Skip to content
2000
image of SCH79797, an Antiplatelet Agent, Alleviates Restenosis by Inducing Apoptosis via p53-Mediated Mitochondrial Depolarization and Inhibiting Thrombus Formation after Angioplasty

Abstract

Introduction

In the field of interventional cardiology, coronary in-stent restenosis (ISR) continues to present a clinical hurdle, even with the progress made in stent design and pharmacological interventions. While drug-eluting stents (DESs) and drug-eluting balloons (DEBs) have markedly decreased the occurrence of ISR when compared to bare-metal stents, the condition persists as a complication in revascularization, contributing to increased patient morbidity and challenging long-term treatment outcomes. Thus, a deeper understanding of ISR mechanisms and the development of novel therapeutic approaches are crucial for improving patient outcomes.

Methods

In this study, we utilized the A10 cell as an model and induced common carotid artery balloon dilation injury in Sprague-Dawley rats as an animal model to explore the potential clinical applications of SCH79797, particularly in the treatment of ISR.

Results

SCH79797, a protease-activated receptor-1 antagonist, induced apoptosis of smooth muscle cells through various pathways. SCH79797 promoted apoptosis via JNK/c-Jun and p53 upregulation in the cytosol. We also observed an increased Bax/Bcl-2 ratio in mitochondria, p53 translocation to mitochondria, and changes in the mitochondrial membrane potential to mitochondrial membrane permeabilization. Our comparative analysis with vorapaxar revealed the apoptotic effects of SCH79797 to be independent of its PAR-1 antagonist activity. Furthermore, SCH79797 administration significantly reduced common carotid artery restenosis and thrombosis following balloon injury .

Discussion

Our study has been the first to demonstrate SCH79797 to directly induce VSMC apoptosis via the p53-mediated mitochondrial pathway, providing a novel mechanistic insight into ISR treatment. Unlike traditional anti-proliferative agents used in DESs, SCH79797 uniquely combines apoptotic induction with antithrombotic effects, making it a dual-action therapeutic candidate. This research study has laid the groundwork for localized drug-eluting strategies that can leverage SCH79797’s properties to prevent ISR more effectively while minimizing systemic side effects.

Conclusion

Our findings have established SCH79797 as a promising candidate for reducing ISR through apoptosis modulation. By leveraging the p53-mediated mitochondrial apoptotic pathway, SCH79797 may provide a groundbreaking approach to reducing restenosis. These findings could offer significant implications for the future development of targeted drug-eluting strategies by locally delivering SCH79797 in a controlled manner using DES or DEB, presenting SCH79797 as a transformative candidate in interventional cardiology.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240375398250916093346
2025-10-01
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmm/10.2174/0115665240375398250916093346/BMS-CMM-2024-480.html?itemId=/content/journals/cmm/10.2174/0115665240375398250916093346&mimeType=html&fmt=ahah

