Skip to content
2000
image of Dysregulation of Key Biological Processes in Endometriosis Pathophysiology

Abstract

Endometriosis is a typical disorder affecting the female reproductive system and is characterized by the presence of tissue resembling the endometrium both within and beyond the pelvic cavity. Unfortunately, the etiology of endometriosis is not well understood. The purpose of this document is to create a summary of the factors contributing to endometriosis, especially the dysregulation of cellular and molecular pathways. Key biological processes implicated include enzyme dysregulation, exosome dysfunction, hormonal imbalances, apoptosis, angiogenesis, oxidative stress, epigenetic dysregulation, and the involvement of cytokines and chemokines. Many of these factors have overlapping pathways that can enhance the survival of endometrial debris and facilitate the implantation of endometrial tissue in extrauterine sites. This knowledge can provide a broader perspective on the onset and progression of endometriosis. Additionally, this study paves the way for the discovery of new therapeutic targets to improve the efficacy of endometriosis treatments and reduce the side effects associated with current treatments. Further research is needed to better understand the underlying mechanisms that lead to the dysregulation of disease-related pathways, which could ultimately be useful in early diagnosis and disease staging.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393552250908133211
2025-09-18
2025-11-06
Loading full text...

Full text loading...

References

  1. Ścieżyńska A. Komorowski M. Soszyńska M. Malejczyk J. NK cells as potential targets for immunotherapy in endometriosis. J. Clin. Med. 2019 8 9 1468 10.3390/jcm8091468 31540116
    [Google Scholar]
  2. Gołąbek A. Kowalska K. Olejnik A. Polyphenols as a diet therapy concept for endometriosis—current opinion and future perspectives. Nutrients 2021 13 4 1347 10.3390/nu13041347 33919512
    [Google Scholar]
  3. Lamceva J. Uljanovs R. Strumfa I. The main theories on the pathogenesis of endometriosis. Int. J. Mol. Sci. 2023 24 5 4254 10.3390/ijms24054254 36901685
    [Google Scholar]
  4. Bruno V. Corrado G. Baci D. Endometrial cancer immune escape mechanisms: let us learn from the fetal–maternal interface. Front. Oncol. 2020 10 156 10.3389/fonc.2020.00156 32226771
    [Google Scholar]
  5. Ahn S.H. Monsanto S.P. Miller C. Singh S.S. Thomas R. Tayade C. Pathophysiology and immune dysfunction in endometriosis. BioMed Res. Int. 2015 2015 795976 10.1155/2015/795976 26247027
    [Google Scholar]
  6. Sah S.K. Shrivastava A.K. Ullah A. Pervej S. Ding Y. Wang Y.X. Discerning Endometriosis as a Multifaceted Entity: A Comprehensive Review. Biomed. J. Sci. Tech. Res. 2020 31 4 24352 24366
    [Google Scholar]
  7. Lai Z.Z. Yang H.L. Ha S.Y. Cyclooxygenase-2 in Endometriosis. Int. J. Biol. Sci. 2019 15 13 2783 2797 10.7150/ijbs.35128 31853218
    [Google Scholar]
  8. da Luz C.M. da Broi M.G. Donabela F.C. Paro de Paz C.C. Meola J. Navarro P.A. PTGS2 down-regulation in cumulus cells of infertile women with endometriosis. Reprod. Biomed. Online 2017 35 4 379 386 10.1016/j.rbmo.2017.06.021 28734688
    [Google Scholar]
  9. Laganà A.S. Garzon S. Götte M. The pathogenesis of endometriosis: molecular and cell biology insights. Int. J. Mol. Sci. 2019 20 22 5615 10.3390/ijms20225615 31717614
    [Google Scholar]
  10. Cho S. Park S.H. Choi Y.S. Expression of cyclooxygenase-2 in eutopic endometrium and ovarian endometriotic tissue in women with severe endometriosis. Gynecol. Obstet. Invest. 2010 69 2 93 100 10.1159/000261017 20068324
    [Google Scholar]
  11. Mei J. Zhou W.J. Zhu X.Y. Suppression of autophagy and HCK signaling promotes PTGS2 high FCGR3 − NK cell differentiation triggered by ectopic endometrial stromal cells. Autophagy 2018 14 8 1376 1397 10.1080/15548627.2018.1476809 29962266
    [Google Scholar]
  12. Manna P.R. Molehin D. Ahmed A.U. Dysregulation of aromatase in breast, endometrial, and ovarian cancers: An overview of therapeutic strategies. Prog. Mol. Biol. Transl. Sci. 2016 144 487 537 10.1016/bs.pmbts.2016.10.002 27865465
    [Google Scholar]
  13. Matsuzaki S. Canis M. Pouly J.L. Déchelotte P.J. Mage G. Analysis of aromatase and 17β-hydroxysteroid dehydrogenase type 2 messenger ribonucleic acid expression in deep endometriosis and eutopic endometrium using laser capture microdissection. Fertil. Steril. 2006 85 2 308 313 10.1016/j.fertnstert.2005.08.017 16595205
    [Google Scholar]
  14. Bukulmez O. Hardy D.B. Carr B.R. Word R.A. Mendelson C.R. Inflammatory status influences aromatase and steroid receptor expression in endometriosis. Endocrinology 2008 149 3 1190 1204 10.1210/en.2007‑0665 18048499
    [Google Scholar]
  15. Che Q. Liu B.Y. Liao Y. Activation of a positive feedback loop involving IL-6 and aromatase promotes intratumoral 17β-estradiol biosynthesis in endometrial carcinoma microenvironment. Int. J. Cancer 2014 135 2 282 294 10.1002/ijc.28679 24347287
    [Google Scholar]
  16. Attar E. Bulun S.E. Aromatase and other steroidogenic genes in endometriosis: Translational aspects. Hum. Reprod. Update 2006 12 1 49 56 10.1093/humupd/dmi034 16123052
    [Google Scholar]
  17. Tsai S.J. Wu M.H. Lin C.C. Sun H.S. Chen H.M. Regulation of steroidogenic acute regulatory protein expression and progesterone production in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 2001 86 12 5765 5773 10.1210/jcem.86.12.8082 11739437
    [Google Scholar]
  18. Mariadas H. Chen J.H. Chen K.H. The Molecular and Cellular Mechanisms of Endometriosis: From Basic Pathophysiology to Clinical Implications. Int. J. Mol. Sci. 2025 26 6 2458 10.3390/ijms26062458 40141102
    [Google Scholar]
  19. Lob S. Konigsrainer A. Schafer R. Rammensee H.G. Opelz G. Terness P. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 2008 111 4 2152 2154 10.1182/blood‑2007‑10‑116111 18045970
    [Google Scholar]
  20. Moghaddam M.Z. Ansariniya H. Seifati S.M. Zare F. Fesahat F. Immunopathogenesis of endometriosis: An overview of the role of innate and adaptive immune cells and their mediators. Am. J. Reprod. Immunol. 2022 87 5 e13537 10.1111/aji.13537 35263479
    [Google Scholar]
  21. Wei C. Mei J. Tang L. Liu Y. Li D. Li M. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis. 2016 7 e2489 10.1038/cddis.2016.375 27906184
    [Google Scholar]
  22. Liu X.T. Sun H.T. Zhang Z.F. Indoleamine 2,3-dioxygenase suppresses the cytotoxicity of 1 NK cells in response to ectopic endometrial stromal cells in endometriosis. Reproduction 2018 156 5 397 404 10.1530/REP‑18‑0112 30087159
    [Google Scholar]
  23. Li M.Z. Wu Y.H. Ali M. Wu X.Q. Nie M.F. Endometrial stromal cells treated by tumor necrosis factor-α stimulate macrophages polarized toward M2 via interleukin-6 and monocyte chemoattractant protein-1. J. Obstet. Gynaecol. Res. 2020 46 2 293 301 10.1111/jog.14135 31930665
    [Google Scholar]
  24. Garzon S. Laganà A.S. Barra F. Aromatase inhibitors for the treatment of endometriosis: a systematic review about efficacy, safety and early clinical development. Expert Opin. Investig. Drugs 2020 29 12 1377 1388 10.1080/13543784.2020.1842356 33096011
