145
    [Google Scholar]
  49. KutikhinA.G. Impact of Toll-like receptor 4 polymorphisms on risk of cancer.Hum. Immunol.201172219320610.1016/j.humimm.2010.11.003 21081146
    [Google Scholar]
  50. YanL. LvZ. JingJ. YuanY. XuQ. Single nucleotide polymorphisms of whole genes and atrophic gastritis susceptibility:A systematic review and meta-analysis.Gene202178214554310.1016/j.gene.2021.145543 33667608
    [Google Scholar]
  51. SkevakiC. PararasM. KostelidouK. TsakrisA. RoutsiasJ.G. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases.Clin. Exp. Immunol.2015180216517710.1111/cei.12578 25560985
    [Google Scholar]
  52. MeliţL.E. MărgineanC.O. BănescuC. BoglişA. MocanS. IancuM. The relationship between TLR4 rs4986790 and rs4986791 gene polymorphisms and Helicobacter pylori infection in children with gastritis.Pathol. Res. Pract.20192151215269210.1016/j.prp.2019.152692 31690518
    [Google Scholar]
  53. HeW. JiangM. TLR4 rs4986790 polymorphism confers risk to Helicobacter pylori infection in Zhejiang, China and its enlightenment to nursing care.J. Clin. Lab. Anal.2022366e2445310.1002/jcla.24453 35500224
    [Google Scholar]
  54. KupcinskasJ. WexT. BornscheinJ. Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians.BMC Med. Genet.201112111210.1186/1471‑2350‑12‑112 21864388
    [Google Scholar]
  55. MelițL.E. MărgineanC.O. MărgineanC.D. MărgineanM.O. The relationship between toll-like receptors and Helicobacter pylori -related gastropathies: still a controversial topic.J. Immunol. Res.2019201911010.1155/2019/8197048 30863783
    [Google Scholar]
  56. CiesielskaA. MatyjekM. KwiatkowskaK. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling.Cell. Mol. Life Sci.20217841233126110.1007/s00018‑020‑03656‑y 33057840
    [Google Scholar]
  57. WuM. DingY. WuN. FSTL1 promotes growth and metastasis in gastric cancer by activating AKT related pathway and predicts poor survival.Am. J. Cancer Res.2021113712728 33791149
    [Google Scholar]
  58. LinK. DengT. QuH. Gastric protective effect of Alpinia officinarum flavonoids: Mediating TLR4/NF-κB and TRPV1 signalling pathways and gastric mucosal healing.Pharm. Biol.2023611506010.1080/13880209.2022.2152058 36541204
    [Google Scholar]
  59. DeguineJ. BartonG.M. MyD88: a central player in innate immune signaling.F1000Prime Rep.201469710.12703/P6‑97 25580251
    [Google Scholar]
  60. WuK. YangY. LiuD. Activation of PPARγ suppresses proliferation and induces apoptosis of esophageal cancer cells by inhibiting TLR4-dependent MAPK pathway.Oncotarget2016728445724458210.18632/oncotarget.10067 27323819
    [Google Scholar]
  61. LiN. XuH. OuY. LPS-induced CXCR7 expression promotes gastric cancer proliferation and migration via the TLR4/MD-2 pathway.Diagn. Pathol.2019141310.1186/s13000‑019‑0780‑x 30636642
    [Google Scholar]
  62. QuanX.Q. XieZ.L. DingY. FengR. ZhuX.Y. ZhangQ.X. miR-198 regulated the tumorigenesis of gastric cancer by targeting Toll-like receptor 4 (TLR4).Eur. Rev. Med. Pharmacol. Sci.20182282287229610.26355/eurrev_201804_14817 29762851
    [Google Scholar]
  63. GuoJ. LiaoM. WangJ. TLR4 signaling in the development of colitis-associated cancer and its possible interplay with microRNA-155.Cell Commun. Signal.20211919010.1186/s12964‑021‑00771‑6 34479599
    [Google Scholar]
  64. KawaiT. AkiraS. Signaling to NF-κB by Toll-like receptors.Trends Mol. Med.2007131146046910.1016/j.molmed.2007.09.002 18029230
    [Google Scholar]
  65. LuY.C. YehW.C. OhashiP.S. LPS/TLR4 signal transduction pathway.Cytokine200842214515110.1016/j.cyto.2008.01.006 18304834
    [Google Scholar]
  66. OhnishiT. MuroiM. TanamotoK. MD-2 is necessary for the toll-like receptor 4 protein to undergo glycosylation essential for its translocation to the cell surface.Clin. Vaccine Immunol.200310340541010.1128/CDLI.10.3.405‑410.2003 12738639
