Skip to content
2000
image of Exploring the Therapeutic Role of Pregnane X Receptor Activation in Acute Kidney Injury: Mechanisms and Clinical Implications

Abstract

Acute Kidney Injury (AKI) is a critical condition characterized by a rapid decline in kidney function, often resulting from ischemia-reperfusion, nephrotoxicity, or inflammation. Current treatments primarily rely on renal replacement therapies, which remain limited and controversial. The pregnane X receptor (PXR), a nuclear receptor involved in drug metabolism, immune regulation, and cellular homeostasis, has emerged as a promising target for AKI therapy. Preclinical studies suggest that PXR activation demonstrates protective effects in AKI through multiple mechanisms, including reducing inflammation, oxidative stress, and mitochondrial dysfunction. Specifically, PXR modulates nuclear factor-κB (NF-κB) signaling, supports mitochondrial function, regulates apoptosis, and enhances renal hemodynamics, thus mitigating AKI progression. Furthermore, PXR's role in the gut-liver-kidney axis strengthens intestinal barrier integrity and bile acid homeostasis, contributing to renal protection. Recent advances in research on the PXR agonists rifampicin and tanshinone IIA (TanIIA) highlight the potential of PXR-targeted therapies to mitigate nephrotoxicity and promote kidney recovery. This review provides a comprehensive analysis of PXR’s protective mechanisms in AKI, underscoring its therapeutic potential and paving the way for new treatment strategies.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240381768250607064429
2025-06-12
2025-09-06
Loading full text...

Full text loading...

References

  1. Kellum J.A. Romagnani P. Ashuntantang G. Ronco C. Zarbock A. Anders H.J. Acute kidney injury. Nat. Rev. Dis. Primers 2021 7 1 52 10.1038/s41572‑021‑00284‑z 34267223
    [Google Scholar]
  2. Bellomo R. Kellum J.A. Ronco C. Acute kidney injury. Lancet 2012 380 9843 756 766 10.1016/S0140‑6736(11)61454‑2 22617274
    [Google Scholar]
  3. Turgut F. Awad A. Abdel-Rahman E. Acute Kidney Injury: Medical Causes and Pathogenesis. J. Clin. Med. 2023 12 1 375 10.3390/jcm12010375 36615175
    [Google Scholar]
  4. Moore P.K. Hsu R.K. Liu K.D. Management of Acute Kidney Injury: Core Curriculum 2018. Am. J. Kidney Dis. 2018 72 1 136 148 10.1053/j.ajkd.2017.11.021 29478864
    [Google Scholar]
  5. Vijayan A. Tackling AKI: prevention, timing of dialysis and follow-up. Nat. Rev. Nephrol. 2021 17 2 87 88 10.1038/s41581‑020‑00390‑3 33335277
    [Google Scholar]
  6. Ronco C. Bellomo R. Kellum J.A. Acute kidney injury. Lancet 2019 394 10212 1949 1964 10.1016/S0140‑6736(19)32563‑2 31777389
    [Google Scholar]
  7. Romagnoli S. Clark W.R. Ricci Z. Ronco C. Renal replacement therapy for AKI: When? How much? When to stop? Baillieres. Best Pract. Res. Clin. Anaesthesiol. 2017 31 3 371 385 10.1016/j.bpa.2017.10.001 29248144
    [Google Scholar]
  8. Zhang B. Xie W. Krasowski M.D. PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics 2008 9 11 1695 1709 10.2217/14622416.9.11.1695 19018724
    [Google Scholar]
  9. Wallace B.D. Betts L. Talmage G. Pollet R.M. Holman N.S. Redinbo M.R. Structural and functional analysis of the human nuclear xenobiotic receptor PXR in complex with RXRα. J. Mol. Biol. 2013 425 14 2561 2577 10.1016/j.jmb.2013.04.012 23602807
    [Google Scholar]
  10. Gee R.R.F. Huber A.D. Chen T. Regulation of PXR in drug metabolism: chemical and structural perspectives. Expert Opin. Drug Metab. Toxicol. 2024 20 1-2 9 23 10.1080/17425255.2024.2309212 38251638
    [Google Scholar]
  11. Rakateli L. Huchzermeier R. van der Vorst E.P.C. AhR, PXR and CAR: From Xenobiotic Receptors to Metabolic Sensors. Cells 2023 12 23 2752 10.3390/cells12232752 38067179
    [Google Scholar]