    [Google Scholar]
  25. Baker A-M. Bird D. Lang G. Cox T.R. Erler J.T. Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 2013 32 14 1863 1868 10.1038/onc.2012.202 22641216
    [Google Scholar]
  26. Flores I. Rivera E. Ruiz L.A. Santiago O.I. Vernon M.W. Appleyard C.B. Molecular profiling of experimental endometriosis identified gene expression patterns in common with human disease. Fertil. Steril. 2007 87 5 1180 1199 10.1016/j.fertnstert.2006.07.1550 17478174
    [Google Scholar]
  27. Ruiz L.A. Báez-Vega P.M. Ruiz A. Dysregulation of lysyl oxidase expression in lesions and endometrium of women with endometriosis. Reprod. Sci. 2015 22 12 1496 1508 10.1177/1933719115585144 25963914
    [Google Scholar]
  28. Ruiz L.A. Beauchamp P. Bracero N.J. Salvo V.A. Fazleabas A. Flores I. Lysyl oxidase is differentially expressed in women with endometriosis-associated infertility compared to fertile women. Fertil. Steril. 2008 90 S149 10.1016/j.fertnstert.2008.07.257
    [Google Scholar]
  29. Liang Y. Wu J. Wang W. Xie H. Yao S. Pro-endometriotic niche in endometriosis. Reprod. Biomed. Online 2019 38 4 549 559 10.1016/j.rbmo.2018.12.025 30772194
    [Google Scholar]
  30. Cox T.R. Erler J.T. Lysyl oxidase in colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2013 305 10 G659 G666 10.1152/ajpgi.00425.2012 24008360
    [Google Scholar]
  31. Hoffmann-Młodzianowska M. Maksym R.B. Pucia K. Kuciak M. Mackiewicz A. Kieda C. Endometriosis development in relation to hypoxia: a murine model study. Mol. Med. 2024 30 1 195 10.1186/s10020‑024‑00973‑x 39478503
    [Google Scholar]
  32. Day J.M. Tutill H.J. Purohit A. Reed M.J. Design and validation of specific inhibitors of 17 -hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocr. Relat. Cancer 2008 15 3 665 692 10.1677/ERC‑08‑0042 18541621
    [Google Scholar]
  33. Rižner T.L. Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases–current status. Front. Pharmacol. 2023 14 1155558 10.3389/fphar.2023.1155558 37188267
    [Google Scholar]
  34. Zeitoun K. Takayama K. Sasano H. Deficient 17β-hydroxysteroid dehydrogenase type 2 expression in endometriosis: failure to metabolize 17β-estradiol. J. Clin. Endocrinol. Metab. 1998 83 12 4474 4480 10.1210/jcem.83.12.5301 9851796
    [Google Scholar]
  35. Dassen H. Punyadeera C. Kamps R. Estrogen metabolizing enzymes in endometrium and endometriosis. Hum. Reprod. 2007 22 12 3148 3158 10.1093/humrep/dem310 17921479
    [Google Scholar]
  36. Bulun S.E. Cheng Y.H. Yin P. Progesterone resistance in endometriosis: Link to failure to metabolize estradiol. Mol. Cell. Endocrinol. 2006 248 1-2 94 103 10.1016/j.mce.2005.11.041 16406281
    [Google Scholar]
  37. Tsuchiya M. Nakao H. Katoh T. Association between endometriosis and genetic polymorphisms of the estradiol-synthesizing enzyme genes HSD17B1 and CYP19. Hum. Reprod. 2005 20 4 974 978 10.1093/humrep/deh726 15640252
    [Google Scholar]
  38. Setiawan V.W. Hankinson S.E. Colditz G.A. Hunter D.J. De Vivo I. HSD17B1 gene polymorphisms and risk of endometrial and breast cancer. Cancer Epidemiol. Biomarkers Prev. 2004 13 2 213 219 10.1158/1055‑9965.EPI‑03‑0241 14973105
    [Google Scholar]
  39. Nair S. Razo-Azamar M. Jayabalan N. Dalgaard L.T. Palacios-González B. Sørensen A. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev. 2023 38233286
    [Google Scholar]
  40. Sykaras A.G. Christofidis K. Politi E. Theocharis S. Exosomes on endometrial cancer: a biomarkers treasure trove? Cancers (Basel) 2022 14 7 1733 10.3390/cancers14071733 35406505
    [Google Scholar]
  41. Fan J.T. Zhou Z.Y. Luo Y.L. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia 2021 23 7 692 703 10.1016/j.neo.2021.05.004 34153644
    [Google Scholar]
  42. Li B.L. Lu W. Qu J.J. Ye L. Du G.Q. Wan X.P. Loss of exosomal miR‐148b from cancer‐associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J. Cell. Physiol. 2019 234 3 2943 2953 10.1002/jcp.27111 30146796
    [Google Scholar]
  43. Miyasaka A. Oda K. Ikeda Y. PI3K/mTOR pathway inhibition overcomes radioresistance via suppression of the HIF1-α/VEGF pathway in endometrial cancer. Gynecol. Oncol. 2015 138 1 174 180 10.1016/j.ygyno.2015.04.015 25913131
    [Google Scholar]
  44. Xiao L. He Y. Peng F. Yang J. Yuan C. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J. Immunol. Res. 2020 2020 9731049 10.1155/2020/9731049 33110923
    [Google Scholar]
  45. Qin X. Yan L. Zhao X. Li C. Fu Y. microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol. Lett. 2012 4 6 1290 1296 10.3892/ol.2012.896 23226804
    [Google Scholar]
  46. Wu J. Xie H. Yao S. Liang Y. Macrophage and nerve interaction in endometriosis. J. Neuroinflammation 2017 14 1 53 10.1186/s12974‑017‑0828‑3 28288663
    [Google Scholar]
  47. Wang Y. Ma H. Li Y. Su R. MiR-192-5p-Modified tumor-associated macrophages-derived exosome suppressed endometrial cancer progression through targeting IRAK1/NF-κB signaling. Reprod. Sci. 2022 29 2 436 447 10.1007/s43032‑021‑00789‑8 35000146
    [Google Scholar]
  48. Che X. Jian F. Chen C. Liu C. Liu G. Feng W. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J. Mol. Endocrinol. 2020 64 1 1 12 10.1530/JME‑19‑0159 31710594
    [Google Scholar]
  49. Xu Y. Cheng M. Mi L. Qiu Y. Hao W. Li L. Mir-22-3p enhances the chemosensitivity of gastrointestinal stromal tumor cell lines to cisplatin through PTEN/PI3K/Akt pathway. Iran. J. Allergy Asthma Immunol. 2018 17 4 318 325 10.18502/ijaai.v17i4.91 30537795
    [Google Scholar]
  50. Tian X. Xu L. Wang P. MiR-191 inhibits TNF-α induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int. J. Clin. Exp. Pathol. 2015 8 5 4933 4942 26191186
    [Google Scholar]
  51. Freger S. Leonardi M. Foster W.G. Exosomes and their cargo are important regulators of cell function in endometriosis. Reprod. Biomed. Online 2021 43 3 370 378 10.1016/j.rbmo.2021.05.022 34272164
    [Google Scholar]
  52. Chen Y. Wang K. Xu Y. Alteration of myeloid-derived suppressor cells, chronic inflammatory cytokines, and exosomal miRNA contribute to the peritoneal immune disorder of patients with endometriosis. Reprod. Sci. 2019 26 8 1130 1138 10.1177/1933719118808923 30453861
    [Google Scholar]
  53. Qiu J.J. Lin X.J. Zheng T.T. Tang X.Y. Zhang Y. Hua K.Q. The exosomal long noncoding RNA aHIF is upregulated in serum from patients with endometriosis and promotes angiogenesis in endometriosis. Reprod. Sci. 2019 26 12 1590 1602 10.1177/1933719119831775 30808247
    [Google Scholar]
  54. Polesello C. Payre F. Small is beautiful: what flies tell us about ERM protein function in development. Trends Cell Biol. 2004 14 6 294 302 10.1016/j.tcb.2004.04.003 15183186
    [Google Scholar]
  55. Abudula M. Fan X. Zhang J. Li J. Zhou X. Chen Y. Ectopic endometrial cell-derived exosomal moesin induces eutopic endometrial cell migration, enhances angiogenesis and cytosolic inflammation in lesions contributes to endometriosis progression. Front. Cell Dev. Biol. 2022 10 824075 10.3389/fcell.2022.824075 35557941
    [Google Scholar]
  56. Nazri H.M. Imran M. Fischer R. Heilig R. Manek S. Dragovic R.A. Characterization of exosomes in peritoneal fluid of endometriosis patients. Fertil. Steril. 2020 113 2 364 373.e2 10.1016/j.fertnstert.2019.09.032 32106990
