Skip to content
2000
image of Effect of Sema3F on VEGF in Primary Rat Hippocampal NeuronsIn vitro

Abstract

Introduction

This study aimed to explore the mechanism of semaphorin 3F- (Sema3F) induced hippocampal axonal growth cone collapse by studying the effect of Sema3F on vascular endothelial growth factor (VEGF) primary rat hippocampal neuron culture system.

Methods

Hippocampal neurons were taken from Wistar rats within 24 hours after birth for primary culture . On the third day, Sema3F was added to the experimental group, and fetal bovine serum at the same concentration was added to the control group. The cells were collected at 0, 5, 15, and 30 min. The expression of VEGF messenger ribonucleic acid (mRNA) in the hippocampal neurons was detected by real-time polymerase chain reaction (PCR), while VEGF expression was detected by Western blot. The level of VEGF expression in the hippocampal neuron culture medium was detected by enzyme-linked immunosorbent assay.

Results

The expression of both VEGF mRNA and VEGF protein in the rats’ hippocampal neurons decreased at different times. The VEGF concentration in the culture medium initially increased before decreasing over time.

Discussion

Sema3F is known to induce growth cone collapse in hippocampal neurons, and this study provides evidence that this effect may be mediated by downregulating VEGF expression and secretion. The initial increase in VEGF concentration in the culture medium could be a compensatory response to the collapse of growth cones, while the subsequent decrease suggests a sustained effect of Sema3F on VEGF regulation. The findings highlight the complex interplay between Sema3F and VEGF in neuronal development and repair. Future research should explore the underlying signaling pathways and potential therapeutic applications of these interactions.

Conclusion

Sema3F inhibited the synthesis of VEGF in hippocampal neurons at transcription and translation levels in a time-dependent manner. Sema3F may also affect the secretion level of VEGF, initially increasing its extracellular expression before decreasing it over time.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240393105250910123016
2025-09-26
2025-11-04
Loading full text...

Full text loading...