References

  1. Giacoppo D. Alvarez-Covarrubias H.A. Koch T. Cassese S. Xhepa E. Kessler T. Wiebe J. Joner M. Hochholzer W. Laugwitz K.L. Schunkert H. Kastrati A. Kufner S. Coronary artery restenosis treatment with plain balloon, drug-coated balloon, or drug-eluting stent: 10-year outcomes of the ISAR-DESIRE 3 trial. Eur. Heart J. 2023 44 15 1343 1357 10.1093/eurheartj/ehad026 36807512
    [Google Scholar]
  2. Hirlekar R. Patel M. Jain S. Kadam V. Drug eluting coronary artery stents. Curr. Drug Deliv. 2010 7 5 421 427 10.2174/156720110793566281 20973760
    [Google Scholar]
  3. Villar-Matamoros E. Stokes L. Lloret A. Todd M. Tillman B.W. Yazdani S.K. Understanding the mechanism of drug transfer and retention of drug-coated balloons. J. Cardiovasc. Pharmacol. Ther. 2022 27 10742484221119559 10.1177/10742484221119559 35972237
    [Google Scholar]
  4. Yang Y.X. He K.Z. Li J.Y. Fu Y. Li C. Liu X.M. Wang H.J. Chen M.L. Su P.X. Xu L. Wang L.F. Comparisons of drug-eluting balloon versus drug-eluting stent in the treatment of young patients with acute myocardial infarction. J. Cardiovasc. Dev. Dis. 2023 10 1 29 10.3390/jcdd10010029 36661924
    [Google Scholar]
  5. Shishehbor M.H. Scheinert D. Jain A. Brodmann M. Tepe G. Ando K. Krishnan P. Iida O. Laird J.R. Schneider P.A. Rocha-Singh K.J. Zeller T. Comparison of drug-coated balloons vs bare-metal stents in patients with femoropopliteal arterial disease. J. Am. Coll. Cardiol. 2023 81 3 237 249 10.1016/j.jacc.2022.10.016 36332764
    [Google Scholar]
  6. Li P. Liu Y. Yi B. Wang G. You X. Zhao X. Summer R. Qin Y. Sun J. MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc. Res. 2013 99 1 185 193 10.1093/cvr/cvt082 23554459
    [Google Scholar]
  7. Müller K. Aichele S. Herkommer M. Bigalke B. Stellos K. Htun P. Fateh-Moghadam S. May A.E. Flather M. Gawaz M. Geisler T. Impact of inflammatory markers on platelet inhibition and cardiovascular outcome including stent thrombosis in patients with symptomatic coronary artery disease. Atherosclerosis 2010 213 1 256 262 10.1016/j.atherosclerosis.2010.07.023 20728084
    [Google Scholar]
  8. Sorokin V. Vickneson K. Kofidis T. Woo C.C. Lin X.Y. Foo R. Shanahan C.M. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front. Immunol. 2020 11 599415 10.3389/fimmu.2020.599415 33324416
    [Google Scholar]
  9. Wang N. Verna L. Hardy S. Zhu Y. Ma K.S. Birrer M.J. Stemerman M.B. c-Jun triggers apoptosis in human vascular endothelial cells. Circ. Res. 1999 85 5 387 393 10.1161/01.RES.85.5.387 10473668
    [Google Scholar]
  10. Ferrer I. Olivé M. Blanco R. Cinós C. Planas A.M. Selective c-Jun overexpression is associated with ionizing radiation-induced apoptosis in the developing cerebellum of the rat. Brain Res. Mol. Brain Res. 1996 38 1 91 100 10.1016/0169‑328X(95)00334‑O 8737672
    [Google Scholar]
  11. Chu R. Upreti M. Ding W.X. Yin X.M. Chambers T.C. Regulation of Bax by c-Jun NH2-terminal kinase and Bcl-xL in vinblastine-induced apoptosis. Biochem. Pharmacol. 2009 78 3 241 248 10.1016/j.bcp.2009.04.005 19427996
    [Google Scholar]
  12. Okuno S. Saito A. Hayashi T. Chan P.H. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J. Neurosci. 2004 24 36 7879 7887 10.1523/JNEUROSCI.1745‑04.2004 15356200
    [Google Scholar]
  13. Lei K. Davis R.J. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc. Natl. Acad. Sci. USA 2003 100 5 2432 2437 10.1073/pnas.0438011100 12591950
    [Google Scholar]
  14. Rong Y.P. Bultynck G. Aromolaran A.S. Zhong F. Parys J.B. De Smedt H. Mignery G.A. Roderick H.L. Bootman M.D. Distelhorst C.W. The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc. Natl. Acad. Sci. USA 2009 106 34 14397 14402 10.1073/pnas.0907555106 19706527
    [Google Scholar]
  15. Warren C.F.A. Wong-Brown M.W. Bowden N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019 10 3 177 10.1038/s41419‑019‑1407‑6 30792387
    [Google Scholar]