    [Google Scholar]
  57. Maxwell G.L. Hood B.L. Day R. Proteomic analysis of stage I endometrial cancer tissue: Identification of proteins associated with oxidative processes and inflammation. Gynecol. Oncol. 2011 121 3 586 594 10.1016/j.ygyno.2011.02.031 21458040
    [Google Scholar]
  58. Alonso-Alconada L. Santacana M. Garcia-Sanz P. Annexin‐A2 as predictor biomarker of recurrent disease in endometrial cancer. Int. J. Cancer 2015 136 8 1863 1873 10.1002/ijc.29213 25219463
    [Google Scholar]
  59. Noble L.S. Takayama K. Zeitoun K.M. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J. Clin. Endocrinol. Metab. 1997 82 2 600 606 10.1210/jc.82.2.600 9024261
    [Google Scholar]
  60. Chantalat E. Valera M.C. Vaysse C. Estrogen receptors and endometriosis. Int. J. Mol. Sci. 2020 21 8 2815 10.3390/ijms21082815 32316608
    [Google Scholar]
  61. Montagna P. Capellino S. Villaggio B. Peritoneal fluid macrophages in endometriosis: correlation between the expression of estrogen receptors and inflammation. Fertil. Steril. 2008 90 1 156 164 10.1016/j.fertnstert.2006.11.200 17548071
    [Google Scholar]
  62. Chen P. Wang D.B. Liang Y.M. Evaluation of estrogen in endometriosis patients: Regulation of GATA‐3 in endometrial cells and effects on Th2 cytokines. J. Obstet. Gynaecol. Res. 2016 42 6 669 677 10.1111/jog.12957 26890586
    [Google Scholar]
  63. Parente Barbosa C. Bentes De Souza A.M. Bianco B. Christofolini D.M. The effect of hormones on endometriosis development. Minerva Ginecol. 2011 63 4 375 386 21747346
    [Google Scholar]
  64. Joshi N.R. Miyadahira E.H. Afshar Y. Progesterone resistance in endometriosis is modulated by the altered expression of microRNA-29c and FKBP4. J. Clin. Endocrinol. Metab. 2017 102 1 141 149 27778641
    [Google Scholar]
  65. Robin B. Planeix F. Sastre-Garau X. Follicle-stimulating hormone receptor expression in endometriotic lesions and the associated vasculature: an immunohistochemical study. Reprod. Sci. 2016 23 7 885 891 10.1177/1933719115623647 26704526
    [Google Scholar]
  66. Gałczyński K. Jóźwik M. Lewkowicz D. Semczuk-Sikora A. Semczuk A. Ovarian endometrioma – a possible finding in adolescent girls and young women: a mini-review. J. Ovarian Res. 2019 12 1 104 10.1186/s13048‑019‑0582‑5 31699129
    [Google Scholar]
  67. Li Y. Hung S.W. Zhang R. Melatonin in endometriosis: mechanistic understanding and clinical insight. Nutrients 2022 14 19 4087 10.3390/nu14194087 36235740
    [Google Scholar]
  68. Mosher A.A. Tsoulis M.W. Lim J. Melatonin activity and receptor expression in endometrial tissue and endometriosis. Hum. Reprod. 2019 34 7 1215 1224 10.1093/humrep/dez082 31211323
    [Google Scholar]
  69. Schwertner A. Conceição dos Santos C.C. Costa G.D. Efficacy of melatonin in the treatment of endometriosis: A phase II, randomized, double-blind, placebo-controlled trial. Pain 2013 154 6 874 881 10.1016/j.pain.2013.02.025 23602498
    [Google Scholar]
  70. Peyneau M. Kavian N. Chouzenoux S. Role of thyroid dysimmunity and thyroid hormones in endometriosis. Proc. Natl. Acad. Sci. USA 2019 116 24 11894 11899 10.1073/pnas.1820469116 31142643
    [Google Scholar]
  71. Sturlese E. Salmeri F.M. Retto G. Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J. Reprod. Immunol. 2011 92 1-2 74 81 10.1016/j.jri.2011.08.005 21978769
    [Google Scholar]
  72. Wood D.H. Levison D.A. Atrophy and apoptosis in the cyclical human endometrium. J. Pathol. 1976 119 3 159 166 10.1002/path.1711190305 956955
    [Google Scholar]
  73. Delbandi A.A. Mahmoudi M. Shervin A. Heidari S. Kolahdouz-Mohammadi R. Zarnani A.H. Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls. BMC Womens Health 2020 20 1 3 10.1186/s12905‑019‑0865‑4 31906916
    [Google Scholar]
  74. Zakiyah M. Asmarinah A. Mechanism of Immune System Dysfunction, Apoptosis and Oxidative Stress on Endometriosis. Journal of Biomedicine and Translational Research 2023 9 2 88 95 10.14710/jbtr.v9i2.16885
    [Google Scholar]
  75. Bora G. Yaba A. The role of mitogen-activated protein kinase signaling pathway in endometriosis. J. Obstet. Gynaecol. Res. 2021 47 5 1610 1623 10.1111/jog.14710 33590617
    [Google Scholar]
  76. Taniguchi F. Kaponis A. Izawa M. Apoptosis and endometriosis. Front. Biosci. (Elite Ed.) 2011 E3 2 648 662 10.2741/e277 21196342
    [Google Scholar]
  77. Garcia-Velasco J.A. Mulayim N. Kayisli U.A. Arici A. Elevated soluble Fas ligand levels may suggest a role for apoptosis in women with endometriosis. Fertil. Steril. 2002 78 4 855 859 10.1016/S0015‑0282(02)03320‑4 12372468
    [Google Scholar]
  78. Selam B. Kayisli U.A. Garcia-Velasco J.A. Akbas G.E. Arici A. Regulation of fas ligand expression by IL-8 in human endometrium. J. Clin. Endocrinol. Metab. 2002 87 8 3921 3927 10.1210/jcem.87.8.8713 12161534
    [Google Scholar]
  79. Huan Q. Cheng S.C. Du Z.H. Ma H.F. Li C. LncRNA AFAP1-AS1 regulates proliferation and apoptosis of endometriosis through activating STAT3/TGF-β/Smad signaling via miR -424-5p. J. Obstet. Gynaecol. Res. 2021 47 7 2394 2405 10.1111/jog.14801 33949053
    [Google Scholar]
  80. Arimoto T. Katagiri T. Oda K. Genome-wide cDNA microarray analysis of gene-expression profiles involved in ovarian endometriosis. Int. J. Oncol. 2003 22 3 551 560 12579308
    [Google Scholar]
  81. Braun D.P. Ding J. Shaheen F. Willey J.C. Rana N. Dmowski W.P. Quantitative expression of apoptosis-regulating genes in endometrium from women with and without endometriosis. Fertil. Steril. 2007 87 2 263 268 10.1016/j.fertnstert.2006.06.026 17094974
    [Google Scholar]
  82. Chung M.S. Han S.J. Endometriosis-associated angiogenesis and anti-angiogenic therapy for endometriosis. Front Glob Womens Health 2022 3 856316 10.3389/fgwh.2022.856316 35449709
    [Google Scholar]
  83. Sarsenova M. Boggavarapu N.R. Kask K. Hypoxic conditions affect transcriptome of endometrial stromal cells in endometriosis and promote TGFBI axis. Front. Endocrinol. (Lausanne) 2024 15 1465393 10.3389/fendo.2024.1465393 39744178
    [Google Scholar]
  84. Bo C. Wang Y. Angiogenesis signaling in endometriosis: Molecules, diagnosis and treatment (Review). Mol. Med. Rep. 2024 29 3 43 10.3892/mmr.2024.13167 38240108
    [Google Scholar]
  85. Zhang Z. Wang J. Chen Y. Activin a promotes myofibroblast differentiation of endometrial mesenchymal stem cells via STAT3-dependent Smad/CTGF pathway. Cell Commun. Signal. 2019 17 1 45 10.1186/s12964‑019‑0361‑3 31101053
    [Google Scholar]
  86. Groothuis P.G. Nap A.W. Winterhager E. Grümmer R. Vascular development in endometriosis. Angiogenesis 2005 8 2 147 156 10.1007/s10456‑005‑9005‑x 16211360
    [Google Scholar]
  87. Oală I.E. Mitranovici M.I. Chiorean D.M. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics (Basel) 2024 14 3 312 10.3390/diagnostics14030312 38337827
    [Google Scholar]
  88. Ono Y. Yoshino O. Hiraoka T. CD206+ macrophage is an accelerator of endometriotic-like lesion via promoting angiogenesis in the endometriosis mouse model. Sci. Rep. 2021 11 1 853 10.1038/s41598‑020‑79578‑3 33441630
    [Google Scholar]
