Skip to content
2000
image of Hemochromatosis and Hepatic Complications: A Comprehensive Review of Molecular Mechanisms, Diagnostics, and Emerging Therapeutics

Abstract

Hemochromatosis is an autosomal recessive iron overload disorder. It occurs due to a failure in the hepcidin response, leading to systemic iron overload. The high iron levels in the plasma stored in various organs cause injury and permanent damage. There are two types of hemochromatosis: primary and secondary. In non-HFE hemochromatosis, mutations in the HJV, HAMP, TRF2, and SLC40A1 genes are implicated, with the associated condition classified as type I hemochromatosis. In contrast, juvenile hemochromatosis (type II hemochromatosis/ HFE II) is linked to mutations in the hemojuvelin gene or the antimicrobial peptide hepcidin. In this study, relevant literature in databases, including PubMed, MEDLINE records, Cochrane Central Register of Controlled Trials (CENTRAL), Google Scholar, and Embase, was searched. Our study inclusion criteria encompassed both experimental and observational studies or a combination of both, with data derived from the human population. The exclusion criteria included animal models, observational studies, and unpublished data. Hepcidin is usually up-regulated in response to high serum iron, but it is unexpectedly low in patients with hemochromatosis because of mutations in HFE, hemojuvelin (JH), and transferrin receptor 2 (TfR2). TfR2, expressed by hepatocytes, is mutated in hemochromatosis type III. Future research directions include exploring the molecular mechanisms underlying the effects of the TFR2 gene variant on iron homeostasis and liver damage and investigating potential therapeutic targets for treating hemochromatosis-related liver disease. Additionally, further epidemiological and modern genetic engineering studies are needed to better understand the prevalence and impact of hemochromatosis on liver health in different populations.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240371495250505054101
2025-06-04
2025-09-14
Loading full text...

Full text loading...

References

  1. Huang L. Li Y. Tang R. Bile acids metabolism in the gut-liver axis mediates liver injury during lactation. Life Sci. 2024 338 122380 10.1016/j.lfs.2023.122380 38142738
    [Google Scholar]
  2. Wu Z. Shangguan D. Huang Q. Wang Y.K. Drug metabolism and transport mediated the hepatotoxicity of Pleuropterus multiflorus root: A review. Drug Metab. Rev. 2024 56 4 349 358 10.1080/03602532.2024.2405163 39350738
    [Google Scholar]
  3. Tan Q. Chu H. Wei J. Astaxanthin alleviates hepatic lipid metabolic dysregulation induced by microcystin-LR. Toxins (Basel) 2024 16 9 401 10.3390/toxins16090401 39330859
    [Google Scholar]
  4. Shen Y. Cheng L. Xu M. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism 2023 146 155657 10.1016/j.metabol.2023.155657 37422021
    [Google Scholar]
  5. Hutterer F. Rubin E. Popper H. Mechanism of collagen resorption in reversible hepatic fibrosis. Exp. Mol. Pathol. 1964 3 3 215 223 10.1016/0014‑4800(64)90054‑1 14194321
    [Google Scholar]
  6. Pérez-Tamayo R. Cirrhosis of the liver: A reversible disease? Pathol. Annu. 1979 14 Pt 2 183 213 232753
    [Google Scholar]
  7. Chu H. Du C. Yang Y. MC-LR aggravates liver lipid metabolism disorders in obese mice fed a high-fat diet via PI3K/AKT/mTOR/SREBP1 signaling pathway. Toxins (Basel) 2022 14 12 833 10.3390/toxins14120833 36548730
    [Google Scholar]
  8. Zhou S. Deng F. Zhang J. Chen G. Incidence and risk factors for postoperative delirium after liver transplantation: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021 25 8 3246 3253 33928610
    [Google Scholar]
  9. He J. Feng X. Liu Y. Graveoline attenuates D-GalN/LPS-induced acute liver injury via inhibition of JAK1/STAT3 signaling pathway. Biomed. Pharmacother. 2024 177 117163 10.1016/j.biopha.2024.117163 39018876
    [Google Scholar]
  10. Yi-wen Z. Mei-hua B. Xiao-ya L. Yu C. Jing Y. Hong-hao Z. Effects of oridonin on hepatic cytochrome P450 expression and activities in PXR-humanized mice. Biol. Pharm. Bull. 2018 41 5 707 712 10.1248/bpb.b17‑00882 29709908