  12. Liang H.F. Yang X. Li H.L. Activation of pregnane X receptor protects against cholestatic liver injury by inhibiting hepatocyte pyroptosis. Acta Pharmacol. Sin. 2024 39112769
    [Google Scholar]
  13. Zhao T. Zhong G. Wang Y. Cao R. Song S. Li Y. Wan G. Sun H. Huang M. Bi H. Jiang Y. Pregnane X Receptor Activation in Liver Macrophages Protects against Endotoxin‐Induced Liver Injury. Adv. Sci. (Weinh.) 2024 11 19 2308771 10.1002/advs.202308771 38477509
    [Google Scholar]
  14. Ming W. Luan Z. Yao Y. Liu H. Hu S. Du C. Zhang C. Zhao Y. Huang Y. Sun X. Qiao R. Xu H. Guan Y. Zhang X. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling. Acta Pharmacol. Sin. 2023 44 10 2075 2090 10.1038/s41401‑023‑01113‑7 37344564
    [Google Scholar]
  15. Fan S. Yan Y. Xia Y. Zhou Z. Luo L. Zhu M. Han Y. Yao D. Zhang L. Fang M. Peng L. Yu J. Liu Y. Gao X. Guan H. Li H. Wang C. Wu X. Zhu H. Cao Y. Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat. Commun. 2023 14 1 3368 10.1038/s41467‑023‑39118‑9 37291126
    [Google Scholar]
  16. Yu X. Xu M. Meng X. Li S. Liu Q. Bai M. You R. Huang S. Yang L. Zhang Y. Jia Z. Zhang A. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci. Transl. Med. 2020 12 543 eaay7591 10.1126/scitranslmed.aay7591 32404507
    [Google Scholar]
  17. Luan Z. Wei Y. Huo X. Sun X. Zhang C. Ming W. Luo Z. Du C. Li Y. Xu H. Lu H. Zheng F. Guan Y. Zhang X. Pregnane X receptor (PXR) protects against cisplatin-induced acute kidney injury in mice. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 3 165996 10.1016/j.bbadis.2020.165996 33127475
    [Google Scholar]
  18. Gronemeyer H. Gustafsson J.Å. Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 2004 3 11 950 964 10.1038/nrd1551 15520817
    [Google Scholar]
  19. Bain D.L. Heneghan A.F. Connaghan-Jones K.D. Miura M.T. Nuclear receptor structure: implications for function. Annu. Rev. Physiol. 2007 69 1 201 220 10.1146/annurev.physiol.69.031905.160308 17137423
    [Google Scholar]
  20. Lv Y. Luo Y.Y. Ren H.W. Li C.J. Xiang Z.X. Luan Z.L. The role of pregnane X receptor (PXR) in substance metabolism. Front. Endocrinol. (Lausanne) 2022 13 959902 10.3389/fendo.2022.959902 36111293
    [Google Scholar]
  21. Ishigami-Yuasa M. Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int. J. Mol. Sci. 2020 21 15 5512 10.3390/ijms21155512 32752136
    [Google Scholar]
  22. Rana M. Devi S. Gourinath S. Goswami R. Tyagi R.K. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. Biochim. Biophys. Acta. Gene Regul. Mech. 2016 1859 9 1183 1197 10.1016/j.bbagrm.2016.03.001 26962022
    [Google Scholar]
  23. Blumberg B. Sabbagh W. Jr Juguilon H. Bolado J. Jr van Meter C.M. Ong E.S. Evans R.M. SXR, a novel steroid and xenobioticsensing nuclear receptor. Genes Dev. 1998 12 20 3195 3205 10.1101/gad.12.20.3195 9784494
    [Google Scholar]
  24. Koyano S. Kurose K. Saito Y. Ozawa S. Hasegawa R. Komamura K. Ueno K. Kamakura S. Kitakaze M. Nakajima T. Matsumoto K. Akasawa A. Saito H. Sawada J. Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab. Dispos. 2004 32 1 149 154 14709632
    [Google Scholar]
  25. Käräjämäki A.J. Hukkanen J. Ukkola O. Pregnane X receptor gene variant rs7643645 and total mortality in subjects with nonalcoholic fatty liver disease. Pharmacogenet. Genomics 2023 33 2 35 39 36503926
    [Google Scholar]
  26. He P. Court M.H. Greenblatt D.J. von Moltke L.L. Human pregnane X receptor: genetic polymorphisms, alternative mRNA splice variants, and cytochrome P450 3A metabolic activity. J. Clin. Pharmacol. 2006 46 11 1356 1369 10.1177/0091270006292125 17050801
    [Google Scholar]
  27. Bautista-Olivier C.D. Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem. Pharmacol. 2022 202 115147 10.1016/j.bcp.2022.115147 35714683
    [Google Scholar]
  28. Daujat-Chavanieu M. Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020 9 11 2395 10.3390/cells9112395 33142929
    [Google Scholar]