  89. Chopyak V.V. Koval H. Havrylyuk A. Lishchuk-Yakymovych K. Potomkina H. Kurpisz M.K. Immunopathogenesis of endometriosis – a novel look at an old problem. Cent. Eur. J. Immunol. 2022 47 1 109 116 10.5114/ceji.2022.113830 35600152
    [Google Scholar]
  90. Ahn S.H. Edwards A.K. Singh S.S. Young S.L. Lessey B.A. Tayade C. IL-17A contributes to the pathogenesis of endometriosis by triggering proinflammatory cytokines and angiogenic growth factors. J. Immunol. 2015 195 6 2591 2600 10.4049/jimmunol.1501138 26259585
    [Google Scholar]
  91. Didziokaite G. Biliute G. Gudaite J. Kvedariene V. Oxidative Stress as a Potential Underlying Cause of Minimal and Mild Endometriosis-Related Infertility. Int. J. Mol. Sci. 2023 24 4 3809 10.3390/ijms24043809 36835217
    [Google Scholar]
  92. Lu J. Wang Z. Cao J. Chen Y. Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018 16 1 80 10.1186/s12958‑018‑0391‑5 30126412
    [Google Scholar]
  93. Hon J.X. Wahab N.A. Karim A.K.A. Mokhtar N.M. Mokhtar M.H. MicroRNAs in Endometriosis: Insights into inflammation and progesterone resistance. Int. J. Mol. Sci. 2023 24 19 15001 10.3390/ijms241915001 37834449
    [Google Scholar]
  94. Liu Y. Wang J. Zhang X. An update on the multifaceted role of NF-kappaB in endometriosis. Int. J. Biol. Sci. 2022 18 11 4400 4413 10.7150/ijbs.72707 35864971
    [Google Scholar]
  95. Park J.K. Song M. Dominguez C.E. Glycodelin mediates the increase in vascular endothelial growth factor in response to oxidative stress in the endometrium. Am. J. Obstet. Gynecol. 2006 195 6 1772 1777 10.1016/j.ajog.2006.07.025 17132480
    [Google Scholar]
  96. Scutiero G. Iannone P. Bernardi G. Bonaccorsi G. Spadaro S. Volta C.A. Oxidative stress and endometriosis: A systematic review of the literature. Oxid. Med. Cell. Longev. 2017 2017 7265238 10.1155/2017/7265238 29057034
    [Google Scholar]
  97. Agarwal A. Aponte-Mellado A. Premkumar B.J. Shaman A. Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod. Biol. Endocrinol. 2012 10 1 49 10.1186/1477‑7827‑10‑49 22748101
    [Google Scholar]
  98. Mier-Cabrera J. Jiménez-Zamudio L. García-Latorre E. Cruz-Orozco O. Hernández-Guerrero C. Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG 2011 118 1 6 16 10.1111/j.1471‑0528.2010.02777.x 21083865
    [Google Scholar]
  99. Sharma I. Dhaliwal L.K. Saha S.C. Sangwan S. Dhawan V. Role of 8-iso-prostaglandin F2α and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 2010 94 1 63 70 10.1016/j.fertnstert.2009.01.141 19324352
    [Google Scholar]
  100. Santulli P. Chouzenoux S. Fiorese M. Protein oxidative stress markers in peritoneal fluids of women with deep infiltrating endometriosis are increased. Hum. Reprod. 2015 30 1 49 60 10.1093/humrep/deu290 25376454
    [Google Scholar]
  101. Polak G. Barczyński B. Kwaśniewski W. Bednarek W. Wertel I. Derewianka-Polak M. Low-density lipoproteins oxidation and endometriosis. Mediators Inflamm. 2013 2013 624540 10.1155/2013/624540 23861560
    [Google Scholar]
  102. Singh A.K. Chattopadhyay R. Chakravarty B. Chaudhury K. Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod. Toxicol. 2013 42 116 124 10.1016/j.reprotox.2013.08.005 23994512
    [Google Scholar]
  103. Verit F.F. Erel O. Celik N. Serum paraoxonase-1 activity in women with endometriosis and its relationship with the stage of the disease. Hum. Reprod. 2007 23 1 100 104 10.1093/humrep/dem340 18000171
    [Google Scholar]
  104. Baboo K.D. Chen Z.Y. Zhang X.M. Role of oxidative stress and antioxidant therapies in endometriosis. Reprod Dev Med 2019 3 3 170 176 10.4103/2096‑2924.268154
    [Google Scholar]
  105. Cacciottola L. Donnez J. Dolmans M.M. Can endometriosis-related oxidative stress pave the way for new treatment targets? Int. J. Mol. Sci. 2021 22 13 7138 10.3390/ijms22137138 34281188
    [Google Scholar]
  106. Prieto L. Quesada J.F. Cambero O. Analysis of follicular fluid and serum markers of oxidative stress in women with infertility related to endometriosis. Fertil. Steril. 2012 98 1 126 130 10.1016/j.fertnstert.2012.03.052 22578534
    [Google Scholar]
  107. Turkyilmaz E. Yildirim M. Cendek B.D. Evaluation of oxidative stress markers and intra-extracellular antioxidant activities in patients with endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016 199 164 168 10.1016/j.ejogrb.2016.02.027 26930044
    [Google Scholar]
  108. Kumari P. Khan S. Wani I.A. Unravelling the role of epigenetic modifications in development and reproduction of angiosperms: a critical appraisal. Front. Genet. 2022 13 819941 10.3389/fgene.2022.819941 35664328
    [Google Scholar]
  109. Bonavina G. Taylor H.S. Endometriosis-associated infertility: From pathophysiology to tailored treatment. Front. Endocrinol. (Lausanne) 2022 13 1020827 10.3389/fendo.2022.1020827 36387918
    [Google Scholar]
  110. Olkhov-Mitsel E. Bapat B. Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers. Cancer Med. 2012 1 2 237 260 10.1002/cam4.22 23342273
    [Google Scholar]
  111. Dyson M.T. Roqueiro D. Monsivais D. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet. 2014 10 3 e1004158 10.1371/journal.pgen.1004158 24603652
    [Google Scholar]
  112. Wang L. Zhao J. Li Y. Wang Z. Kang S. Genome-wide analysis of DNA methylation in endometriosis using Illumina Human Methylation 450 K BeadChips. Mol. Reprod. Dev. 2019 86 5 491 501 10.1002/mrd.23127 30740831
    [Google Scholar]
  113. Wu Y. Strawn E. Basir Z. Halverson G. Guo S.W. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis. Fertil. Steril. 2007 87 1 24 32 10.1016/j.fertnstert.2006.05.077 17081533
    [Google Scholar]
  114. Szczepańska M. Wirstlein P. Skrzypczak J. Jagodziński P.P. Expression of HOXA11 in the mid-luteal endometrium from women with endometriosis-associated infertility. Reprod. Biol. Endocrinol. 2012 10 1 1 8 10.1186/1477‑7827‑10‑1 22233680
    [Google Scholar]
  115. van Kaam K.J.A.F. Delvoux B. Romano A. D’Hooghe T. Dunselman G.A.J. Groothuis P.G. Deoxyribonucleic acid methyltransferases and methyl-CpG-binding domain proteins in human endometrium and endometriosis. Fertil. Steril. 2011 95 4 1421 1427 10.1016/j.fertnstert.2011.01.031 21316665
    [Google Scholar]
  116. Lazim N. Elias M.H. Sutaji Z. Expression of HOXA10 gene in women with endometriosis: a systematic review. Int. J. Mol. Sci. 2023 24 16 12869 10.3390/ijms241612869 37629050
    [Google Scholar]
  117. Zanatta A. Rocha A.M. Carvalho F.M. The role of the Hoxa10/HOXA10 gene in the etiology of endometriosis and its related infertility: a review. J. Assist. Reprod. Genet. 2010 27 12 701 710 10.1007/s10815‑010‑9471‑y 20821045
    [Google Scholar]
  118. Penna I.A. Du H. Kallen A.N. Taylor H.S. Endothelin type A receptor (ETA) expression is regulated by HOXA10 in human endometrial stromal cells. Reprod. Sci. 2010 17 5 471 476 10.1177/1933719110361961 20371740
    [Google Scholar]
  119. Szczepańska M. Wirstlein P. Łuczak M. Jagodziński P.P. Skrzypczak J. Reduced expression of HOXA10 in the midluteal endometrium from infertile women with minimal endometriosis. Biomed. Pharmacother. 2010 64 10 697 705 10.1016/j.biopha.2010.09.012 20971605
    [Google Scholar]
  120. Mirabutalebi S.H. Karami N. Montazeri F. The relationship between the expression levels of miR-135a and HOXA10 gene in the eutopic and ectopic endometrium. Int. J. Reprod. Biomed. (Yazd) 2018 16 8 501 506 10.29252/ijrm.16.8.501 30288484