    [Google Scholar]
  11. Bardou-Jacquet E. Ben Ali Z. Beaumont-Epinette M.P. Loréal O. Jouanolle A.M. Brissot P. Non-HFE hemochromatosis: Pathophysiological and diagnostic aspects. Clin. Res. Hepatol. Gastroenterol. 2014 38 2 143 154 10.1016/j.clinre.2013.11.003 24321703
    [Google Scholar]
  12. Kanwar P. Kowdley K.V. Diagnosis and treatment of hereditary hemochromatosis: An update. Expert Rev. Gastroenterol. Hepatol. 2013 7 6 517 530 10.1586/17474124.2013.816114 23985001
    [Google Scholar]
  13. Crawford D.H.G. Ramm G.A. Bridle K.R. Nicoll A.J. Delatycki M.B. Olynyk J.K. Clinical practice guidelines on hemochromatosis: Asian Pacific Association for the Study of the Liver. Hepatol. Int. 2023 17 3 522 541 10.1007/s12072‑023‑10510‑3 37067673
    [Google Scholar]
  14. Schmitt B. Golub R.M. Green R. Screening primary care patients for hereditary hemochromatosis with transferrin saturation and serum ferritin level: Systematic review for the American College of Physicians. Ann. Intern. Med. 2005 143 7 522 536 10.7326/0003‑4819‑143‑7‑200510040‑00011 16204165
    [Google Scholar]
  15. Savatt J.M. Johns A. Schwartz M.L. McDonald W.S. Salvati Z.M. Oritz N.M. Testing and management of iron overload after genetic screening–identified hemochromatosis. JAMA Netw. Open 2023 6 10 e2338995 10.1001/jamanetworkopen.2023.38995
    [Google Scholar]
  16. Moretti D. van Doorn G.M. Swinkels D.W. Melse-Boonstra A. Relevance of dietary iron intake and bioavailability in the management of HFE hemochromatosis: A systematic review. Am. J. Clin. Nutr. 2013 98 2 468 479 10.3945/ajcn.112.048264 23803887
    [Google Scholar]
  17. Barton J.C. Edwards C.Q. Acton R.T. HFE hemochromatosis in African Americans: Prevalence estimates of iron overload and iron overload-related disease. Am. J. Med. Sci. 2023 365 1 31 36 10.1016/j.amjms.2022.08.015 36096187
    [Google Scholar]
  18. Turshudzhyan A. Wu D.C. Wu G.Y. Primary non-HFE hemochromatosis: A review. J. Clin. Transl. Hepatol. 2023 11 4 925 931 37408807
    [Google Scholar]
  19. Abou Yassine A. MacDougall K. Sasso R. The evolution of iron-related comorbidities and hospitalization in patients with hemochromatosis: An analysis of the nationwide inpatient sample. Blood Sci. 2023 5 2 131 135 10.1097/BS9.0000000000000151 37228771
    [Google Scholar]
  20. Peesapati V.S.R. Varanasi P. Patel H. Akella S.L. Beyond the usual suspects: Hereditary hemochromatosis and transaminitis in primary care. Cureus 2023 15 8 e43481 10.7759/cureus.43481 37711943
    [Google Scholar]
  21. Wallace D.F. Subramaniam V.N. The global prevalence of HFE and non-HFE hemochromatosis estimated from analysis of next-generation sequencing data. Genet. Med. 2016 18 6 618 626 10.1038/gim.2015.140 26633544
    [Google Scholar]
  22. Andersen R.V. Tybjærg-Hansen A. Appleyard M. Birgens H. Nordestgaard B.G. Hemochromatosis mutations in the general population: Iron overload progression rate. Blood 2004 103 8 2914 2919 10.1182/blood‑2003‑10‑3564 15070663
    [Google Scholar]
  23. Martins R. Picanço I. Fonseca A. The role of HFE mutations on iron metabolism in beta-thalassemia carriers. J. Hum. Genet. 2004 49 12 651 655 10.1007/s10038‑004‑0202‑z 15538648
    [Google Scholar]
  24. Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005 106 12 3710 3717 10.1182/blood‑2005‑05‑1857 16030190
    [Google Scholar]
  25. Andrews N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999 341 26 1986 1995 10.1056/NEJM199912233412607 10607817
    [Google Scholar]
  26. Kontoghiorghes G.J. Iron load toxicity in medicine: From molecular and cellular aspects to clinical implications. Int. J. Mol. Sci. 2023 24 16 12928 10.3390/ijms241612928 37629109
    [Google Scholar]
  27. Cobilinschi C.O. Săulescu I. Caraiola S. A “mix and match” in hemochromatosis - A case report and literature focus on the liver. Medicina (B. Aires) 2023 59 9 1586 10.3390/medicina59091586 37763705
    [Google Scholar]
  28. Paganoni R. Lechel A. Vujic Spasic M. Iron at the interface of hepatocellular carcinoma. Int. J. Mol. Sci. 2021 22 8 4097 10.3390/ijms22084097 33921027
    [Google Scholar]