  29. Ma X. Chen J. Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. J. Cell. Physiol. 2015 230 4 752 757 10.1002/jcp.24838 25294580
    [Google Scholar]
  30. Oladimeji P.O. Chen T. PXR: More Than Just a Master Xenobiotic Receptor. Mol. Pharmacol. 2018 93 2 119 127 10.1124/mol.117.110155 29113993
    [Google Scholar]
  31. Markó L. Vigolo E. Hinze C. Park J.K. Roël G. Balogh A. Choi M. Wübken A. Cording J. Blasig I.E. Luft F.C. Scheidereit C. Schmidt-Ott K.M. Schmidt-Ullrich R. Müller D.N. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI. J. Am. Soc. Nephrol. 2016 27 9 2658 2669 10.1681/ASN.2015070748 26823548
    [Google Scholar]
  32. Song N. Thaiss F. Guo L. NFκB and Kidney Injury. Front. Immunol. 2019 10 815 10.3389/fimmu.2019.00815 31040851
    [Google Scholar]
  33. Hussain M.S. Goyal A. Goyal K. S R.J. Nellore J. Shahwan M. Rekha A. Ali H. Dhanasekaran M. MacLoughlin R. Dua K. Gupta G. Targeting CXCR2 signaling in inflammatory lung diseases: neutrophil-driven inflammation and emerging therapies. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03970‑x 40047857
    [Google Scholar]
  34. Zhou C. Tabb M.M. Nelson E.L. Grün F. Verma S. Sadatrafiei A. Lin M. Mallick S. Forman B.M. Thummel K.E. Blumberg B. Mutual repression between steroid and xenobiotic receptor and NF- B signaling pathways links xenobiotic metabolism and inflammation. J. Clin. Invest. 2006 116 8 2280 2289 10.1172/JCI26283 16841097
    [Google Scholar]
  35. Wahli W. A gut feeling of the PXR, PPAR and NF‐κB connection. J. Intern. Med. 2008 263 6 613 619 10.1111/j.1365‑2796.2008.01951.x 18479261
    [Google Scholar]
  36. Zhang J. Zhao Z. Bai H. Wang M. Jiao L. Peng W. Wu T. Liu T. Chen H. Song X. Wu L. Hu X. Wu Q. Zhou J. Song J. Lyv M. Ying B. Genetic polymorphisms in PXR and NF-κB1 influence susceptibility to anti-tuberculosis drug-induced liver injury. PLoS One 2019 14 9 e0222033 10.1371/journal.pone.0222033 31490979
    [Google Scholar]
  37. Kasper L.H. Boussouar F. Ney P.A. Jackson C.W. Rehg J. van Deursen J.M. Brindle P.K. A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 2002 419 6908 738 743 10.1038/nature01062 12384703
    [Google Scholar]
  38. Ogryzko V.V. Schiltz R.L. Russanova V. Howard B.H. Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996 87 5 953 959 8945521
    [Google Scholar]
  39. Oh A. Pardo M. Rodriguez A. Yu C. Nguyen L. Liang O. Chorzalska A. Dubielecka P.M. NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype. Cell Commun. Signal. 2023 21 1 291 37853467
    [Google Scholar]
  40. Niu X. Wu T. Li G. Gu X. Tian Y. Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int. J. Biol. Sci. 2022 18 2 742 759 35002522
    [Google Scholar]
  41. Li Y. Li X. He K. Li B. Liu K. Qi J. Wang H. Wang Y. Luo W. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J. 2018 32 4 2269 2279 29229684
    [Google Scholar]
  42. Dou J.Y. Zhang M. Cen H. Chen Y.Q. Wu Y.F. Lu F. Zhou J. Liu X.S. Gu Y.Y. Salvia miltiorrhiza Bunge (Danshen) and Bioactive Compound Tanshinone IIA Alleviates Cisplatin-Induced Acute Kidney Injury Through Regulating PXR/NF-κB Signaling. Front. Pharmacol. 2022 13 860383 35401224
    [Google Scholar]
  43. Sato Y. Takahashi M. Yanagita M. Pathophysiology of AKI to CKD progression. Semin. Nephrol. 2020 40 2 206 215 10.1016/j.semnephrol.2020.01.011 32303283
    [Google Scholar]
  44. Alikhan M.A. Ricardo S.D. Mononuclear phagocyte system in kidney disease and repair. Nephrology (Carlton) 2013 18 2 81 91 10.1111/nep.12014 23194390
    [Google Scholar]
  45. Ralto K.M. Parikh S.M. Mitochondria in Acute Kidney Injury. Semin. Nephrol. 2016 36 1 8 16 10.1016/j.semnephrol.2016.01.005 27085731
    [Google Scholar]
  46. Hall A.M. Schuh C.D. Mitochondria as therapeutic targets in acute kidney injury. Curr. Opin. Nephrol. Hypertens. 2016 25 4 355 362 10.1097/MNH.0000000000000228 27166518