References

  1. Meng Z. Li F.L. Fang C. Yeoman B. Qiu Y. Wang Y. Cai X. Lin K.C. Yang D. Luo M. Fu V. Ma X. Diao Y. Giancotti F.G. Ren B. Engler A.J. Guan K.L. The Hippo pathway mediates Semaphorin signaling. Sci. Adv. 2022 8 21 eabl9806 10.1126/sciadv.abl9806 35613278
    [Google Scholar]
  2. Lyu S.I. Popp F.C. Simon A.G. Schultheis A.M. Zander T. Fretter C. Schröder W. Bruns C.J. Schmidt T. Quaas A. Knipper K. Copy-number-gain of telomerase reverse transcriptase (hTERT) is associated with an unfavorable prognosis in esophageal adenocarcinoma. Sci. Rep. 2023 13 1 17699 10.1038/s41598‑023‑44844‑7 37848472
    [Google Scholar]
  3. Meler-Claramonte C. Avilés-Jurado F.X. Vilaseca I. Terra X. Bragado P. Fuster G. León Vintró X. Camacho M. Semaphorin-3F/Neuropilin-2 transcriptional expression as a predictive biomarker of occult lymph node metastases in HNSCC. Cancers 2022 14 9 2259 10.3390/cancers14092259 35565388
    [Google Scholar]
  4. Vartak A. Goyal D. Kumar H. Role of Axon guidance molecules in ascending and descending paths in spinal cord regeneration. Neuroscience 2023 533 36 52 10.1016/j.neuroscience.2023.08.034 37704063
    [Google Scholar]
  5. Matos A.G.M. Silva G.E.B. Barbosa E.S. de Andrade M.S. Santos Lages J. Corrêa R.G.C.F. Oliveira A.G.C. Teixeira E.B. da Silva M.G.O.P. Fonseca S.S.S. Teixeira-Júnior A.A.L. Alves M.S. Alencar Junior A.M. Khayat A.S. Pinho J.D. What is the role of circRNAs in the pathogenesis of cervical cancer? A systematic literature review. Front. Genet. 2024 15 1287869 10.3389/fgene.2024.1287869 38859935
    [Google Scholar]
  6. Watterston C. Halabi R. McFarlane S. Childs S.J. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet. 2021 17 8 1009769 10.1371/journal.pgen.1009769 34424892
    [Google Scholar]
  7. Zheng Y. Zhou R. Cai J. Yang N. Wen Z. Zhang Z. Sun H. Huang G. Guan Y. Huang N. Shi M. Liao Y. Bin J. Liao W. Matrix stiffness triggers lipid metabolic cross-talk between tumor and stromal cells to mediate bevacizumab resistance in colorectal cancer liver metastases. Cancer Res. 2023 83 21 3577 3592 10.1158/0008‑5472.CAN‑23‑0025 37610655
    [Google Scholar]
  8. Tao M. Ma H. Fu X. Wang C. Li Y. Hu X. Lv R. Zhou G. Wang J. Liu R. Zhou M. Xu G. Wang Z. Qin X. Long Y. Huang Q. Chen M. Zhou Q. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front. Oncol. 2022 12 899927 10.3389/fonc.2022.899927 36119535
    [Google Scholar]
  9. Chen T. Li T. Wang J. Nanoscale Au@SiO 2 ‑drug/VEGF as an in vivo probe for osteosarcoma diagnosis and therapy. Oncol. Lett. 2021 22 5 766 10.3892/ol.2021.13027 34589145
    [Google Scholar]
  10. Koropouli E. Wang Q. Mejías R. Hand R. Wang T. Ginty D.D. Kolodkin A.L. Palmitoylation regulates neuropilin-2 localization and function in cortical neurons and conveys specificity to semaphorin signaling via palmitoyl acyltransferases. eLife 2023 12 83217 10.7554/eLife.83217 37010951
    [Google Scholar]
  11. Kang K. Wang D.P. Lv Q.L. Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J. Stroke Cerebrovasc. Dis. 2023 32 11 107367 10.1016/j.jstrokecerebrovasdis.2023.107367 37734181
    [Google Scholar]
  12. Li Q. Ma N. Li X. Yang C. Zhang W. Xiong J. Zhu L. Li J. Wen Q. Gao L. Yang C. Rao L. Gao L. Zhang X. Rao J. Reverse effect of Semaphorin-3F on rituximab resistance in diffuse large B-cell lymphoma via the Hippo pathway. Chin. Med. J. 2023 136 12 1448 1458 10.1097/CM9.0000000000002686 37114652
    [Google Scholar]
  13. Yang G. Qu X. Zhang J. Zhao W. Wang H. Sema3F downregulates p53 expression leading to axonal growth cone collapse in primary hippocampal neurons. Int. J. Clin. Exp. Pathol. 2012 5 7 634 641 22977659
    [Google Scholar]
  14. Erickson A.G. Motta A. Kastriti M.E. Edwards S. Coulpier F. Théoulle E. Murtazina A. Poverennaya I. Wies D. Ganofsky J. Canu G. Lallemend F. Topilko P. Hadjab S. Fried K. Ruhrberg C. Schwarz Q. Castellani V. Bonanomi D. Adameyko I. Motor innervation directs the correct development of the mouse sympathetic nervous system. Nat. Commun. 2024 15 1 7065 10.1038/s41467‑024‑51290‑0 39152112
    [Google Scholar]
  15. Huang Y. Ye K. He A. Wan S. Wu M. Hu D. Xu K. Wei P. Yin J. Dual-layer conduit containing VEGF-A – Transfected Schwann cells promotes peripheral nerve regeneration via angiogenesis. Acta Biomater. 2024 180 323 336 10.1016/j.actbio.2024.03.029 38561075
    [Google Scholar]
  16. Nguyen P.T. Dorman L.C. Pan S. Vainchtein I.D. Han R.T. Nakao-Inoue H. Taloma S.E. Barron J.J. Molofsky A.B. Kheirbek M.A. Molofsky A.V. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 2020 182 2 388 403.e15 10.1016/j.cell.2020.05.050 32615087
    [Google Scholar]
  17. Williamson M.R. Kwon W. Woo J. Ko Y. Maleki E. Yu K. Murali S. Sardar D. Deneen B. Learning-associated astrocyte ensembles regulate memory recall. Nature 2025 637 8045 478 486 10.1038/s41586‑024‑08170‑w 39506118
    [Google Scholar]