  29. Shamas A.G. Primary hereditary haemochromatosis and pregnancy. GastroHep 2023 2023 12 1 12 10.1155/2023/2674203
    [Google Scholar]
  30. Pan Q. Gao M. Kim D. Hepatocyte FoxO1 deficiency protects from liver fibrosis via reducing inflammation and TGF-β1-mediated HSC activation. Cell. Mol. Gastroenterol. Hepatol. 2024 17 1 41 58 10.1016/j.jcmgh.2023.08.013 37678798
    [Google Scholar]
  31. Tirnitz-Parker J.E. Glanfield A. Olynyk J.K. Ramm G.A. Iron and hepatic carcinogenesis. Crit. Rev. Oncog. 2013 18 5 391 407 10.1615/CritRevOncog.2013007759
    [Google Scholar]
  32. Powell L.W. Dixon J.L. Ramm G.A. Screening for hemochromatosis in asymptomatic subjects with or without a family history. Arch. Intern. Med. 2006 166 3 294 301 10.1001/archinte.166.3.294 16476869
    [Google Scholar]
  33. Adams P.C. Passmore L. Chakrabarti S. Reboussin D.M. Acton R.T. Barton J.C. Liver diseases in the hemochromatosis and iron overload screening study. Clin. Gastroenterol. Hepatol. 2006 4 7 918 923.e1 10.1016/j.cgh.2006.04.013
    [Google Scholar]
  34. Kowdley K.V. Modi N.B. Peltekian K. Rusfertide for the treatment of iron overload in HFE-related haemochromatosis: An open-label, multicentre, proof-of-concept phase 2 trial. Lancet Gastroenterol. Hepatol. 2023 8 12 1118 1128 10.1016/S2468‑1253(23)00250‑9 37863080
    [Google Scholar]
  35. Wróblewska A. Woziwodzka A. Rybicka M. Bielawski K.P. Sikorska K. Polymorphisms related to iron homeostasis associate with liver disease in chronic hepatitis C. Viruses 2023 15 8 1710 10.3390/v15081710 37632052
    [Google Scholar]
  36. Romero-Cortadellas L. Venturi V. Martín-Sánchez J.C. Haemochromatosis patients’ research priorities: Towards an improved quality of life. Health Expect. 2023 26 6 2293 2301 10.1111/hex.13830 37503783
    [Google Scholar]
  37. Valenti L. Corradini E. Adams L.A. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat. Rev. Endocrinol. 2023 19 5 299 310 10.1038/s41574‑023‑00807‑6 36805052
    [Google Scholar]
  38. Moon A.M. Singal A.G. Tapper E.B. Contemporary epidemiology of chronic liver disease and cirrhosis. Clin. Gastroenterol. Hepatol. 2020 18 12 2650 2666 10.1016/j.cgh.2019.07.060 31401364
    [Google Scholar]
  39. Edwards C.Q. Griffen L.M. Goldgar D. Drummond C. Skolnick M.H. Kushner J.P. Prevalence of hemochromatosis among 11,065 presumably healthy blood donors. N. Engl. J. Med. 1988 318 21 1355 1362 10.1056/NEJM198805263182103 3367936
    [Google Scholar]
  40. Fracanzani A. Conte D. Fraquelli M. Increased cancer risk in a cohort of 230 patients with hereditary hemochromatosis in comparison to matched control patients with non–iron-related chronic liver disease. Hepatology 2001 33 3 647 651 10.1053/jhep.2001.22506 11230745
    [Google Scholar]
  41. Haider M.B. Al Sbihi A. Chaudhary A.J. Haider S.M. Edhi A.I. Heredity hemochromatosis: Temporal trends, sociodemographic characteristics, and independent risk factor of hepatocellular cancer – nationwide population-based study. World J. Hepatol. 2022 14 9 1804 1816 10.4254/wjh.v14.i9.1804 36185720
    [Google Scholar]
  42. Schaefer B. Pammer L.M. Pfeifer B. Penetrance, cancer incidence and survival in HFE haemochromatosis - A population-based cohort study. Liver Int. 2024 44 3 838 847 10.1111/liv.15797 38263707
    [Google Scholar]
  43. Girelli D. Busti F. Brissot P. Cabantchik I. Muckenthaler M.U. Porto G. Hemochromatosis classification: Update and recommendations by the BIOIRON Society. Blood 2022 139 20 3018 3029 10.1182/blood.2021011338 34601591
    [Google Scholar]
  44. Okeke E. Davwar P.M. Roberts L. Sartorius K. Spearman W. Malu A. Epidemiology of liver cancer in Africa: current and future trends. Semin. Liver Dis. 2020 40 2 111 123 10.1055/s‑0039‑3399566
    [Google Scholar]
  45. Pietrangelo A. Hemochromatosis: An endocrine liver disease. Hepatology 2007 46 4 1291 1301 10.1002/hep.21886 17886335
    [Google Scholar]
  46. Zhang C. Bjornson E. Arif M. The acute effect of metabolic cofactor supplementation: A potential therapeutic strategy against non-alcoholic fatty liver disease. Mol. Syst. Biol. 2020 16 4 e9495 10.15252/msb.209495 32337855