    [Google Scholar]
  47. Sureshbabu A. Ryter S.W. Choi M.E. Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biol. 2015 4 208 214 10.1016/j.redox.2015.01.001 25613291
    [Google Scholar]
  48. Schaub J.A. Venkatachalam M.A. Weinberg J.M. Proximal Tubular Oxidative Metabolism in Acute Kidney Injury and the Transition to CKD. Kidney360 2021 2 2 355 364 10.34067/KID.0004772020 35373028
    [Google Scholar]
  49. Gautam S. Singh P. Singh M. Roy S. Rawat J.K. Yadav R.K. Devi U. Gupta P.S. Saraf S.A. Kaithwas G. Rifaximin, a pregnane X receptor (PXR) activator regulates apoptosis in a murine model of breast cancer. RSC Advances 2018 8 7 3512 3521 10.1039/C7RA09689E 35542911
    [Google Scholar]
  50. Dennis J. Witting P. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017 9 7 718 10.3390/nu9070718 28686196
    [Google Scholar]
  51. Łapczuk-Romańska J. Wajda A. Pius-Sadowska E. Kurzawski M. Niedzielski A. Machaliński B. Droździk M. Effects of simvastatin on nuclear receptors, drug metabolizing enzymes and transporters expression in Human Umbilical Vein Endothelial Cells. Pharmacol. Rep. 2018 70 5 875 880 10.1016/j.pharep.2018.03.008 30092417
    [Google Scholar]
  52. Chen Q.M. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic. Biol. Med. 2022 179 133 143 10.1016/j.freeradbiomed.2021.12.001 34921930
    [Google Scholar]
  53. Chen Q. Yu M. Tian Z. Cui Y. Deng D. Rong T. Liu Z. Song M. Li Z. Ma X. Lu H. Exogenous Glutathione Protects IPEC-J2 Cells against Oxidative Stress through a Mitochondrial Mechanism. Molecules 2022 27 8 2416 10.3390/molecules27082416 35458611
    [Google Scholar]
  54. Li M. Li C. Ye Z. Huang J. Li Y. Lai W. Peng H. Lou T. Sirt3 modulates fatty acid oxidation and attenuates cisplatin‐induced AKI in mice. J. Cell. Mol. Med. 2020 24 9 5109 5121 10.1111/jcmm.15148 32281286
    [Google Scholar]
  55. Volle D.H. Repa J.J. Mazur A. Cummins C.L. Val P. Henry-Berger J. Caira F. Veyssiere G. Mangelsdorf D.J. Lobaccaro J.M.A. Regulation of the aldo-keto reductase gene akr1b7 by the nuclear oxysterol receptor LXRalpha (liver X receptor-alpha) in the mouse intestine: putative role of LXRs in lipid detoxification processes. Mol. Endocrinol. 2004 18 4 888 898 10.1210/me.2003‑0338 14739254
    [Google Scholar]
  56. Liang X. Liu L. Fu T. Zhou Q. Zhou D. Xiao L. Liu J. Kong Y. Xie H. Yi F. Lai L. Vega R.B. Kelly D.P. Smith S.R. Gan Z. Exercise Inducible Lactate Dehydrogenase B Regulates Mitochondrial Function in Skeletal Muscle. J. Biol. Chem. 2016 291 49 25306 25318 10.1074/jbc.M116.749424 27738103
    [Google Scholar]
  57. Liu Z. Zhao L. Song Y. Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling. BioMed Res. Int. 2019 2019 1 10 10.1155/2019/3808432 31317026
    [Google Scholar]
  58. Maremonti F. Meyer C. Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J. Am. Soc. Nephrol. 2022 33 3 472 486 10.1681/ASN.2021101293 35022311
    [Google Scholar]
  59. Singh R. Letai A. Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019 20 3 175 193 10.1038/s41580‑018‑0089‑8 30655609
    [Google Scholar]
  60. Esposito G. Nobile N. Gigli S. Seguella L. Pesce M. d’Alessandro A. Bruzzese E. Capoccia E. Steardo L. Cuomo R. Sarnelli G. Rifaximin Improves Clostridium difficile Toxin A-Induced Toxicity in Caco-2 Cells by the PXR-Dependent TLR4/MyD88/NF-κB Pathway. Front. Pharmacol. 2016 7 120 10.3389/fphar.2016.00120 27242527
    [Google Scholar]
  61. Robbins D. Cherian M. Wu J. Chen T. Human pregnane X receptor compromises the function of p53 and promotes malignant transformation. Cell Death Discov. 2016 2 1 16023 10.1038/cddiscovery.2016.23 27547448
    [Google Scholar]
  62. Molitoris B.A. Low-Flow Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2022 17 7 1039 1049 10.2215/CJN.15341121 35584927
    [Google Scholar]