    [Google Scholar]
  121. Patel B.G. Rudnicki M. Yu J. Shu Y. Taylor R.N. Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstet. Gynecol. Scand. 2017 96 6 623 632 10.1111/aogs.13156 28423456
    [Google Scholar]
  122. Elias M.H. Lazim N. Sutaji Z. HOXA10 DNA methylation level in the endometrium women with endometriosis: a systematic review. Biology (Basel) 2023 12 3 474 10.3390/biology12030474 36979165
    [Google Scholar]
  123. Jana S.K. Banerjee P. Mukherjee R. Chakravarty B. Chaudhury K. HOXA-11 mediated dysregulation of matrix remodeling during implantation window in women with endometriosis. J. Assist. Reprod. Genet. 2013 30 11 1505 1512 10.1007/s10815‑013‑0088‑9 23979130
    [Google Scholar]
  124. Ley K. Hoffman H.M. Kubes P. Neutrophils: New insights and open questions. Sci. Immunol. 2018 3 30 eaat4579 10.1126/sciimmunol.aat4579 30530726
    [Google Scholar]
  125. Kawano Y. Nasu K. Li H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: histone modifications as pathogenesis and novel therapeutic target. Hum. Reprod. 2011 26 9 2486 2498 10.1093/humrep/der203 21715447
    [Google Scholar]
  126. Samartzis E.P. Noske A. Samartzis N. Fink D. Imesch P. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod. Sci. 2013 20 12 1416 1422 10.1177/1933719113488450 23690335
    [Google Scholar]
  127. Colón-Díaz M. Báez-Vega P. García M. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod. Sci. 2012 19 5 483 492 10.1177/1933719111432870 22344732
    [Google Scholar]
  128. Xiaomeng X. Ming Z. Jiezhi M. Xiaoling F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch. Gynecol. Obstet. 2013 287 3 487 494 10.1007/s00404‑012‑2591‑0 23080547
    [Google Scholar]
  129. Kim T.H. Yoo J.Y. Choi K.C. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci. Transl. Med. 2019 11 474 eaaf7533 10.1126/scitranslmed.aaf7533 30626716
    [Google Scholar]
  130. Ranganathan K. Sivasankar V. MicroRNAs - Biology and clinical applications. J. Oral Maxillofac. Pathol. 2014 18 2 229 234 10.4103/0973‑029X.140762 25328304
    [Google Scholar]
  131. Li L. Guo X. Liu J. Chen B. Gao Z. Wang Q. The role of miR-27b-3p/HOXA10 axis in the pathogenesis of endometriosis. Ann. Palliat. Med. 2021 10 3 3162 3170 10.21037/apm‑21‑343 33849101
    [Google Scholar]
  132. Nematian S.E. Mamillapalli R. Kadakia T.S. Majidi Zolbin M. Moustafa S. Taylor H.S. Systemic inflammation induced by microRNAs: endometriosis-derived alterations in circulating microRNA 125b-5p and Let-7b-5p regulate macrophage cytokine production. J. Clin. Endocrinol. Metab. 2018 103 1 64 74 10.1210/jc.2017‑01199 29040578
    [Google Scholar]
  133. Lin S.C. Wang C.C. Wu M.H. Yang S.H. Li Y.H. Tsai S.J. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 2012 97 8 E1515 E1523 10.1210/jc.2012‑1450 22648654
    [Google Scholar]
  134. Liu T. Xiao L. Pei T. miR-297 inhibits expression of progesterone receptor and decidualization in eutopic endometria of endometriosis. J. Obstet. Gynaecol. Res. 2023 49 3 956 965 10.1111/jog.15526 36572643
    [Google Scholar]
  135. Li M. Peng J. Shi Y. Sun P. miR-92a promotes progesterone resistance in endometriosis through PTEN/AKT pathway. Life Sci. 2020 242 117190 10.1016/j.lfs.2019.117190 31863773
    [Google Scholar]
  136. Pei T. Liu C. Liu T. miR-194-3p represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Endocrinology 2018 159 7 2554 2562 10.1210/en.2018‑00374 29762665
    [Google Scholar]
  137. Petracco R. Grechukhina O. Popkhadze S. Massasa E. Zhou Y. Taylor H.S. MicroRNA 135 regulates HOXA10 expression in endometriosis. J. Clin. Endocrinol. Metab. 2011 96 12 E1925 E1933 10.1210/jc.2011‑1231 21956427
    [Google Scholar]
  138. Zhang Z. Li H. Zhao Z. Gao B. Meng L. Feng X. miR-146b level and variants is associated with endometriosis related macrophages phenotype and plays a pivotal role in the endometriotic pain symptom. Taiwan. J. Obstet. Gynecol. 2019 58 3 401 408 10.1016/j.tjog.2018.12.003 31122533
    [Google Scholar]
  139. Sahin C. Mamillapalli R. Yi K.W. Taylor H.S. micro RNA Let-7b: A Novel treatment for endometriosis. J. Cell. Mol. Med. 2018 22 11 5346 5353 10.1111/jcmm.13807 30063121
    [Google Scholar]
  140. Wu M. Zhang Y. MiR-182 inhibits proliferation, migration, invasion and inflammation of endometrial stromal cells through deactivation of NF-κB signaling pathway in endometriosis. Mol. Cell. Biochem. 2021 476 3 1575 1588 10.1007/s11010‑020‑03986‑2 33400022
    [Google Scholar]
  141. Gao S. Liu S. Gao Z.M. Deng P. Wang D.B. Reduced microRNA-451 expression in eutopic endometrium contributes to the pathogenesis of endometriosis. World J. Clin. Cases 2019 7 16 2155 2164 10.12998/wjcc.v7.i16.2155 31531311
    [Google Scholar]
  142. Graham A. Falcone T. Nothnick W.B. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum. Reprod. 2015 30 3 642 652 10.1093/humrep/dev005 25637622
    [Google Scholar]
  143. Zhang A. Wang G. Jia L. Su T. Zhang L. Exosome-mediated microRNA-138 and vascular endothelial growth factor in endometriosis through inflammation and apoptosis via the nuclear factor-κB signaling pathway. Int. J. Mol. Med. 2019 43 1 358 370 30431056
    [Google Scholar]
  144. Antsiferova Y.S. Sotnikova N.Y. Bogatova I.K. Boitsova A.V. Changes of apoptosis regulation in the endometrium of infertile women with tubal factor and endometriosis undergoing in vitro fertilization treatment. JBRA Assist. Reprod. 2014 18 1 2 6 10.5935/1518‑0557.20140084 35761716
    [Google Scholar]
  145. Burney R.O. Hamilton A.E. Aghajanova L. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol. Hum. Reprod. 2009 15 10 625 631 10.1093/molehr/gap068 19692421
    [Google Scholar]
  146. Hirakawa T. Nasu K. Abe W. miR-503, a microRNA epigenetically repressed in endometriosis, induces apoptosis and cell-cycle arrest and inhibits cell proliferation, angiogenesis, and contractility of human ovarian endometriotic stromal cells. Hum. Reprod. 2016 31 11 2587 2597 10.1093/humrep/dew217 27619772
    [Google Scholar]
  147. Hsu C.Y. Hsieh T.H. Tsai C.F. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J. Pathol. 2014 232 3 330 343 10.1002/path.4295 24155090
    [Google Scholar]
  148. Ma L. Li Z. Li W. Ai J. Chen X. MicroRNA-142-3p suppresses endometriosis by regulating KLF9-mediated autophagy in vitro and in vivo. RNA Biol. 2019 16 12 1733 1748 10.1080/15476286.2019.1657352 31425004
    [Google Scholar]
  149. Liu Y. Chen J. Zhu X. Tang L. Luo X. Shi Y. Role of miR 449b 3p in endometriosis via effects on endometrial stromal cell proliferation and angiogenesis. Mol. Med. Rep. 2018 18 3 3359 3365 10.3892/mmr.2018.9341 30066926
    [Google Scholar]
  150. Jia S. Yang Y. Lang J. Sun P. Leng J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum. Reprod. 2013 28 2 322 330 10.1093/humrep/des413 23203215
    [Google Scholar]
  151. Signorile P.G. Severino A. Santoro M. Spyrou M. Viceconte R. Baldi A. Methylation analysis of HOXA10 regulatory nlms in patients with endometriosis. BMC Res. Notes 2018 11 1 722 10.1186/s13104‑018‑3836‑1 30309386
    [Google Scholar]