    [Google Scholar]
  47. Zoller H. Schaefer B. Vanclooster A. EASL clinical practice guidelines on Haemochromatosis. J. Hepatol. 2022 77 2 479 502 10.1016/j.jhep.2022.03.033 35662478
    [Google Scholar]
  48. Aboulkhair A.A. Ezzi A.I.A. Alharbi T.A. Alzughbi A.S. Marick K.M. Alshammari S.M.A. Evaluation of hemochromatosis, diagnosis and management: Simple literature review. Arch Pharm Prac 2020 11 3 101 103
    [Google Scholar]
  49. Yu Y.C. Luu H.N. Wang R. Serum biomarkers of iron status and risk of hepatocellular carcinoma development in patients with nonalcoholic fatty liver disease. Cancer Epidemiol. Biomarkers Prev. 2022 31 1 230 235 10.1158/1055‑9965.EPI‑21‑0754 34649958
    [Google Scholar]
  50. Wood M.J. Powell L.W. Ramm G.A. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis. Blood 2008 111 9 4456 4462 10.1182/blood‑2007‑11‑122374 18316631
    [Google Scholar]
  51. Wang K. Yang F. Zhang P. Yang Y. Jiang L. Genetic effects of iron levels on liver injury and risk of liver diseases: A two-sample Mendelian randomization analysis. Front. Nutr. 2022 9 964163 10.3389/fnut.2022.964163 36185655
    [Google Scholar]
  52. Martin M. De-Lédinghen V. Ghorayeb I. Genetic hemochromatosis is not a risk factor for Restless Legs Syndrome. Sleep Med. 2023 104 18 21 10.1016/j.sleep.2023.02.014 36870323
    [Google Scholar]
  53. Bardou-Jacquet E. Morandeau E. Anderson G.J. Regression of fibrosis stage with treatment reduces long-term risk of liver cancer in patients with hemochromatosis caused by mutation in HFE. Clin. Gastroenterol. Hepatol. 2020 18 8 1851 1857 10.1016/j.cgh.2019.10.010 31622736
    [Google Scholar]
  54. Premkumar M. Anand A.C. Overview of complications in cirrhosis. J. Clin. Exp. Hepatol. 2022 12 4 1150 1174 10.1016/j.jceh.2022.04.021 35814522
    [Google Scholar]
  55. Sleiman J. Tarhini A. Bou-Fakhredin R. Saliba A. Cappellini M. Taher A. Non-transfusion-dependent thalassemia: An update on complications and management. Int. J. Mol. Sci. 2018 19 1 182 10.3390/ijms19010182 29316681
    [Google Scholar]
  56. Ganz T. Anemia of inflammation. N. Engl. J. Med. 2019 381 12 1148 1157 10.1056/NEJMra1804281 31532961
    [Google Scholar]
  57. Piperno A. Classification and diagnosis of iron overload. Haematologica 1998 83 5 447 455 9658731
    [Google Scholar]
  58. Brissot P. Ropert M. Le Lan C. Loréal O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. Biochim. Biophys. Acta, Gen. Subj. 2012 1820 3 403 410 10.1016/j.bbagen.2011.07.014 21855608
    [Google Scholar]
  59. Wood J.C. Guidelines for quantifying iron overload. Hematology (Am. Soc. Hematol. Educ. Program) 2014 2014 1 210 215 10.1182/asheducation‑2014.1.210
    [Google Scholar]
  60. van Vuren A.J. van Wijk R. van Beers E.J. Marx J.J.M. Liver iron retention estimated from utilization of oral and intravenous radioiron in various anemias and hemochromatosis in humans. Int. J. Mol. Sci. 2020 21 3 1077 10.3390/ijms21031077 32041196
    [Google Scholar]
  61. Brissot P. Troadec M.B. Loréal O. Brissot E. Pathophysiology and classification of iron overload diseases; update 2018. Transfus. Clin. Biol. 2019 26 1 80 88 10.1016/j.tracli.2018.08.006 30173950
    [Google Scholar]
  62. Moukalled N.M. El Rassi F.A. Temraz S.N. Taher A.T. Iron overload in patients with myelodysplastic syndromes: An updated overview. Cancer 2018 124 20 3979 3989 10.1002/cncr.31550 29905937
    [Google Scholar]
  63. Bring P. Partovi N. Ford J.A.E. Yoshida E.M. Iron overload disorders: Treatment options for patients refractory to or intolerant of phlebotomy. Pharmacotherapy 2008 28 3 331 342 10.1592/phco.28.3.331 18294113
    [Google Scholar]
  64. Rovai A. Chung B. Hu Q. In vivo adenine base editing reverts C282Y and improves iron metabolism in hemochromatosis mice. Nat. Commun. 2022 13 1 5215 10.1038/s41467‑022‑32906‑9 36064805
    [Google Scholar]
  65. Rose C.F. Amodio P. Bajaj J.S. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J. Hepatol. 2020 73 6 1526 1547 10.1016/j.jhep.2020.07.013 33097308
    [Google Scholar]
  66. Beier J.I. Arteel G.E. Environmental exposure as a risk-modifying factor in liver diseases: Knowns and unknowns. Acta Pharm. Sin. B 2021 11 12 3768 3778 10.1016/j.apsb.2021.09.005 35024305