  16. Mihara M. Erster S. Zaika A. Petrenko O. Chittenden T. Pancoska P. Moll U.M. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 2003 11 3 577 590 10.1016/S1097‑2765(03)00050‑9 12667443
    [Google Scholar]
  17. Estaquier J. Vallette F. Vayssiere J.L. Mignotte B. The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 2012 942 157 183 10.1007/978‑94‑007‑2869‑1_7 22399422
    [Google Scholar]
  18. Judge H.M. Jennings L.K. Moliterno D.J. Hord E. Ecob R. Tricoci P. Rorick T. Kotha J. Storey R.F. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact. Platelets 2015 26 3 236 242 10.3109/09537104.2014.902924 24750101
    [Google Scholar]
  19. Di Serio C. Pellerito S. Duarte M. Massi D. Naldini A. Cirino G. Prudovsky I. Santucci M. Geppetti P. Marchionni N. Masotti G. Tarantini F. Protease-activated receptor 1-selective antagonist SCH79797 inhibits cell proliferation and induces apoptosis by a protease-activated receptor 1-independent mechanism. Basic Clin. Pharmacol. Toxicol. 2007 101 1 63 69 10.1111/j.1742‑7843.2007.00078.x 17577318
    [Google Scholar]
  20. Ko W-C. Tsai C-T. Hsu K-C. Cheng Y-C. Lin T.E. Chen Y-L. Hong C-Y. Lu W-J. Shih C-M. Yen T-L. Magnolol, A novel antagonist of thrombin and PAR-1, inhibits thrombin-induced connective tissue growth factor (CTGF) expression in vascular smooth muscle cells and ameliorate pathogenesis of restenosis in rats. Appl. Sci. 2020 10 23 8729 10.3390/app10238729
    [Google Scholar]
  21. Yoshida T. Azuma H. Aihara K. Fujimura M. Akaike M. Mitsui T. Matsumoto T. Vascular smooth muscle cell proliferation is dependent upon upregulation of mitochondrial transcription factor A (mtTFA) expression in injured rat carotid artery. Atherosclerosis 2005 178 1 39 47 10.1016/j.atherosclerosis.2004.08.029 15585199
    [Google Scholar]
  22. Buschmann T. Yin Z. Bhoumik A. Ronai Z. Amino-terminal-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H2O2-induced cell death. J. Biol. Chem. 2000 275 22 16590 16596 10.1074/jbc.M910045199 10748185
    [Google Scholar]
  23. Watson A. Eilers A. Lallemand D. Kyriakis J. Rubin L.L. Ham J. Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons. J. Neurosci. 1998 18 2 751 762 10.1523/JNEUROSCI.18‑02‑00751.1998 9425017
    [Google Scholar]
  24. Saha M.N. Jiang H. Yang Y. Zhu X. Wang X. Schimmer A.D. Qiu L. Chang H. Targeting p53 via JNK pathway: A novel role of RITA for apoptotic signaling in multiple myeloma. PLoS One 2012 7 1 30215 10.1371/journal.pone.0030215 22276160
    [Google Scholar]
  25. Akhter R. Sanphui P. Das H. Saha P. Biswas S.C. The regulation of p53 up‐regulated modulator of apoptosis by JNK /c‐Jun pathway in β‐amyloid‐induced neuron death. J. Neurochem. 2015 134 6 1091 1103 10.1111/jnc.13128 25891762
    [Google Scholar]
  26. Gowda P.S. Zhou F. Chadwell L.V. McEwen D.G. p53 binding prevents phosphatase-mediated inactivation of diphosphorylated c-Jun N-terminal kinase. J. Biol. Chem. 2012 287 21 17554 17567 10.1074/jbc.M111.319277 22467874
    [Google Scholar]
  27. Dhanasekaran D.N. Reddy E.P. JNK signaling in apoptosis. Oncogene 2008 27 48 6245 6251 10.1038/onc.2008.301 18931691
    [Google Scholar]
  28. Kobayashi K. Tsukamoto I. Prolonged Jun N-terminal kinase (JNK) activation and the upregulation of p53 and p21WAF1/CIP1 preceded apoptosis in hepatocytes after partial hepatectomy and cisplatin. Biochim. Biophys. Acta Mol. Basis Dis. 2001 1537 1 79 88 10.1016/S0925‑4439(01)00059‑X 11476966
    [Google Scholar]
  29. Castrogiovanni C. Waterschoot B. De Backer O. Dumont P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 2018 25 1 190 203 10.1038/cdd.2017.143 28937686
    [Google Scholar]
  30. Shi Y. Nikulenkov F. Zawacka-Pankau J. Li H. Gabdoulline R. Xu J. Eriksson S. Hedström E. Issaeva N. Kel A. Arnér E.S.J. Selivanova G. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 2014 21 4 612 623 10.1038/cdd.2013.186 24413150
    [Google Scholar]