  63. Zhou C. Novel functions of PXR in cardiometabolic disease. Biochim. Biophys. Acta. Gene Regul. Mech. 2016 1859 9 1112 1120 10.1016/j.bbagrm.2016.02.015 26924429
    [Google Scholar]
  64. Pulakazhi Venu V.K. Saifeddine M. Mihara K. Tsai Y.C. Nieves K. Alston L. Mani S. McCoy K.D. Hollenberg M.D. Hirota S.A. The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation. Am. J. Physiol. Endocrinol. Metab. 2019 317 2 E350 E361 10.1152/ajpendo.00572.2018 31211619
    [Google Scholar]
  65. Qu L. Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023 12 12 1584 10.3390/cells12121584 37371054
    [Google Scholar]
  66. Sun L. Sun Z. Wang Q. Zhang Y. Jia Z. Role of nuclear receptor PXR in immune cells and inflammatory diseases. Front. Immunol. 2022 13 969399 10.3389/fimmu.2022.969399 36119030
    [Google Scholar]
  67. Maekawa H. Inoue T. Ouchi H. Jao T.M. Inoue R. Nishi H. Fujii R. Ishidate F. Tanaka T. Tanaka Y. Hirokawa N. Nangaku M. Inagi R. Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury. Cell Rep. 2019 29 5 1261 1273.e6 10.1016/j.celrep.2019.09.050 31665638
    [Google Scholar]
  68. Duddu A.S. Andreas E. Bv H. Grover K. Singh V.R. Hari K. Jhunjhunwala S. Cummins B. Gedeon T. Jolly M.K. Multistability and predominant hybrid phenotypes in a four node mutually repressive network of Th1/Th2/Th17/Treg differentiation. NPJ Syst. Biol. Appl. 2024 10 1 123 10.1038/s41540‑024‑00433‑6 39448615
    [Google Scholar]
  69. Marks B.R. Nowyhed H.N. Choi J.Y. Poholek A.C. Odegard J.M. Flavell R.A. Craft J. Thymic self-reactivity selects natural interleukin 17–producing T cells that can regulate peripheral inflammation. Nat. Immunol. 2009 10 10 1125 1132 10.1038/ni.1783 19734905
    [Google Scholar]
  70. Mehrotra P. Patel J.B. Ivancic C.M. Collett J.A. Basile D.P. Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int. 2015 88 4 776 784 10.1038/ki.2015.200 26200947
    [Google Scholar]
  71. Fiorucci S. Carino A. Baldoni M. Santucci L. Costanzi E. Graziosi L. Distrutti E. Biagioli M. Bile Acid Signaling in Inflammatory Bowel Diseases. Dig. Dis. Sci. 2021 66 3 674 693 10.1007/s10620‑020‑06715‑3 33289902
    [Google Scholar]
  72. Zhang Q.W. Yang M.J. Liao C.Y. Taha R. Li Q.Y. Abdelmotalab M.I. Zhao S.Y. Xu Y. Jiang Z.Z. Chu C.H. Huang X. Jiao C.H. Sun L.X. Atractylodes macrocephala Koidz polysaccharide ameliorates DSS‐induced colitis in mice by regulating the gut microbiota and tryptophan metabolism. Br. J. Pharmacol. 2025 182 7 1508 1527 10.1111/bph.17409 39667762
    [Google Scholar]
  73. Li Y. Liu H. Yan H. Xiong J. Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun. Rev. 2023 22 2 103257 10.1016/j.autrev.2022.103257 36563769
    [Google Scholar]
  74. Su X. Zhang M. Qi H. Gao Y. Yang Y. Yun H. Zhang Q. Yang X. Zhang Y. He J. Fan Y. Wang Y. Guo P. Zhang C. Yang R. Gut microbiota–derived metabolite 3-idoleacetic acid together with LPS induces IL-35+ B cell generation. Microbiome 2022 10 1 13 10.1186/s40168‑021‑01205‑8 35074011
    [Google Scholar]
  75. Guo C. Dong G. Liang X. Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat. Rev. Nephrol. 2019 15 4 220 239 10.1038/s41581‑018‑0103‑6 30651611
    [Google Scholar]
  76. Pabst O. Hornef M.W. Schaap F.G. Cerovic V. Clavel T. Bruns T. Gut–liver axis: barriers and functional circuits. Nat. Rev. Gastroenterol. Hepatol. 2023 20 7 447 461 10.1038/s41575‑023‑00771‑6 37085614
    [Google Scholar]
  77. Rogers R.S. Parker A. Vainer P.D. Elliott E. Sudbeck D. Parimi K. Peddada V.P. Howe P.G. D’Ambrosio N. Ruddy G. Stackable K. Carney M. Martin L. Osterholt T. Staudinger J.L. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021 10 11 3262 10.3390/cells10113262 34831484
    [Google Scholar]
  78. Bragazzi M.C. Venere R. Vignone A. Alvaro D. Cardinale V. Role of the Gut–Liver Axis in the Pathobiology of Cholangiopathies: Basic and Clinical Evidence. Int. J. Mol. Sci. 2023 24 7 6660 10.3390/ijms24076660 37047635