    [Google Scholar]
  67. Olynyk J.K. Trinder D. Ramm G.A. Britton R.S. Bacon B.R. Hereditary hemochromatosis in the post-HFE era. Hepatology 2008 48 3 991 1001 10.1002/hep.22507 18752323
    [Google Scholar]
  68. Hübscher S.G. Iron overload, inflammation and fibrosis in genetic haemochromatosis. J. Hepatol. 2003 38 4 521 525 10.1016/S0168‑8278(03)00078‑3 12663247
    [Google Scholar]
  69. Olynyk J.K. Ramm G.A. Risk of liver cancer in HFE-hemochromatosis. Gastroenterology 2021 161 5 1718 1719 10.1053/j.gastro.2021.08.025 34419460
    [Google Scholar]
  70. Fletcher L.M. Powell L.W. Hemochromatosis and alcoholic liver disease. Alcohol 2003 30 2 131 136 10.1016/S0741‑8329(03)00128‑9 12957297
    [Google Scholar]
  71. Irving M.G. Halliday J.W. Powell L.W. Association between alcoholism and increased hepatic iron stores. Alcohol. Clin. Exp. Res. 1988 12 1 7 13 10.1111/j.1530‑0277.1988.tb00124.x 3279862
    [Google Scholar]
  72. Fletcher L. Halliday J. Powell L. Interrelationships of alcohol and iron in liver disease with particular reference to the iron‐binding proteins, ferritin and transferrin. J. Gastroenterol. Hepatol. 1999 14 3 202 214 10.1046/j.1440‑1746.1999.01836.x 10197487
    [Google Scholar]
  73. Karimzadeh Toosi A.E. Liver fibrosis: Causes and methods of assessment, A review. Rom. J. Intern. Med. 2015 53 4 304 314 10.1515/rjim‑2015‑0039 26939206
    [Google Scholar]
  74. Tsuchida T. Friedman S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 2017 14 7 397 411 10.1038/nrgastro.2017.38 28487545
    [Google Scholar]
  75. Ibrahim W.H. Abokresha M.M. Nigm D.A. Abdelal S.M. Kelani A. Aly M.G. Relation of liver siderosis to liver fibrosis in hemodialysis patients with severe hyperferritinemia secondary to high doses of intravenous iron supplementation. J. Ren. Nutr. 2023 33 2 337 345 10.1053/j.jrn.2022.08.004 36182059
    [Google Scholar]
  76. Mueller S. Chen C. Mueller J. Wang S. Novel insights into alcoholic liver disease: Iron overload, iron sensing and hemolysis. J. Transl. Int. Med. 2022 10 2 92 124 10.2478/jtim‑2021‑0056 35959455
    [Google Scholar]
  77. Zheng H. Yang F. Deng K. Relationship between iron overload caused by abnormal hepcidin expression and liver disease. Rev. Med. (São Paulo) 2023 102 11 e33225 10.1097/MD.0000000000033225 36930080
    [Google Scholar]
  78. Girelli D. Ugolini S. Busti F. Marchi G. Castagna A. Modern iron replacement therapy: clinical and pathophysiological insights. Int. J. Hematol. 2018 107 1 16 30 10.1007/s12185‑017‑2373‑3 29196967
    [Google Scholar]
  79. Gozzelino R. Arosio P. Iron homeostasis in health and disease. Int. J. Mol. Sci. 2016 17 1 130 10.3390/ijms17010130 26805813
    [Google Scholar]
  80. Porto G. Brissot P. Swinkels D.W. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH). Eur. J. Hum. Genet. 2016 24 4 479 495 10.1038/ejhg.2015.128 26153218
    [Google Scholar]
  81. Fitzsimons E.J. Cullis J.O. Thomas D.W. Tsochatzis E. Griffiths W.J.H. Diagnosis and therapy of genetic haemochromatosis (review and 2017 update). Br. J. Haematol. 2018 181 3 293 303 10.1111/bjh.15164 29663319
    [Google Scholar]
  82. Anderson G.J. Frazer D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017 106 Suppl. 6 1559S 1566S 10.3945/ajcn.117.155804 29070551
    [Google Scholar]
  83. Castiella A. Alústiza J.M. Zapata E. Emparanza J.I. Is MRI becoming the new gold standard for diagnosing iron overload in hemochromatosis and other liver iron disorders? Imaging Med. 2013 5 6 515 524 10.2217/iim.13.60
    [Google Scholar]
  84. Golfeyz S. Lewis S. Weisberg I.S. Hemochromatosis: Pathophysiology, evaluation, and management of hepatic iron overload with a focus on MRI. Expert Rev. Gastroenterol. Hepatol. 2018 12 8 767 778 10.1080/17474124.2018.1496016 29966105
    [Google Scholar]
  85. Nashwan A.J. Alkhawaldeh I.M. Shaheen N. Using artificial intelligence to improve body iron quantification: A scoping review. Blood Rev. 2023 62 101133 10.1016/j.blre.2023.101133 37748945
    [Google Scholar]