  31. Papadakis E.S. Finegan K.G. Wang X. Robinson A.C. Guo C. Kayahara M. Tournier C. The regulation of Bax by c‐Jun N‐terminal protein kinase (JNK) is a prerequisite to the mitochondrial‐induced apoptotic pathway. FEBS Lett. 2006 580 5 1320 1326 10.1016/j.febslet.2006.01.053 16458303
    [Google Scholar]
  32. Wei H. Qu L. Dai S. Li Y. Wang H. Feng Y. Chen X. Jiang L. Guo M. Li J. Chen Z. Chen L. Zhang Y. Chen Y. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat. Commun. 2021 12 1 2280 10.1038/s41467‑021‑22655‑6 33863900
    [Google Scholar]
  33. Chipuk J.E. Kuwana T. Bouchier-Hayes L. Droin N.M. Newmeyer D.D. Schuler M. Green D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004 303 5660 1010 1014 10.1126/science.1092734 14963330
    [Google Scholar]
  34. Raisova M. Hossini A.M. Eberle J. Riebeling C. Orfanos C.E. Geilen C.C. Wieder T. Sturm I. Daniel P.T. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J. Invest. Dermatol. 2001 117 2 333 340 10.1046/j.0022‑202x.2001.01409.x 11511312
    [Google Scholar]
  35. Edlich F. Banerjee S. Suzuki M. Cleland M.M. Arnoult D. Wang C. Neutzner A. Tjandra N. Youle R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 2011 145 1 104 116 10.1016/j.cell.2011.02.034 21458670
    [Google Scholar]
  36. Kuwana T. King L.E. Cosentino K. Suess J. Garcia-Saez A.J. Gilmore A.P. Newmeyer D.D. Mitochondrial residence of the apoptosis inducer BAX is more important than BAX oligomerization in promoting membrane permeabilization. J. Biol. Chem. 2020 295 6 1623 1636 10.1074/jbc.RA119.011635 31901077
    [Google Scholar]
  37. Yu J. Zhang L. Hwang P.M. Kinzler K.W. Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 2001 7 3 673 682 10.1016/S1097‑2765(01)00213‑1 11463391
    [Google Scholar]
  38. Steele A.J. Prentice A.G. Hoffbrand A.V. Yogashangary B.C. Hart S.M. Nacheva E.P. Howard-Reeves J.D. Duke V.M. Kottaridis P.D. Cwynarski K. Vassilev L.T. Wickremasinghe R.G. p53-mediated apoptosis of CLL cells: Evidence for a transcription-independent mechanism. Blood 2008 112 9 3827 3834 10.1182/blood‑2008‑05‑156380 18682598
    [Google Scholar]
  39. Vaseva A.V. Moll U.M. The mitochondrial p53 pathway. Biochim. Biophys. Acta Bioenerg. 2009 1787 5 414 420 10.1016/j.bbabio.2008.10.005 19007744
    [Google Scholar]
  40. Matissek K.J. Mossalam M. Okal A. Lim C.S. The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol. Pharm. 2013 10 10 3592 3602 10.1021/mp400380s 23968395
    [Google Scholar]
  41. Schuler M. Green D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 2001 29 6 684 688 10.1042/bst0290684 11709054
    [Google Scholar]
  42. Mossalam M. Matissek K.J. Okal A. Constance J.E. Lim C.S. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol. Pharm. 2012 9 5 1449 1458 10.1021/mp3000259 22380534
    [Google Scholar]
  43. Oliver F.J. de la Rubia G. Rolli V. Ruiz-Ruiz M.C. de Murcia G. Murcia J.M. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J. Biol. Chem. 1998 273 50 33533 33539 10.1074/jbc.273.50.33533 9837934
    [Google Scholar]
  44. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993 362 6423 801 809 10.1038/362801a0 8479518
    [Google Scholar]
  45. Borges C.S. Ferreira A.F. Almeida V.H. Gomes F.G. Berzoti-Coelho M.G. Cacemiro M.C. Nunes N.S. Figueiredo-Pontes L.L. Simões B.P. Castro F.A. Monteiro R.Q. Crosstalk between BCR-ABL and protease-activated receptor 1 (PAR1) suggests a novel target in chronic myeloid leukemia. Exp. Hematol. 2018 66 50 62 10.1016/j.exphem.2018.07.008 30076949
    [Google Scholar]
  46. Zania P. Kritikou S. Flordellis C.S. Maragoudakis M.E. Tsopanoglou N.E. Blockade of angiogenesis by small molecule antagonists to protease-activated receptor-1: Association with endothelial cell growth suppression and induction of apoptosis. J. Pharmacol. Exp. Ther. 2006 318 1 246 254 10.1124/jpet.105.099069 16595737
    [Google Scholar]
  47. Yan J. Manaenko A. Chen S. Klebe D. Ma Q. Caner B. Fujii M. Zhou C. Zhang J.H. Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage. Stroke 2013 44 5 1410 1417 10.1161/STROKEAHA.113.678474 23539525