    [Google Scholar]
  79. An J. Liu Y. Wang Y. Fan R. Hu X. Zhang F. Yang J. Chen J. The Role of Intestinal Mucosal Barrier in Autoimmune Disease: A Potential Target. Front. Immunol. 2022 13 871713 10.3389/fimmu.2022.871713 35844539
    [Google Scholar]
  80. Gong J. Noel S. Pluznick J.L. Hamad A.R.A. Rabb H. Gut Microbiota-Kidney Cross-Talk in Acute Kidney Injury. Semin. Nephrol. 2019 39 1 107 116 10.1016/j.semnephrol.2018.10.009 30606403
    [Google Scholar]
  81. Khan Y. Bisht A.S. Ashique S. Khan G. HMS. Innovative anti-aging strategies targeting WNT pathway epigenetics for gut function. Hum. Genet. 2025 44 201397
    [Google Scholar]
  82. Garg A. Zhao A. Erickson S.L. Mukherjee S. Lau A.J. Alston L. Chang T.K. Mani S. Hirota S.A. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation. J. Pharmacol. Exp. Ther. 2016 359 1 91 101 27440420
    [Google Scholar]
  83. Venkatesh M. Mukherjee S. Wang H. Li H. Sun K. Benechet A.P. Qiu Z. Maher L. Redinbo M.R. Phillips R.S. Fleet J.C. Kortagere S. Mukherjee P. Fasano A. Le Ven J. Nicholson J.K. Dumas M.E. Khanna K.M. Mani S. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014 41 2 296 310 10.1016/j.immuni.2014.06.014 25065623
    [Google Scholar]
  84. Perry R.J. Peng L. Barry N.A. Cline G.W. Zhang D. Cardone R.L. Petersen K.F. Kibbey R.G. Goodman A.L. Shulman G.I. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 2016 534 7606 213 217 10.1038/nature18309 27279214
    [Google Scholar]
  85. Mojgani N. Ashique S. Moradi M. Bagheri M. Garg A. Kaushik M. Hussain M.S. Yasmin S. Ansari M.Y. Gut Microbiota and Postbiotic Metabolites: Biotic Intervention for Enhancing Vaccine Responses and Personalized Medicine for Disease Prevention. Probiotics Antimicrob. Proteins 2025 10.1007/s12602‑025‑10477‑7 39964413
    [Google Scholar]
  86. Morrison D.J. Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016 7 3 189 200 10.1080/19490976.2015.1134082 26963409
    [Google Scholar]
  87. Dutta M. Lim J.J. Cui J.Y. Pregnane X. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab. Dispos. 2022 50 4 478 491 10.1124/dmd.121.000415 34862253
    [Google Scholar]
  88. Krones E. Wagner M. Eller K. Rosenkranz A.R. Trauner M. Fickert P. Bile acid-induced cholemic nephropathy. Dig. Dis. 2015 33 3 367 375 10.1159/000371689 26045271
    [Google Scholar]
  89. Jetter A. Kullak-Ublick G.A. Drugs and hepatic transporters: A review. Pharmacol. Res. 2020 154 104234 10.1016/j.phrs.2019.04.018 31004787
    [Google Scholar]
  90. Ihunnah C.A. Jiang M. Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta Mol. Basis Dis. 2011 1812 8 956 963 10.1016/j.bbadis.2011.01.014 21295138
    [Google Scholar]
  91. Staudinger J. Liu Y. Madan A. Habeebu S. Klaassen C.D. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab. Dispos. 2001 29 11 1467 1472 11602523
    [Google Scholar]
  92. Kast H.R. Goodwin B. Tarr P.T. Jones S.A. Anisfeld A.M. Stoltz C.M. Tontonoz P. Kliewer S. Willson T.M. Edwards P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 2002 277 4 2908 2915 10.1074/jbc.M109326200 11706036
    [Google Scholar]
  93. Meng Y. Zhao M. Ma Q. Hua Q. Hu J. Zhou Q. Yi H. Zhang Z. Zhang L. Bifidobacterium bifidum alleviates adenine-induced acute kidney injury in mice by improving intestinal barrier function. Food Funct. 2024 15 15 8030 8042 10.1039/D4FO02014F 38984966
    [Google Scholar]
  94. Gupta K. Bhurwal A. Law C. Ventre S. Minacapelli C.D. Kabaria S. Li Y. Tait C. Catalano C. Rustgi V.K. Acute kidney injury and hepatorenal syndrome in cirrhosis. World J. Gastroenterol. 2021 27 26 3984 4003 10.3748/wjg.v27.i26.3984 34326609
    [Google Scholar]
  95. Hu G. Xu C. Staudinger J.L. Pregnane X receptor is SUMOylated to repress the inflammatory response. J. Pharmacol. Exp. Ther. 2010 335 2 342 350 10.1124/jpet.110.171744 20719936