  152. Andersson K.L. Bussani C. Fambrini M. DNA methylation of HOXA10 in eutopic and ectopic endometrium. Hum. Reprod. 2014 29 9 1906 1911 10.1093/humrep/deu161 24963168
    [Google Scholar]
  153. Wu Y. Starzinski-Powitz A. Guo S.W. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod. Sci. 2007 14 4 374 382 10.1177/1933719107302913 17644810
    [Google Scholar]
  154. Wu Y. Strawn E. Basir Z. Halverson G. Guo S.W. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 2006 1 2 106 111 10.4161/epi.1.2.2766 17965625
    [Google Scholar]
  155. Wang D. Chen Q. Zhang C. Ren F. Li T. DNA hypomethylation of the COX-2 gene promoter is associated with up-regulation of its mRNA expression in eutopic endometrium of endometriosis. Eur. J. Med. Res. 2012 17 1 12 10.1186/2047‑783X‑17‑12 22608095
    [Google Scholar]
  156. Izawa M. Taniguchi F. Harada T. GATA6 expression promoted by an active enhancer may become a molecular marker in endometriosis lesions. Am. J. Reprod. Immunol. 2019 81 2 e13078 10.1111/aji.13078 30589192
    [Google Scholar]
  157. Zhou H. Li J. Podratz K. Hypomethylation and activation of syncytin-1 gene in endometriotic tissue. Curr. Pharm. Des. 2014 20 11 1786 1795 10.2174/13816128113199990540 23888948
    [Google Scholar]
  158. Izawa M. Taniguchi F. Uegaki T. Demethylation of a nonpromoter cytosine-phosphate-guanine island in the aromatase gene may cause the aberrant up-regulation in endometriotic tissues. Fertil. Steril. 2011 95 1 33 39 10.1016/j.fertnstert.2010.06.024 20655525
    [Google Scholar]
  159. Hsiao K.Y. Wu M.H. Tsai S.J. Epigenetic regulation of the pathological process in endometriosis. Reprod. Med. Biol. 2017 16 4 314 319 10.1002/rmb2.12047 29259483
    [Google Scholar]
  160. Wu M.Y. Ho H.N. The role of cytokines in endometriosis. Am. J. Reprod. Immunol. 2003 49 5 285 296 10.1034/j.1600‑0897.2003.01207.x 12854733
    [Google Scholar]
  161. McKinnon B.D. Bertschi D. Bersinger N.A. Mueller M.D. Inflammation and nerve fiber interaction in endometriotic pain. Trends Endocrinol. Metab. 2015 26 1 1 10 10.1016/j.tem.2014.10.003 25465987
    [Google Scholar]
  162. Sikora J. Mielczarek-Palacz A. Kondera-Anasz Z. Association of the precursor of interleukin‐1β and peritoneal inflammation—role in pathogenesis of endometriosis. J. Clin. Lab. Anal. 2016 30 6 831 837 10.1002/jcla.21944 27018977
    [Google Scholar]
  163. Bersinger N.A. Günthert A.R. McKinnon B. Johann S. Mueller M.D. Dose–response effect of interleukin (IL)-1β, tumour necrosis factor (TNF)-α, and interferon-γ on the in vitro production of epithelial neutrophil activating peptide-78 (ENA-78), IL-8, and IL-6 by human endometrial stromal cells. Arch. Gynecol. Obstet. 2011 283 6 1291 1296 10.1007/s00404‑010‑1520‑3 20505949
    [Google Scholar]
  164. Gao Y. Luo L. He F. Effect of IL-1 β and TNF-α on the expression of monocyte chemotactic protein-1 in endometriotic cells. J. Tongji Med. Univ. 1999 19 3 212 214 12840897
    [Google Scholar]
  165. Peng B. Alotaibi F.T. Sediqi S. Bedaiwy M.A. Yong P.J. Role of interleukin-1β in nerve growth factor expression, neurogenesis and deep dyspareunia in endometriosis. Hum. Reprod. 2020 35 4 901 912 10.1093/humrep/deaa017 32240297
    [Google Scholar]
  166. Kato T. Yasuda K. Matsushita K. Interleukin-1/-33 signaling pathways as therapeutic targets for endometriosis. Front. Immunol. 2019 10 2021 10.3389/fimmu.2019.02021 31507610
    [Google Scholar]
  167. Kyama C.M. Overbergh L. Mihalyi A. Endometrial and peritoneal expression of aromatase, cytokines, and adhesion factors in women with endometriosis. Fertil. Steril. 2008 89 2 301 310 10.1016/j.fertnstert.2007.02.057 17678915
    [Google Scholar]
  168. Sillem M. Prifti S. Koch A. Neher M. Jauckus J. Runnebaum B. Regulation of matrix metalloproteinases and their inhibitors in uterine endometrial cells of patients with and without endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001 95 2 167 174 10.1016/S0301‑2115(00)00415‑2 11301163
    [Google Scholar]
  169. Urata Y. Koga K. Hirota Y. IL-1β increases expression of tryptophan 2,3-dioxygenase and stimulates tryptophan catabolism in endometrioma stromal cells. Am. J. Reprod. Immunol. 2014 72 5 496 503 10.1111/aji.12282 24974860
    [Google Scholar]
  170. Nasu K. Sugano T. Matsui N. Narahara H. Kawano Y. Miyakawa I. Expression of hepatocyte growth factor in cultured human endometrial stromal cells is induced through a protein kinase C-dependent pathway. Biol. Reprod. 1999 60 5 1183 1187 10.1095/biolreprod60.5.1183 10208981
    [Google Scholar]
  171. Huang F. Cao J. Liu Q. Zou Y. Li H. Yin T. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro. Int. J. Clin. Exp. Pathol. 2013 6 10 2129 2136 24133591
    [Google Scholar]
  172. Peng Y. Ma J. Lin J. Activation of the CXCL16/CXCR6 Axis by TNF-α contributes to ectopic endometrial stromal cells migration and invasion. Reprod. Sci. 2019 26 3 420 427 10.1177/1933719118776797 29779473
    [Google Scholar]
  173. Wang D. Zhang B. Liu X. Kan L.L.Y. Leung P.C. Wong C.K. Agree to disagree: The contradiction between IL-18 and IL-37 reveals shared targets in cancer. Pharmacol. Res. 2024 200 107072 10.1016/j.phrs.2024.107072 38242220
    [Google Scholar]
  174. Jiang J. Yu K. Jiang Z. Xue M. IL-37 affects the occurrence and development of endometriosis by regulating the biological behavior of endometrial stromal cells through multiple signaling pathways. Biol. Chem. 2018 399 11 1325 1337 10.1515/hsz‑2018‑0254 29924731
    [Google Scholar]
  175. Grund E.M. Kagan D. Tran C.A. Tumor necrosis factor-α regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol. Pharmacol. 2008 73 5 1394 1404 10.1124/mol.107.042176 18252806
    [Google Scholar]
  176. Akoum A. Lemay A. Paradis I. Rheault N. Maheux R. Endometriosis: Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum. Reprod. 1996 11 10 2269 2275 10.1093/oxfordjournals.humrep.a019088 8943541
    [Google Scholar]
  177. Yagyu T. Kobayashi H. Matsuzaki H. Thalidomide inhibits tumor necrosis factor-α-induced interleukin-8 expression in endometriotic stromal cells, possibly through suppression of nuclear factor-kappaB activation. J. Clin. Endocrinol. Metab. 2005 90 5 3017 3021 10.1210/jc.2004‑1946 15687330
    [Google Scholar]
  178. Mita S. Shimizu Y. Sato A. Notsu T. Imada K. Kyo S. Dienogest inhibits nerve growth factor expression induced by tumor necrosis factor-α or interleukin-1β. Fertil. Steril. 2014 101 2 595 601 10.1016/j.fertnstert.2013.10.038 24289989
    [Google Scholar]
  179. Wu Y. Wu X. Expression of PROK 1 and its receptor PROKR 1 in endometriosis and its clinical significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2019 44 6 621 627 10.11817/j.issn.1672‑7347.2019.06.003 31304922
    [Google Scholar]
  180. Iwabe T. Harada T. Tsudo T. Tumor necrosis factor-α promotes proliferation of endometriotic stromal cells by inducing interleukin-8 gene and protein expression. J. Clin. Endocrinol. Metab. 2000 85 2 824 829 10690897
    [Google Scholar]
  181. Luddi A. Marrocco C. Governini L. Expression of matrix metalloproteinases and their inhibitors in endometrium: high levels in endometriotic lesions. Int. J. Mol. Sci. 2020 21 8 2840 10.3390/ijms21082840 32325785
    [Google Scholar]