    [Google Scholar]
  48. Yokono Y. Hanada K. Narita M. Tatara Y. Kawamura Y. Miura N. Kitayama K. Nakata M. Nozaka M. Kato T. Kudo N. Tsushima M. Toyama Y. Itoh K. Tomita H. Blockade of PAR‐1 signaling attenuates cardiac hypertrophy and fibrosis in renin‐overexpressing hypertensive mice. J. Am. Heart Assoc. 2020 9 12 015616 10.1161/JAHA.119.015616 32495720
    [Google Scholar]
  49. Mohamed O.Y. Al-Masri A.A. El Eter E.A. Lateef R. SCH 79797, a selective PAR1 antagonist, protects against ischemia/reperfusion-induced arrhythmias in the rat hearts. Eur. Rev. Med. Pharmacol. Sci. 2016 20 22 4796 4800 27906419
    [Google Scholar]
  50. Gupta N. Liu R. Shin S. Sinha R. Pogliano J. Pogliano K. Griffin J.H. Nizet V. Corriden R. SCH79797 improves outcomes in experimental bacterial pneumonia by boosting neutrophil killing and direct antibiotic activity. J. Antimicrob. Chemother. 2018 73 6 1586 1594 10.1093/jac/dky033 29514266
    [Google Scholar]
  51. Kamel N.M. El-Tanbouly D.M. Abdallah D.M. Sayed H.M. PAR1, a therapeutic target for remote lung injury associated with hind limb ischemia/reperfusion: ERK5/KLF2-dependent lung capillary barrier preservation. Chem. Biol. Interact. 2022 354 109809 10.1016/j.cbi.2022.109809 35031271
    [Google Scholar]
  52. Zhang S. Liu Y. Wang Z. Liu J. Gu Z. Xu Q. Su L. PAR1-mediated c-Jun activation promotes heat stress-induced early stage apoptosis of human umbilical vein endothelial cells. Mol. Med. Rep. 2017 15 5 2595 2603 10.3892/mmr.2017.6303 28447716
    [Google Scholar]
  53. Shavit-Stein E. Abu Rahal I. Bushi D. Gera O. Sharon R. Gofrit S.G. Pollak L. Mindel K. Maggio N. Kloog Y. Chapman J. Dori A. Brain protease activated receptor 1 pathway: A therapeutic target in the superoxide dismutase 1 (SOD1) mouse model of amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2020 21 10 3419 10.3390/ijms21103419 32408605
    [Google Scholar]
  54. Piao C.S. Holloway A.L. Hong-Routson S. Wainwright M.S. Depression following traumatic brain injury in mice is associated with down-regulation of hippocampal astrocyte glutamate transporters by thrombin. J. Cereb. Blood Flow Metab. 2019 39 1 58 73 10.1177/0271678X17742792 29135354
    [Google Scholar]
  55. Bogovyk R. Lunko O. Fedoriuk M. Isaev D. Krishtal O. Holmes G.L. Isaeva E. Effects of protease-activated receptor 1 inhibition on anxiety and fear following status epilepticus. Epilepsy Behav. 2017 67 66 69 10.1016/j.yebeh.2016.11.003 28088683
    [Google Scholar]
  56. Lee H. Hamilton J.R. The PAR1 antagonist, SCH79797, alters platelet morphology and function independently of PARs. Thromb. Haemost. 2013 109 1 164 167 10.1160/TH12‑06‑0389 23093354
    [Google Scholar]
  57. Bauriedel G. Schluckebier S. Hutter R. Welsch U. Kandolf R. Lüderitz B. Prescott M.F. Apoptosis in restenosis versus stable-angina atherosclerosis: Implications for the pathogenesis of restenosis. Arterioscler. Thromb. Vasc. Biol. 1998 18 7 1132 1139 10.1161/01.ATV.18.7.1132 9672074
    [Google Scholar]
  58. Deftereos S. Giannopoulos G. Kossyvakis C. Kaoukis A. Raisakis K. Driva M. Panagopoulou V. Lappos S. Rentoukas I. Pyrgakis V. Alpert M.A. Effect of quinapril on in-stent restenosis and relation to plasma apoptosis signaling molecules. Am. J. Cardiol. 2010 105 1 54 58 10.1016/j.amjcard.2009.08.648 20102890
    [Google Scholar]
  59. Andersen H. Greenberg D.L. Fujikawa K. Xu W. Chung D.W. Davie E.W. Protease-activated receptor 1 is the primary mediator of thrombin-stimulated platelet procoagulant activity. Proc. Natl. Acad. Sci. USA 1999 96 20 11189 11193 10.1073/pnas.96.20.11189 10500152
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240375398250916093346
Loading
/content/journals/cmm/10.2174/0115665240375398250916093346
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: DES ; p53 ; DEB ; SCH79797 ; angioplasty ; apoptosis ; mitochondria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test