  86. Legros L. Bardou-Jacquet E. Latournerie M. Non-invasive assessment of liver fibrosis in C282Y homozygous HFE hemochromatosis. Liver Int. 2015 35 6 1731 1738 10.1111/liv.12762 25495562
    [Google Scholar]
  87. Adams L.A. Crawford D.H. Stuart K. The impact of phlebotomy in nonalcoholic fatty liver disease: A prospective, randomized, controlled trial. Hepatology 2015 61 5 1555 1564 10.1002/hep.27662 25524401
    [Google Scholar]
  88. Bruzzese A. Martino E.A. Mendicino F. Iron chelation therapy. Eur. J. Haematol. 2023 110 5 490 497 10.1111/ejh.13935 36708354
    [Google Scholar]
  89. Kowdley K.V. Iron overload in patients with chronic liver disease. Gastroenterol. Hepatol. 2016 12 11 695 698 28035198
    [Google Scholar]
  90. Mobarra N. Shanaki M. Ehteram H. A review on iron chelators in treatment of iron overload syndromes. Int. J. Hematol. Oncol. Stem Cell Res. 2016 10 4 239 247 27928480
    [Google Scholar]
  91. Bacon B.R. Adams P.C. Kowdley K.V. Powell L.W. Tavill A.S. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011 54 1 328 343 10.1002/hep.24330 21452290
    [Google Scholar]
  92. Gandon Y. Olivié D. Guyader D. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004 363 9406 357 362 10.1016/S0140‑6736(04)15436‑6 15070565
    [Google Scholar]
  93. Kontoghiorghes G.J. New iron metabolic pathways and chelation targeting strategies affecting the treatment of all types and stages of cancer. Int. J. Mol. Sci. 2022 23 22 13990 10.3390/ijms232213990 36430469
    [Google Scholar]
  94. Diaf S.R. Khashan R. Moore P. Computational method of molecular dynamics simulation identifies insulin receptor binding site 2 as the primary site for insulin binding. Med Pharm J 2024 3 4 137 159 10.55940/medphar202488
    [Google Scholar]
  95. Swinkels D.W. Janssen M.C.H. Bergmans J. Marx J.J.M. Hereditary hemochromatosis: Genetic complexity and new diagnostic approaches. Clin. Chem. 2006 52 6 950 968 10.1373/clinchem.2006.068684 16627556
    [Google Scholar]
  96. Babitt J.L. Lin H.Y. The molecular pathogenesis of hereditary hemochromatosis. Semin. Liver Dis. 2011 31 3 280 292 10.1055/s‑0031‑1286059
    [Google Scholar]
  97. Beutler E. Felitti V. Gelbart T. Ho N. Genetics of iron storage and hemochromatosis. Drug Metab. Dispos. 2001 29 4 Pt 2 495 499 11259339
    [Google Scholar]
  98. Burke W. Thomson E. Khoury M.J. Hereditary hemochromatosis: Gene discovery and its implications for population-based screening. JAMA 1998 280 2 172 178 10.1001/jama.280.2.172 9669792
    [Google Scholar]
  99. Pietrangelo A. Hereditary hemochromatosis: Pathogenesis, diagnosis, and treatment. Gastroenterology 2010 139 2 393 408.e2 10.1053/j.gastro.2010.06.013
    [Google Scholar]
  100. Baas F.S. Rishi G. Swinkels D.W. Subramaniam V.N. Genetic diagnosis in hereditary hemochromatosis: discovering and understanding the biological relevance of variants. Clin. Chem. 2021 67 10 1324 1341 10.1093/clinchem/hvab130 34402502
    [Google Scholar]
  101. Stickel F. Buch S. Zoller H. Evaluation of genome-wide loci of iron metabolism in hereditary hemochromatosis identifies PCSK7 as a host risk factor of liver cirrhosis. Hum. Mol. Genet. 2014 23 14 3883 3890 10.1093/hmg/ddu076 24556216
    [Google Scholar]
  102. Grosse S.D. Gurrin L.C. Bertalli N.A. Allen K.J. Clinical penetrance in hereditary hemochromatosis: estimates of the cumulative incidence of severe liver disease among HFE C282Y homozygotes. Genet. Med. 2018 20 4 383 389 10.1038/gim.2017.121 28771247
    [Google Scholar]
  103. Ruddy D.A. Kronmal G.S. Lee V.K. A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Res. 1997 7 5 441 456 10.1101/gr.7.5.441 9149941
    [Google Scholar]
  104. Petrak J. Myslivcova D. Man P. Cmejla R. Cmejlova J. Vyoral D. Proteomic analysis of iron overload in human hepatoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2006 290 5 G1059 G1066 10.1152/ajpgi.00469.2005 16410366
    [Google Scholar]
  105. Tippairote T. Bjørklund G. Peana M. Roytrakul S. The proteomics study of compounded HFE/TF/TfR2/HJV genetic variations in a Thai family with iron overload, chronic anemia, and motor neuron disorder. J. Mol. Neurosci. 2021 71 3 545 555 10.1007/s12031‑020‑01676‑8 32895881