    [Google Scholar]
  67. MiyakeK. Endotoxin recognition molecules, Toll-like receptor 4-MD-2.Semin. Immunol.2004161111610.1016/j.smim.2003.10.007 14751758
    [Google Scholar]
  68. YingJ. XuQ. LiuB. ZhangG. ChenL. PanH. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis.OncoTargets Ther.201582427243310.2147/OTT.S88592 26366097
    [Google Scholar]
  69. TongY. WangR. LiuX. Zuojin Pill ameliorates chronic atrophic gastritis induced by MNNG through TGF-β1/PI3K/Akt axis.J. Ethnopharmacol.202127111389310.1016/j.jep.2021.113893 33524511
    [Google Scholar]
  70. LairdM.H.W. RheeS.H. PerkinsD.J. TLR4/MyD88/PI3K interactions regulate TLR4 signaling.J. Leukoc. Biol.200985696697710.1189/jlb.1208763 19289601
    [Google Scholar]
  71. SlomianyB.L. SlomianyA. Role of LPS-elicited signaling in triggering gastric mucosal inflammatory responses to H. pylori: modulatory effect of ghrelin.Inflammopharmacology201725441542910.1007/s10787‑017‑0360‑1 28516374
    [Google Scholar]
  72. WuY. ZhaoQ. PengC. SunL. LiX.F. KuangD.M. Neutrophils promote motility of cancer cells via a hyaluronan‐mediated TLR4/PI3K activation loop.J. Pathol.2011225343844710.1002/path.2947 21826665
    [Google Scholar]
  73. KashaniB. ZandiZ. Pourbagheri-SigaroodiA. BashashD. GhaffariS.H. The role of toll‐like receptor 4 (TLR4) in cancer progression: A possible therapeutic target?J. Cell. Physiol.202123664121413710.1002/jcp.30166 33230811
    [Google Scholar]
  74. XingH. LiR. QingY. YingB. QinY. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review.Appl. Mater. Today20212210096910.1016/j.apmt.2021.100969
    [Google Scholar]
  75. YeH. HuaR. YuL. Abnormal expression of Toll-like receptor 4 is associated with susceptibility to ethanol-induced gastric mucosal injury in mice.Dig. Dis. Sci.201358102826283910.1007/s10620‑013‑2727‑5 23744365
    [Google Scholar]
  76. YuanX. ZhouY. WangW. Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production.Cell Death Dis.201349e79410.1038/cddis.2013.334 24030146
    [Google Scholar]
  77. DuanH. QuL. ShouC. Mycoplasma hyorhinis induces epithelial-mesenchymal transition in gastric cancer cell MGC803 via TLR4-NF-κB signaling.Cancer Lett.2014354244745410.1016/j.canlet.2014.08.018 25149064
    [Google Scholar]
  78. YamaguchiT. FushidaS. YamamotoY. Low-dose paclitaxel suppresses the induction of M2 macrophages in gastric cancer.Oncol. Rep.20173763341335010.3892/or.2017.5586 28440494
    [Google Scholar]
  79. LiL. ZangH. JiangY. Acupuncture at back-shu and front-mu acupoints prevents gastric ulcer by regulating the TLR4/MyD88/NF-κB Signaling Pathway.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/8214052 33628315
    [Google Scholar]
  80. WagnerE.F. NebredaÁ.R. Signal integration by JNK and p38 MAPK pathways in cancer development.Nat. Rev. Cancer20099853754910.1038/nrc2694 19629069
    [Google Scholar]
  81. LiuC. TangX. ZhangW. 6-Bromoindirubin-3′-Oxime Suppresses LPS-Induced Inflammation via Inhibition of the TLR4/NF-κB and TLR4/MAPK Signaling Pathways.Inflammation20194262192220410.1007/s10753‑019‑01083‑1 31599382
    [Google Scholar]
  82. XuF. XieQ. LiY. Suppression of JNK/ERK dependent autophagy enhances Jaspine B derivative-induced gastric cancer cell death via attenuation of p62/Keap1/Nrf2 pathways.Toxicol. Appl. Pharmacol.202243811590810.1016/j.taap.2022.115908 35123989
    [Google Scholar]
  83. SlomianyB.L. SlomianyA. Syk: A new target for attenuation of Helicobacter pylori-induced gastric mucosal inflammatory responses.Inflammopharmacology201927220321110.1007/s10787‑019‑00577‑6 30820719
    [Google Scholar]