    [Google Scholar]
  96. Kumar S. Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int. 2018 93 1 27 40 10.1016/j.kint.2017.07.030 29291820
    [Google Scholar]
  97. Ferenbach D.A. Bonventre J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 2015 11 5 264 276 10.1038/nrneph.2015.3 25643664
    [Google Scholar]
  98. Zhou L. Fu P. Huang X.R. Liu F. Lai K.N. Lan H.Y. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy. J. Am. Soc. Nephrol. 2010 21 1 31 41 10.1681/ASN.2008111133 19892935
    [Google Scholar]
  99. Ying Y. Kim J. Westphal S.N. Long K.E. Padanilam B.J. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J. Am. Soc. Nephrol. 2014 25 12 2707 2716 10.1681/ASN.2013121270 24854277
    [Google Scholar]
  100. Xiao L. Zhou D. Tan R.J. Fu H. Zhou L. Hou F.F. Liu Y. Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. J. Am. Soc. Nephrol. 2016 27 6 1727 1740 10.1681/ASN.2015040449 26453613
    [Google Scholar]
  101. Overstreet J.M. Gifford C.C. Tang J. Higgins P.J. Samarakoon R. Emerging role of tumor suppressor p53 in acute and chronic kidney diseases. Cell. Mol. Life Sci. 2022 79 9 474 10.1007/s00018‑022‑04505‑w 35941392
    [Google Scholar]
  102. Lovisa S. LeBleu V.S. Tampe B. Sugimoto H. Vadnagara K. Carstens J.L. Wu C.C. Hagos Y. Burckhardt B.C. Pentcheva-Hoang T. Nischal H. Allison J.P. Zeisberg M. Kalluri R. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 2015 21 9 998 1009 10.1038/nm.3902 26236991
    [Google Scholar]
  103. Sato T. Shizu R. Baba R. Ooka A. Hosaka T. Kanno Y. Yoshinari K. Pregnane X receptor inhibits the transdifferentiation of hepatic stellate cells by down-regulating periostin expression. Biochem. J. 2024 481 18 1173 1186 10.1042/BCJ20240172 39171361
    [Google Scholar]
  104. Cao W. Li A. Li J. Wu C. Cui S. Zhou Z. Liu Y. Wilcox C.S. Hou F.F. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury. Antioxid. Redox Signal. 2017 27 7 415 432 10.1089/ars.2016.6827 28030955
    [Google Scholar]
  105. Ireland R. Alkaline phosphatase in sepsis-induced AKI. Nat. Rev. Nephrol. 2012 8 3 129 10.1038/nrneph.2012.1 22330971
    [Google Scholar]
  106. Perazella M.A. Pharmacology behind Common Drug Nephrotoxicities. Clin. J. Am. Soc. Nephrol. 2018 13 12 1897 1908 10.2215/CJN.00150118 29622670
    [Google Scholar]
  107. Guengerich F.P. Cytochrome P450 research and The Journal of Biological Chemistry. J. Biol. Chem. 2019 294 5 1671 1680 10.1074/jbc.TM118.004144 29871932
    [Google Scholar]
  108. Tebbens J.D. Azar M. Friedmann E. Lanzendörfer M. Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int. J. Mol. Sci. 2018 19 6 1785 29914136
    [Google Scholar]
  109. Seligson N.D. Zhang X. Zemanek M.C. Johnson J.A. VanGundy Z. Wang D. Phelps M.A. Roddy J. Hofmeister C.C. Li J. Poi M.J. CYP3A5 influences oral tacrolimus pharmacokinetics and timing of acute kidney injury following allogeneic hematopoietic stem cell transplantation. Front. Pharmacol. 2024 14 1334440 10.3389/fphar.2023.1334440 38259277
    [Google Scholar]
  110. Taskar K.S. Yang X. Neuhoff S. Patel M. Yoshida K. Paine M.F. Brouwer K.L.R. Chu X. Sugiyama Y. Cook J. Polli J.W. Hanna I. Lai Y. Zamek-Gliszczynski M. Clinical Relevance of Hepatic and Renal P‐gp/ BCRP Inhibition of Drugs: An International Transporter Consortium Perspective. Clin. Pharmacol. Ther. 2022 112 3 573 592 10.1002/cpt.2670 35612761
    [Google Scholar]
  111. Elmeliegy M. Vourvahis M. Guo C. Wang D.D. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of clinical drug–drug interaction studies. Clin. Pharmacokinet. 2020 59 6 699 714 10.1007/s40262‑020‑00867‑1 32052379
    [Google Scholar]
  112. Jonker J.W. Wagenaar E. van Eijl S. Schinkel A.H. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell. Biol. 2003 23 21 7902 7908 10.1128/MCB.23.21.7902‑7908.2003 14560032