    [Google Scholar]
  106. Sánchez-Jaut S. Pérez-Benavente S. Abad P. Protein susceptibility to peroxidation by 4-hydroxynonenal in hereditary hemochromatosis. Int. J. Mol. Sci. 2023 24 3 2922 10.3390/ijms24032922 36769239
    [Google Scholar]
  107. Petrak J Myslivcova D Man P Vyoral D Proteomic analysis of hepatic iron overload. Faseb 2006; 20(5): LB118. 10.1096/fasebj.20.5.LB118
    [Google Scholar]
  108. del Rey M.Q. Xiao X. Kuljanin M. Malcolm C. Gikandi A. Babitt J. Quantitative proteomics identifies alterations in the liver proteome in mouse models of pathophysiological iron overload. The Role of NCOA4 Mediated Ferritinophagy in Iron Biology. Amsterdam Vrije University 2023 77 102
    [Google Scholar]
  109. Demetz E. Tymoszuk P. Hilbe R. The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development. Eur. Heart J. 2020 41 40 3949 3959 10.1093/eurheartj/ehaa140 32227235
    [Google Scholar]
  110. Li Y. Xu A. Liu S. SUGP2 p.(Arg639Gln) variant is involved in the pathogenesis of hemochromatosis via the CIRBP/BMPER signaling pathway. Am. J. Hematol. 2024 99 9 1691 1703 10.1002/ajh.27377 38800953
    [Google Scholar]
  111. Xu Q. Hou Y. Chang X. CRISPR/Cas9-mediated three nucleotide insertion corrects a deletion mutation in MRP1/ABCC1 and restores its proper folding and function. Mol. Ther. Nucleic Acids 2017 7 429 438 10.1016/j.omtn.2017.05.005 28624219
    [Google Scholar]
  112. Maestro S. Weber N.D. Zabaleta N. Aldabe R. Gonzalez-Aseguinolaza G. Novel vectors and approaches for gene therapy in liver diseases. JHEP Rep. Innov. Hepatol. 2021 3 4 100300 10.1016/j.jhepr.2021.100300 34159305
    [Google Scholar]
  113. Wahidin N.K. Lai M.I. Non-deletional alpha thalassaemia: A review of emerging therapy. Mal J Med Health Sci 2021 17 Suppl. 10 72 84
    [Google Scholar]
  114. Chauhan W. Shoaib S. Fatma R. Zaka-ur-Rab Z. Afzal M. Beta‐thalassemia and the advent of new interventions beyond transfusion and iron chelation. Br. J. Clin. Pharmacol. 2022 88 8 3610 3626 10.1111/bcp.15343 35373382
    [Google Scholar]
  115. Melton L.D. Allan A.C. CRISPR, one tool with the potential to change our world. Food New Zealand 2021 21 4 12 16
    [Google Scholar]
  116. Park C.S. Habib O. Lee Y. Hur J.K. Applications of CRISPR technologies to the development of gene and cell therapy. BMB Rep. 2024 57 1 2 11 10.5483/BMBRep.2023‑0221 38178651
    [Google Scholar]
  117. Kumar K.V.S.S. Sree S.L. Sree S.J. Babu Y.N. Synthesis and free radical scavenging activity of (2e,4e)-1,5-diphenylpenta-2,4-dien-1-one using in vitro method. Med Pharm J 2024 3 4 188 204 10.55940/medphar202497
    [Google Scholar]
  118. Rovai A. Developing and improving genome editing as a therapeutic tool for hereditary hemochromatosis. Doctor of Philosophy. Hannover Medical School 2022
    [Google Scholar]
  119. Rees H.A. Liu D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018 19 12 770 788 10.1038/s41576‑018‑0059‑1 30323312
    [Google Scholar]
  120. Lee H.K. Oh Y. Hong J. Lee S.H. Hur J.K. Development of CRISPR technology for precise single-base genome editing: A brief review. BMB Rep. 2021 54 2 98 105 10.5483/BMBRep.2021.54.2.217 33298245
    [Google Scholar]
  121. Schmidtke J. Twenty-five years of contemplating genotype-based hereditary hemochromatosis population screening. Genes (Basel) 2022 13 9 1622 10.3390/genes13091622 36140790
    [Google Scholar]
  122. Dhillon B.K. Chopra G. Jamwal M. Adult onset hereditary hemochromatosis is associated with a novel recurrent Hemojuvelin (HJV) gene mutation in north Indians. Blood Cells Mol. Dis. 2018 73 14 21 10.1016/j.bcmd.2018.08.003 30195625
    [Google Scholar]
  123. Al-Hussaniy H.A. Al-Tameemi Z.S. Al-Zubaidi B.A. Oraibi A.I. Naji F.A. Kilani S. Pharmacological properties of Spirulina species: Hepatoprotective, antioxidant and anticancer effects. Farmacia 2023 71 4 670 678 10.31925/farmacia.2023.4.2
    [Google Scholar]
  124. Shariati L. Modarressi M.H. Tabatabaiefar M.A. Engineered zinc‐finger nuclease to generate site‐directed modification in the KLF1 gene for fetal hemoglobin induction. J. Cell. Biochem. 2019 120 5 8438 8446 10.1002/jcb.28130 30556211