  18. Kang M.J. Ioannou S. Lougheide Q. Dittmar M. Hsu Y. Pastor-Soler N.M. The study of intercalated cells using ex vivo techniques: Primary cell culture, cell lines, kidney slices, and organoids. Am. J. Physiol. Cell Physiol. 2024 326 1 C229 C251 10.1152/ajpcell.00479.2022 37899748
    [Google Scholar]
  19. Schneider F. Metz I. Rust M.B. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res. Bull. 2023 192 21 35 10.1016/j.brainresbull.2022.10.019 36336143
    [Google Scholar]
  20. Seo J. Hwang H. Sohn H. Cho E. Jung S. Kim S. Um S.M. Kim J.Y. Kang M. Choi Y. Kim J.H. Kim M. Kim S.Y. Lee S.K. Ahnn J. Rhim H. Jo D.G. Kim E. Park M. Cyclin Y regulates spatial learning and memory flexibility through distinct control of the actin pathway. Mol. Psychiatry 2023 28 3 1351 1364 10.1038/s41380‑022‑01877‑0 36434054
    [Google Scholar]
  21. Nakanishi Y. Akinaga S. Osawa K. Suzuki N. Sugeno A. Kolattukudy P. Goshima Y. Ohshima T. Regulation of axon pruning of mossy fiber projection in hippocampus by CRMP2 and CRMP4. Dev. Neurobiol. 2022 82 1 138 146 10.1002/dneu.22865 34932871
    [Google Scholar]
  22. Bertoldi M.L. Zalosnik M.I. Fabio M.C. Aja S. Roth G.A. Ronnett G.V. Degano A.L. MeCP2 Deficiency disrupts kainate-induced presynaptic plasticity in the mossy fiber projections in the hippocampus. Front. Cell. Neurosci. 2019 13 286 10.3389/fncel.2019.00286 31333414
    [Google Scholar]
  23. Ribatti D. Guidolin D. Morphogenesis of vascular and neuronal networks and the relationships between their remodeling processes. Brain Res. Bull. 2022 186 62 69 10.1016/j.brainresbull.2022.05.015 35659566
    [Google Scholar]
  24. Han W. Jiang L. Song X. Li T. Chen H. Cheng L. VEGF modulates neurogenesis and microvascular remodeling in epileptogenesis after status epilepticus in immature rats. Front. Neurol. 2021 12 808568 10.3389/fneur.2021.808568 35002944
    [Google Scholar]
  25. Schlau M. Terheyden-Keighley D. Theis V. Mannherz H.G. Theiss C. VEGF triggers the activation of cofilin and the Arp2/3 complex within the growth cone. Int. J. Mol. Sci. 2018 19 2 384 10.3390/ijms19020384 29382077
    [Google Scholar]
  26. Peguera B. Segarra M. Acker-Palmer A. Neurovascular crosstalk coordinates the central nervous system development. Curr Opin Neurobiol 2018 69 2 202 213 10.1016/j.conb.2021.04.005 34077852
    [Google Scholar]
  27. Xu W. Zhang Z. Lu H. Wu Y. Liu J. Liu S. Yang W. Biocompatible polyurethane conduit grafted with vascular endothelial growth factor‐loaded hydrogel repairs the peripheral nerve defect in rats. Macromol. Biosci. 2022 22 3 2100397 10.1002/mabi.202100397 34863047
    [Google Scholar]
  28. Olbrich L. Foehring D. Happel P. Brand-Saberi B. Theiss C. Fast rearrangement of the neuronal growth cone’s actin cytoskeleton following VEGF stimulation. Histochem. Cell Biol. 2013 139 3 431 445 10.1007/s00418‑012‑1036‑y 23052841
    [Google Scholar]
  29. Xu T-T. Wang J.X. Ming R-R. Yang C. Fang L.C. Wang X.X. Hu Z.X. Chen W.H. Liu C.F. Lin N. Effect of Jianpi Huogu Formula on function damage of vascular endothelial cells induced by glucocorticoid. Zhongguo Zhongyao Zazhi 2022 47 6 1625 1631 10.19540/j.cnki.cjcmm.20211116.401 35347971
    [Google Scholar]
  30. Ghori A. Prinz V. Nieminen-Kehlä M. Bayerl S.H. Kremenetskaia I. Riecke J. Krechel H. Broggini T. Scherschinski L. Licht T. Keshet E. Vajkoczy P. Vascular endothelial growth factor augments the tolerance towards cerebral stroke by enhancing neurovascular repair mechanism. Transl. Stroke Res. 2022 13 5 774 791 10.1007/s12975‑022‑00991‑z 35175562
    [Google Scholar]
  31. Sato T. Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J. Cardiol. 2023 81 2 202 208 10.1016/j.jjcc.2022.09.002 36127212
    [Google Scholar]
  32. Sun Y. Cai N. Liu N. Celecoxib down-regulates the hypoxia-induced expression of HIF-1α and VEGF through the PI3K/AKT pathway in retinal pigment epithelial cells. Cell. Physiol. Biochem. 2017 44 4 1640 1650 10.1159/000485764 29216640
    [Google Scholar]
  33. Hung Y-H. Hou Y-C. Hsu S-H. Wang L.Y. Tsai Y.L. Shan Y.S. Su Y.Y. Hung W.C. Chen L.T. Pancreatic cancer cell-derived semaphorin 3A promotes neuron recruitment to accelerate tumor growth and dissemination. Am. J. Cancer Res. 2023 13 8 3417 3432 37693128
    [Google Scholar]
  34. Tran T.S. Rubio M.E. Clem R.L. Johnson D. Case L. Tessier-Lavigne M. Huganir R.L. Ginty D.D. Kolodkin A.L. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 2009 462 7276 1065 1069 10.1038/nature08628 20010807
    [Google Scholar]
  35. Gérald J. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Ontotarget 2012 3 9 921 939
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240393105250910123016
Loading
/content/journals/cmm/10.2174/0115665240393105250910123016
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: VEGF ; Sema3F ; primary culture ; neuron ; rat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test