    [Google Scholar]
  113. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb. Exp. Pharmacol. 2011 201 201 299 323 10.1007/978‑3‑642‑14541‑4_8 21103974
    [Google Scholar]
  114. van de Water F.M. Masereeuw R. Russel F.G.M. Function and regulation of multidrug resistance proteins (MRPs) in the renal elimination of organic anions. Drug Metab. Rev. 2005 37 3 443 471 10.1080/03602530500205275 16257830
    [Google Scholar]
  115. Yu X.Q. Xue C.C. Wang G. Zhou S.F. Multidrug resistance associated proteins as determining factors of pharmacokinetics and pharmacodynamics of drugs. Curr. Drug Metab. 2007 8 8 787 802 18220559
    [Google Scholar]
  116. Chai S.C. Cherian M.T. Wang Y.M. Chen T. Small-molecule modulators of PXR and CAR. Biochim. Biophys. Acta 2016 1859 9 1141 1154 26921498
    [Google Scholar]
  117. Motta S. Callea L. Giani Tagliabue S. Bonati L. Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods. Sci. Rep. 2018 8 1 16207 30385820
    [Google Scholar]
  118. Rashidian A. Mustonen E.K. Kronenberger T. Schwab M. Burk O. Laufer S.A. Pantsar T. Discrepancy in interactions and conformational dynamics of pregnane X receptor (PXR) bound to an agonist and a novel competitive antagonist. Comput. Struct. Biotechnol. J. 2022 20 3004 3018 35782743
    [Google Scholar]
  119. Cai X. Young G.M. Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 6 166101 33600998
    [Google Scholar]
  120. Beuers U. Wolters F. Oude Elferink R.P.J. Mechanisms of pruritus in cholestasis: understanding and treating the itch. Nat. Rev. Gastroenterol. Hepatol. 2023 20 1 26 36 36307649
    [Google Scholar]
  121. Li H. Fu Y. Gong W. Wang G. Li Z. Tian J. Zhang K. Yu E. Xia Y. Xie W. Xie J. Remission of copper-induced liver injury through the PXR/NF-kB signaling pathway: The effects of dietary curcumin supplementation in largemouth bass (Micropterus salmoides). Ecotoxicol. Environ. Saf. 2024 285 117070 39317076
    [Google Scholar]
  122. Farzaei M.H. Zobeiri M. Parvizi F. El-Senduny F.F. Marmouzi I. Coy-Barrera E. Naseri R. Nabavi S.M. Rahimi R. Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients 2018 10 7 855 29966389
    [Google Scholar]
  123. Niemi M. Backman J.T. Neuvonen M. Neuvonen P.J. Kivistö K.T. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin. Pharmacol. Ther. 2000 68 5 495 500 11103752
    [Google Scholar]
  124. Bailey I. Gibson G.G. Plant K. Graham M. Plant N. A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16α-carbonitrile. PLoS One 2011 6 2 e16703 21311750
    [Google Scholar]
  125. Staudinger J.L. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol. Cell. Endocrinol. 2019 485 61 71 30726709
    [Google Scholar]
  126. Iversen D.B. Dunvald A.D. Jespersen D.M. Nielsen F. Brøsen K. Damkier P. Hammer H.S. Pötz O. Järvinen E. Stage T.B. Flucloxacillin Is a Weak Inducer of CYP3A4 in Healthy Adults and 3D Spheroid of Primary Human Hepatocytes. Clin. Pharmacol. Ther. 2023 114 2 434 445 37235733
    [Google Scholar]
  127. Tolonen H. Ranta S. Hämäläinen E. Kauppinen R. Hukkanen J. Effects of rifampicin on porphyrin metabolism in healthy volunteers. Basic Clin. Pharmacol. Toxicol. 2023 132 3 281 291 36535687
    [Google Scholar]
  128. Cho S.K. Yoon J.S. Lee M.G. Lee D.H. Lim L.A. Park K. Park M.S. Chung J.Y. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin. Pharmacol. Ther. 2011 89 3 416 421 21270793
    [Google Scholar]
  129. Hassani-Nezhad-Gashti F. Salonurmi T. Hautajärvi H. Rysä J. Hakkola J. Hukkanen J. Pregnane X. Pregnane X Receptor Activator Rifampin Increases Blood Pressure and Stimulates Plasma Renin Activity. Clin. Pharmacol. Ther. 2020 108 4 856 865 32344455
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240381768250607064429
Loading
/content/journals/cmm/10.2174/0115665240381768250607064429
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test