  84. BasakC. PathakS.K. BhattacharyyaA. PathakS. BasuJ. KunduM. The secreted peptidyl prolyl cis,trans-isomerase HP0175 of Helicobacter pylori induces apoptosis of gastric epithelial cells in a TLR4- and apoptosis signal-regulating kinase 1-dependent manner.J. Immunol.200517495672568010.4049/jimmunol.174.9.5672 15843568
    [Google Scholar]
  85. ZhuangH. DaiX. ZhangX. MaoZ. HuangH. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T cytotoxic function against gastric cancer.Biomed. Pharmacother.202012110963610.1016/j.biopha.2019.109636 31733580
    [Google Scholar]
  86. JiaoS. GuanJ. ChenM. Targeting IRF3 as a YAP agonist therapy against gastric cancer.J. Exp. Med.2018215269971810.1084/jem.20171116 29339449
    [Google Scholar]
  87. ZhouY. XiaL. LiuQ. Induction of pro-Inflammatory response via activated macrophage-mediated NF-κB and STAT3 pathways in gastric cancer cells.Cell. Physiol. Biochem.20184741399141010.1159/000490829 29929193
    [Google Scholar]
  88. TengG. WangW. DaiY. WangS. ChuY. LiJ. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4.PLoS One201382e5670910.1371/journal.pone.0056709 23437218
    [Google Scholar]
  89. TsaiC.C. ChenT.Y. TsaiK.J. NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer.Biomed. Pharmacother.202013211086910.1016/j.biopha.2020.110869 33113427
    [Google Scholar]
  90. TangB. XiaoB. LiuZ. Identification of MyD88 as a novel target of miR‐155, involved in negative regulation of Helicobacter pylori ‐induced inflammation.FEBS Lett.201058481481148610.1016/j.febslet.2010.02.063 20219467
    [Google Scholar]
  91. ZhongX. ZhangL. LiY. LiP. LiJ. ChengG. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of miR-26a-5p via inhibiting TLR4/NF-κB pathway in human endothelial cells.Biomed. Pharmacother.20181081783178910.1016/j.biopha.2018.09.175 30372882
    [Google Scholar]
  92. SunQ. ZhangS. ZhangB.Y. microRNA-181a contributes to gastric hypersensitivity in rats with diabetes by regulating TLR4 expression.Mol. Pain20231910.1177/17448069231159356 36750423
    [Google Scholar]
  93. YangF. GeG. ShenW. ChenL. The influence of the Chuyou Yuyang granule on the Toll‐like receptor/nuclear factor‐κB signal pathway in Helicobacter pylori ‐positive peptic ulcer patients.J. Cell. Biochem.20191208137451375010.1002/jcb.28647 31034651
    [Google Scholar]
  94. ZhangZ. ZhuT. ZhangL. XingY. YanZ. LiQ. Critical influence of cytokines and immune cells in autoimmune gastritis.Autoimmunity2023561217453110.1080/08916934.2023.2174531 36762543
    [Google Scholar]
  95. LiuY. YinH. ZhaoM. LuQ. TLR2 and TLR4 in autoimmune diseases: A comprehensive review.Clin. Rev. Allergy Immunol.201447213614710.1007/s12016‑013‑8402‑y 24352680
    [Google Scholar]
  96. De ReV. RepettoO. De ZorziM. Polymorphism in toll-like receptors and helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer.Cancers201911564810.3390/cancers11050648 31083432
    [Google Scholar]
  97. BourgesD. RossE.M. AllenS. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells.J. Immunol.2014192115023503010.4049/jimmunol.1303429 24760154
    [Google Scholar]
  98. SangwanV. Al-MarzoukiL. PalS. Inhibition of LPS-mediated TLR4 activation abrogates gastric adenocarcinoma-associated peritoneal metastasis.Clin. Exp. Metastasis202239232333310.1007/s10585‑021‑10133‑8 34767138
    [Google Scholar]
  99. SemlaliA. Reddy ParineN. ArafahM. Expression and polymorphism of toll-like receptor 4 and effect on NF-κB mediated inflammation in colon cancer patients.PLoS One2016111e014633310.1371/journal.pone.0146333 26771524
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240276139231206071742
Loading
/content/journals/cmm/10.2174/0115665240276139231206071742
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): gastric cancer; Helicobacter pylori; inflammation; signaling; stomach; TLR4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test