    [Google Scholar]
  125. Vannocci T. Development and characterisation of a zinc finger nuclease specific for the human beta-globin gene.Doctor of Philosophy, Imperial College London, Hammersmith Hospital 2013
    [Google Scholar]
  126. Ruiz de Galarreta M. Lujambio A. Therapeutic editing of hepatocyte genome in vivo. J. Hepatol. 2017 67 4 818 828 10.1016/j.jhep.2017.05.012 28527665
    [Google Scholar]
  127. Wienert B. Using genome editing to introduce naturally occurring mutations associated with elevated foetal haemoglobin. Doctor in Philosophy. The University of New South Wales 2016
    [Google Scholar]
  128. Hawula Z.J. Identification and analysis of genetic and chemical modulators of iron metabolism. Doctor in Philosophy. Queensland University of Technology 2021 10.5204/thesis.eprints.225904
    [Google Scholar]
  129. Griffiths W.J.H. Review article: the genetic basis of haemochromatosis. Aliment. Pharmacol. Ther. 2007 26 3 331 342 10.1111/j.1365‑2036.2007.03387.x 17635368
    [Google Scholar]
  130. Costa M.I.E. Lymphocytes in hemochromatosis: A genomic and functional approach. Doctor of Philosophy. Universidade do Porto 2015
    [Google Scholar]
  131. Pantopoulos K. Function of the hemochromatosis protein HFE: Lessons from animal models. World J. Gastroenterol. 2008 14 45 6893 6901 10.3748/wjg.14.6893 19058322
    [Google Scholar]
  132. Niazi S.K. The dawn of in vivo gene editing era: A revolution in the making. Biologics 2023 3 4 253 295 10.3390/biologics3040014
    [Google Scholar]
  133. Xiao X. Moschetta G.A. Xu Y. Regulation of iron homeostasis by hepatocyte TfR1 requires HFE and contributes to hepcidin suppression in β-thalassemia. Blood 2023 141 4 422 432 10.1182/blood.2022017811 36322932
    [Google Scholar]
  134. Zhang B. CRISPR/Cas gene therapy. J. Cell. Physiol. 2021 236 4 2459 2481 10.1002/jcp.30064 32959897
    [Google Scholar]
  135. Jang H.K. Song B. Hwang G.H. Bae S. Current trends in gene recovery mediated by the CRISPR-Cas system. Exp. Mol. Med. 2020 52 7 1016 1027 10.1038/s12276‑020‑0466‑1 32651459
    [Google Scholar]
  136. McGrath S.P. Kozel B.A. Gracefo S. Sutherland N. Danford C.J. Walton N. A comparative evaluation of ChatGPT 3.5 and ChatGPT 4 in responses to selected genetics questions. J. Am. Med. Inform. Assoc. 2024 31 10 2271 2283 10.1093/jamia/ocae128 38872284
    [Google Scholar]
  137. Kenawi M. Rouger E. Island M.L. Ceruloplasmin deficiency does not induce macrophagic iron overload: Lessons from a new rat model of hereditary aceruloplasminemia. FASEB J. 2019 33 12 13492 13502 10.1096/fj.201901106R 31560858
    [Google Scholar]
  138. Nemeth E. Tuttle M.S. Powelson J. Vaughn M.B. Donovan A. Ward D.M. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 2004 306 5704 2090 2093 10.1126/science.1104742
    [Google Scholar]
  139. Babitt J.L. Huang F.W. Wrighting D.M. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006 38 5 531 539 10.1038/ng1777 16604073
    [Google Scholar]
  140. Khan A.A. Hadi Y. Hassan A. Kupec J. Polycythemia and anemia in hereditary hemochromatosis. Cureus 2020 12 4 e7607 32399341
    [Google Scholar]
  141. Wu S.S. Li Q.C. Yin C.Q. Xue W. Song C.Q. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 2020 10 10 4374 4382 10.7150/thno.43360 32292501
    [Google Scholar]
  142. Komor A.C. Kim Y.B. Packer M.S. Zuris J.A. Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016 533 7603 420 424 10.1038/nature17946 27096365
    [Google Scholar]
  143. Lancaster M.A. Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014 345 6194 1247125 10.1126/science.1247125 25035496
    [Google Scholar]
  144. Yin H. Song C.Q. Dorkin J.R. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016 34 3 328 333 10.1038/nbt.3471 26829318
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240371495250505054101
Loading
/content/journals/cmm/10.2174/0115665240371495250505054101
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ferroprotein ; hemochromatosis ; Hemojuvelin ; TALENs ; hepcidin ; hepatocytes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test