  182. Gottschal C. Malberg K. Arndt M. Matrix metalloproteinases and TACE play a role in the pathogenesis of endometriosis. Adv. Exp. Med. Biol. 2002 477 483 486 10.1007/0‑306‑46826‑3_49
    [Google Scholar]
  183. Björk E. Vinnars M.T. Nagaev I. Enhanced local and systemic inflammatory cytokine mRNA expression in women with endometriosis evokes compensatory adaptive regulatory mRNA response that mediates immune suppression and impairs cytotoxicity. Am. J. Reprod. Immunol. 2020 84 4 e13298 10.1111/aji.13298 32623813
    [Google Scholar]
  184. Qiu X.M. Lai Z.Z. Ha S.Y. IL-2 and IL-27 synergistically promote growth and invasion of endometriotic stromal cells by maintaining the balance of IFN-γ and IL-10 in endometriosis. Reproduction 2020 159 3 251 260 10.1530/REP‑19‑0411 31869309
    [Google Scholar]
  185. Piva M. Horowitz G.M. Sharpe-Timms K.L. Interleukin-6 differentially stimulates haptoglobin production by peritoneal and endometriotic cells in vitro: A model for endometrial-peritoneal interaction in endometriosis. J. Clin. Endocrinol. Metab. 2001 86 6 2553 2561 10.1210/jc.86.6.2553 11397854
    [Google Scholar]
  186. Huang Y. Zeng C. Wu P.L. Vascular endothelial growth factor is up-regulated by leukemia inhibitory factor and interleukin-6 in human endometriotic stromal cells Zhonghua Fu Chan Ke Za Zhi 2019 54 5 324 329 31154714
    [Google Scholar]
  187. Song Y. Su R.W. Joshi N.R. Interleukin-6 (IL-6) activates the NOTCH1 signaling pathway through E-proteins in endometriotic lesions. J. Clin. Endocrinol. Metab. 2020 105 5 1316 1326 10.1210/clinem/dgaa096 32119078
    [Google Scholar]
  188. Kang Y.J. Jeung I.C. Park A. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum. Reprod. 2014 29 10 2176 2189 10.1093/humrep/deu172 25035432
    [Google Scholar]
  189. Khan K.N. Masuzaki H. Fujishita A. Interleukin-6- and tumour necrosis factor α-mediated expression of hepatocyte growth factor by stromal cells and its involvement in the growth of endometriosis. Hum. Reprod. 2005 20 10 2715 2723 10.1093/humrep/dei156 16006475
    [Google Scholar]
  190. Barcz E. Skopinska Rózewska E. Kaminski P. Demkow U. Bobrowska K. Marianowski L. Angiogenic activity and IL-8 concentrations in peritoneal fluid and sera in endometriosis. Int. J. Gynaecol. Obstet. 2002 79 3 229 235 10.1016/S0020‑7292(02)00308‑9 12445988
    [Google Scholar]
  191. Sikora J. Smycz-Kubańska M. Mielczarek-Palacz A. Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation—The role of IL-8 in pathogenesis of endometriosis. Am. J. Reprod. Immunol. 2017 77 4 e12622 10.1111/aji.12622 28120482
    [Google Scholar]
  192. Gazvani R. Smith L. Fowler P.A. Effect of interleukin-8 (IL-8), anti-IL-8, and IL-12 on endometrial cell survival in combined endometrial gland and stromal cell cultures derived from women with and without endometriosis. Fertil. Steril. 2002 77 1 62 67 10.1016/S0015‑0282(01)02954‑5 11779592
    [Google Scholar]
  193. Garcia-Velasco J.A. Arici A. Interleukin-8 stimulates the adhesion of endometrial stromal cells to fibronectin. Fertil. Steril. 1999 72 2 336 340 10.1016/S0015‑0282(99)00223‑X 10439007
    [Google Scholar]
  194. Arici A. Tazuke S.I. Attar E. Kliman H.J. Olive D.L. Interleukin-8 concentration in peritoneal fluid of patients with endometriosis and modulation of interleukin-8 expression in human mesothelial cells. Mol. Hum. Reprod. 1996 2 1 40 45 10.1093/molehr/2.1.40 9238656
    [Google Scholar]
  195. Mulayim N Savlu A Guzeloglu-Kayisli O Kayisli UA Arici A Regulation of endometrial stromal cell matrix metalloproteinase activity and invasiveness by interleukin-8. Fertil Steril 2004 81 904 11.(Suppl. 1) 10.1016/j.fertnstert.2003.11.015 15019828
    [Google Scholar]
  196. Zhang X. Xu H. Lin J. Qian Y. Deng L. Peritoneal fluid concentrations of interleukin-17 correlate with the severity of endometriosis and infertility of this disorder. BJOG 2005 112 8 1153 1155 10.1111/j.1471‑0528.2005.00639.x 16045534
    [Google Scholar]
  197. Miller J.E. Ahn S.H. Marks R.M. IL-17A modulates peritoneal macrophage recruitment and M2 polarization in endometriosis. Front. Immunol. 2020 11 108 10.3389/fimmu.2020.00108 32117261
    [Google Scholar]
  198. Hirata T. Osuga Y. Takamura M. Recruitment of CCR6-expressing Th17 cells by CCL 20 secreted from IL-1 β-, TNF-α-, and IL-17A-stimulated endometriotic stromal cells. Endocrinology 2010 151 11 5468 5476 10.1210/en.2010‑0398 20881253
    [Google Scholar]
  199. Hirata T. Osuga Y. Hamasaki K. Interleukin (IL)-17A stimulates IL-8 secretion, cyclooxygensase-2 expression, and cell proliferation of endometriotic stromal cells. Endocrinology 2008 149 3 1260 1267 10.1210/en.2007‑0749 18079209
    [Google Scholar]
  200. Takamura M Osuga Y Izumi G Yoshino O Koga K Saito A. Interleukin-17A is present in neutrophils in endometrioma and stimulates the secretion of growth-regulated oncogene-α (Gro-α) from endometrioma stromal cells Fertil Steril 2012 98 5 1218 1224.e1-2 10.1016/j.fertnstert.2012.07.1117 22902060
    [Google Scholar]
  201. Yoo J-Y. Jeong J-W. Fazleabas A.T. Tayade C. Young S.L. Lessey B.A. Protein Inhibitor of Activated STAT3 (PIAS3) Is Down-Regulated in Eutopic Endometrium of Women with Endometriosis. Biol. Reprod. 2016 95 1 11 10.1095/biolreprod.115.137158 27226311
    [Google Scholar]
  202. OuYang Z. Hirota Y. Osuga Y. Interleukin-4 stimulates proliferation of endometriotic stromal cells. Am. J. Pathol. 2008 173 2 463 469 10.2353/ajpath.2008.071044 18599603
    [Google Scholar]
  203. Urata Y. Osuga Y. Akiyama I. Interleukin-4 and prostaglandin E2 synergistically up-regulate 3β-hydroxysteroid dehydrogenase type 2 in endometrioma stromal cells. J. Clin. Endocrinol. Metab. 2013 98 4 1583 1590 10.1210/jc.2012‑3475 23450050
    [Google Scholar]
  204. OuYang Z. Osuga Y. Hirota Y. Interleukin-4 induces expression of eotaxin in endometriotic stromal cells. Fertil. Steril. 2010 94 1 58 62 10.1016/j.fertnstert.2009.01.129 19338989
    [Google Scholar]
  205. Urata Y. Osuga Y. Izumi G. Interleukin-1β stimulates the secretion of thymic stromal lymphopoietin (TSLP) from endometrioma stromal cells: possible involvement of TSLP in endometriosis. Hum. Reprod. 2012 27 10 3028 3035 10.1093/humrep/des291 22888172
    [Google Scholar]
  206. Tagashira Y. Taniguchi F. Harada T. Ikeda A. Watanabe A. Terakawa N. Interleukin-10 attenuates TNF-α–induced interleukin-6 production in endometriotic stromal cells. Fertil. Steril. 2009 91 5 2185 2192.(Suppl.) 10.1016/j.fertnstert.2008.04.052 18684450
    [Google Scholar]
  207. Suen J.L. Chang Y. Shiu Y.S. IL-10 from plasmacytoid dendritic cells promotes angiogenesis in the early stage of endometriosis. J. Pathol. 2019 249 4 485 497 10.1002/path.5339 31418859
    [Google Scholar]
  208. Suen J.L. Chang Y. Chiu P.R. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am. J. Pathol. 2014 184 2 464 471 10.1016/j.ajpath.2013.10.023 24326257
    [Google Scholar]
  209. Chang K-K. Liu L-B. Jin L-P. Zhang B. Mei J. Li H. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 2017 8 3 e2666 10.1038/cddis.2017.95 28300844
    [Google Scholar]
  210. Yang H.L. Zhou W.J. Chang K.K. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction 2017 154 6 815 825 10.1530/REP‑17‑0342 28971893
    [Google Scholar]
  211. Lee K.S. Baek D.W. Kim K.H. IL-10-dependent down-regulation of MHC class II expression level on monocytes by peritoneal fluid from endometriosis patients. Int. Immunopharmacol. 2005 5 12 1699 1712 10.1016/j.intimp.2005.05.004 16102520
    [Google Scholar]
  212. Guo S.W. Du Y. Liu X. Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum. Reprod. 2016 31 7 1462 1474 10.1093/humrep/dew057 27130956
    [Google Scholar]
  213. Szóstek-Mioduchowska A. Słowińska M. Pacewicz J. Skarzynski D.J. Okuda K. Matrix metallopeptidase expression and modulation by transforming growth factor-β1 in equine endometrosis. Sci. Rep. 2020 10 1 1119 10.1038/s41598‑020‑58109‑0 31980722
    [Google Scholar]
  214. Li M-Q. Wang Y. Chang K-K. Meng Y-H. Liu L. Mei J. CD4+Foxp3+ regulatory T cell differentiation mediated by endometrial stromal cell-derived TECK promotes the growth and invasion of endometriotic lesions. Cell Death Dis. 2014 5 10 e1436 10.1038/cddis.2014.414 25275597
    [Google Scholar]
  215. Soni U.K. Chadchan S.B. Kumar V. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness. Biol. Reprod. 2019 100 4 917 938 10.1093/biolre/ioy242 30423016
    [Google Scholar]
  216. Liu Z. Yi L. Du M. Gong G. Zhu Y. Overexpression of TGF β enhances the migration and invasive ability of ectopic endometrial cells via ERK/MAPK signaling pathway. Exp. Ther. Med. 2019 17 6 4457 4464 10.3892/etm.2019.7522 31105783
    [Google Scholar]
  217. Au H.K. Chang J.H. Wu Y.C. TGF-βI regulates cell migration through pluripotent transcription factor OCT4 in endometriosis. PLoS One 2015 10 12 e0145256 10.1371/journal.pone.0145256 26675296
    [Google Scholar]
  218. Vigano P. Candiani M. Monno A. Giacomini E. Vercellini P. Somigliana E. Time to redefine endometriosis including its pro-fibrotic nature. Hum. Reprod. 2018 33 3 347 352 10.1093/humrep/dex354 29206943
    [Google Scholar]
  219. Johnson M.C. Torres M. Alves A. Augmented cell survival in eutopic endometrium from women with endometriosis: Expression of c-myc, TGF-beta1 and bax genes. Reprod. Biol. Endocrinol. 2005 3 1 45 10.1186/1477‑7827‑3‑45 16150151
    [Google Scholar]
  220. Young V.J. Brown J.K. Maybin J. Saunders P.T.K. Duncan W.C. Horne A.W. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis. J. Clin. Endocrinol. Metab. 2014 99 9 3450 3459 10.1210/jc.2014‑1026 24796928
    [Google Scholar]
  221. Saito A. Osuga Y. Yoshino O. TGF- 1 induces proteinase-activated receptor 2 (PAR2) expression in endometriotic stromal cells and stimulates PAR2 activation-induced secretion of IL-6. Hum. Reprod. 2011 26 7 1892 1898 10.1093/humrep/der125 21546388
    [Google Scholar]
  222. Ghodsi M. Hojati V. Attaranzadeh A. Saifi B. Evaluation of IL-3, IL-5, and IL-6 concentration in the follicular fluid of women with endometriosis: A cross-sectional study. Int. J. Reprod. Biomed. (Yazd) 2022 20 3 213 220 10.18502/ijrm.v20i3.10713 35571503
    [Google Scholar]
  223. Tarumi Y. Mori T. Okimura H. Interleukin-9 produced by helper T cells stimulates interleukin-8 expression in endometriosis. Am. J. Reprod. Immunol. 2021 86 3 e13380 10.1111/aji.13380 33210782
    [Google Scholar]
  224. Miller J.E. Lingegowda H. Symons L.K. IL-33 activates group 2 innate lymphoid cell expansion and modulates endometriosis. JCI Insight 2021 6 23 e149699 10.1172/jci.insight.149699 34699382
    [Google Scholar]
  225. Bungum H.F. Nygaard U. Vestergaard C. Martensen P.M. Knudsen U.B. Increased IL-25 levels in the peritoneal fluid of patients with endometriosis. J. Reprod. Immunol. 2016 114 6 9 10.1016/j.jri.2016.01.003 26852387
    [Google Scholar]
  226. Heidari S. Kolahdouz-Mohammadi R. Khodaverdi S. Tajik N. Delbandi A.A. Expression levels of MCP-1, HGF, and IGF-1 in endometriotic patients compared with non-endometriotic controls. BMC Womens Health 2021 21 1 422 10.1186/s12905‑021‑01560‑6 34930225
    [Google Scholar]
  227. Soni U Jha R. SAT-197 Functional Cross-Talk Between MCP-1 and Integrin Linked Kinase Is Required for Endometriosis Disease Progression J Endocr Soc 2019 3 SAT-197.(Suppl. 1) 10.1210/js.2019‑SAT‑197
    [Google Scholar]
  228. Li M.Q. Luo X.Z. Meng Y.H. CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum. Reprod. 2012 27 7 2107 2116 10.1093/humrep/des132 22563025
    [Google Scholar]
  229. Ruiz A. Ruiz L. Colón-Caraballo M. Pharmacological blockage of the CXCR4-CXCL12 axis in endometriosis leads to contrasting effects in proliferation, migration, and invasion. Biol. Reprod. 2018 98 1 4 14 10.1093/biolre/iox152 29161347
    [Google Scholar]
  230. Weimar C.H.E. Macklon N.S. Post Uiterweer E.D. Brosens J.J. Gellersen B. The motile and invasive capacity of human endometrial stromal cells: implications for normal and impaired reproductive function. Hum. Reprod. Update 2013 19 5 542 557 10.1093/humupd/dmt025 23827985
    [Google Scholar]
  231. Woo J.H. Jang D.S. Choi J.H. Luteolin promotes apoptosis of endometriotic cells and inhibits the alternative activation of endometriosis-associated macrophages. Biomol. Ther. (Seoul) 2021 29 6 678 684 10.4062/biomolther.2021.045 34011694
    [Google Scholar]
  232. Borrelli G.M. Carvalho K.I. Kallas E.G. Mechsner S. Baracat E.C. Abrão M.S. Chemokines in the pathogenesis of endometriosis and infertility. J. Reprod. Immunol. 2013 98 1-2 1 9 10.1016/j.jri.2013.03.003 23622730
    [Google Scholar]
  233. Dungate B. Tucker D.R. Goodwin E. Yong P.J. Assessing the Utility of artificial intelligence in endometriosis: Promises and pitfalls. Womens Health (Lond. Engl.) 2024 20 17455057241248121 10.1177/17455057241248121 38686828
    [Google Scholar]
  234. Guerriero S. Pascual M. Ajossa S. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021 261 29 33 10.1016/j.ejogrb.2021.04.012 33873085
    [Google Scholar]
  235. Jiang H. Zhang X. Wu Y. Bioinformatics identification and validation of biomarkers and infiltrating immune cells in endometriosis. Front. Immunol. 2022 13 944683 10.3389/fimmu.2022.944683 36524127
    [Google Scholar]
  236. Yang M. Liu M. Chen Y. He S. Lin Y. Diagnostic efficacy of ultrasound combined with magnetic resonance imaging in diagnosis of deep pelvic endometriosis under deep learning. J. Supercomput. 2021 77 7 7598 7619 10.1007/s11227‑020‑03535‑0
    [Google Scholar]
  237. Zhang Y. Wang H. Butler D. To M-S. Avery J. Hull M.L. Distilling Missing Modality Knowledge from Ultrasound for Endometriosis Diagnosis with Magnetic Resonance Images. IEEE 20th International Symposium on Biomedical Imaging (ISBI). Cartagena, Colombia, 18-21 April 2023 pp 1 5
    [Google Scholar]
  238. Avery J.C. Deslandes A. Freger S.M. Noninvasive diagnostic imaging for endometriosis part 1: a systematic review of recent developments in ultrasound, combination imaging, and artificial intelligence. Fertil. Steril. 2024 121 2 164 188 10.1016/j.fertnstert.2023.12.008 38101562
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393552250908133211
Loading
/content/journals/cmm/10.2174/0115665240393552250908133211
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pathophysiology ; Endometriosis ; therapeutic targets ; dysregulation ; etiology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test