Skip to content
2000
image of Role of Exosomes from Nucleus Pulposus Cells in Attenuating Intervertebral Disc Degeneration by Inhibiting Nucleus Pulposus Cell Apoptosis via the miR-8485/GSK-3β/Wnt/β-catenin Signaling Axis

Abstract

Background

Studies have shown that abnormal stress is a significant inducer of Intervertebral Disc Degeneration (IVDD). Although traction force is commonly used to delay IVDD, its effects on Nucleus Pulposus Cells (NPCs) and their secreted exosomes remain unclear. In addition, this study systematically revealed the relationship between miR-8485 and IVDD for the first time.

Methods

Cellular experiments were performed using a Flexcell cell stretching platform to apply traction force to NPCs. After optimizing loading parameters, NPC-derived exosomes (NPCs-exo) were isolated and subjected to miRNA high-throughput sequencing. Differentially expressed miRNAs were identified, and their regulatory effects on the Wnt/β-catenin pathway were investigated. rabbit spinal samples were used to validate the cellular experimental results under traction force loading.

Results

NPCs-exo were found to be internalized by NPCs, and traction force promoted NPCs-exo secretion. High-throughput sequencing and differential expression analysis identified miR-8485 as a differentially expressed miRNA in NPCs-exo secreted under Cyclic Mechanical Tension (CMT) conditions. Dual-luciferase reporter assays confirmed the targeted regulatory relationship between miR-8485 and GSK-3β, as well as its involvement in the Wnt/β-catenin pathway-mediated regulation of NPCs degeneration. experiments, including morphological and immunofluorescence analyses, revealed that the traction group exhibited better morphology than the pressure group, with a more organized AF, NP, and higher NPCs content, though some loss persisted. Both groups showed significant differences in ECM markers (Collagen II, Aggrecan, MMP3) compared to the control (p < 0.05). Additionally, the traction group had significantly higher Collagen II and Aggrecan levels than the pressure group (p < 0.05).

Conclusion

CMT can promote the secretion of NPCs-exo, which are internalized by the NPCs. Through the delivery of miR-8485, NPCs-exo target and regulate GSK-3β, thereby enhancing Wnt/β-catenin pathway activity. This mechanism increases NPCs viability and extracellular matrix synthesis while suppressing apoptosis, ultimately delaying IVDD progression. Immunofluorescence staining in animal experiments confirmed that traction force effectively improves extracellular matrix expression in the IVD and mitigates stress-induced morphological alterations of the IVD.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240370788250617070218
2025-06-23
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/cmm/10.2174/0115665240370788250617070218/BMS-CMM-2024-449.html?itemId=/content/journals/cmm/10.2174/0115665240370788250617070218&mimeType=html&fmt=ahah

References

  1. Rodrigues-Pinto R. Richardson S.M. Hoyland J.A. An understanding of intervertebral disc development, maturation and cell phenotype provides clues to direct cell-based tissue regeneration therapies for disc degeneration. Eur. Spine J. 2014 23 9 1803 1814 10.1007/s00586‑014‑3305‑z 24777668
    [Google Scholar]
  2. Isa M.I.L. Teoh S.L. Nor M.N.H. Mokhtar S.A. Discogenic low back pain: Anatomy, pathophysiology and treatments of intervertebral disc degeneration. Int. J. Mol. Sci. 2022 24 1 208 10.3390/ijms24010208 36613651
    [Google Scholar]
  3. Keller T.S. Hansson T.H. Abram A.C. Spengler D.M. Panjabi M.M. Regional variations in the compressive properties of lumbar vertebral trabeculae. Effects of disc degeneration. Spine 1989 14 9 1012 1019 10.1097/00007632‑198909000‑00016 2781407
    [Google Scholar]
  4. Adams M.A. Dolan P. Spine biomechanics. J. Biomech. 2005 38 10 1972 1983 10.1016/j.jbiomech.2005.03.028 15936025
    [Google Scholar]
  5. Priyadarshani P. Li Y. Yao L. Advances in biological therapy for nucleus pulposus regeneration. Osteoarthritis Cartilage 2016 24 2 206 212 10.1016/j.joca.2015.08.014 26342641
    [Google Scholar]
  6. Urban J.P.G. Smith S. Fairbank J.C.T. Nutrition of the intervertebral disc. Spine 2004 29 23 2700 2709 10.1097/01.brs.0000146499.97948.52 15564919
    [Google Scholar]
  7. Hickman T.T. Rathan-Kumar S. Peck S.H. Development, pathogenesis, and regeneration of the intervertebral disc: Current and future insights spanning traditional to omics methods. Front. Cell Dev. Biol. 2022 10 841831 10.3389/fcell.2022.841831 35359439
    [Google Scholar]
  8. Boos N. Weissbach S. Rohrbach H. Weiler C. Spratt K.F. Nerlich A.G. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine 2002 27 23 2631 2644 10.1097/00007632‑200212010‑00002 12461389
    [Google Scholar]
  9. Zhan J.W. Wang S.Q. Feng M.S. Constant compression decreases vascular bud and VEGFA expression in a rabbit vertebral endplate ex vivo culture model. PLoS One 2020 15 6 e0234747 10.1371/journal.pone.0234747 32584845
    [Google Scholar]
  10. Cheng Z. Gan W. Xiang Q. Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration. Autophagy 2025 21 2 352 373 10.1080/15548627.2024.2395797 39212196
    [Google Scholar]
  11. Sinkemani A. Wang F. Xie Z. Chen L. Zhang C. Wu X. Nucleus pulposus cell conditioned medium promotes mesenchymal stem cell differentiation into nucleus pulposus-like cells under hypoxic conditions. Stem Cells Int. 2020 2020 1 24 10.1155/2020/8882549 33424982
    [Google Scholar]
  12. Hu Y. Zhang X. Lin M.Q. Nanoscale treatment of intervertebral disc degeneration: Mesenchymal stem cell exosome transplantation. Curr. Stem Cell Res. Ther. 2023 18 2 163 173 10.2174/1574888X17666220422093103 35466881
    [Google Scholar]
  13. Zhan J. Cui Y. Zhang P. Cartilage endplate‐targeted engineered exosome releasing and acid neutralizing hydrogel reverses intervertebral disc degeneration. Adv. Healthc. Mater. 2025 14 2 2403315 10.1002/adhm.202403315 39555665
    [Google Scholar]
  14. Feng X. Li Y. Su Q. Tan J. Degenerative nucleus pulposus cells derived exosomes promoted cartilage endplate cells apoptosis and aggravated intervertebral disc degeneration. Front. Mol. Biosci. 2022 9 835976 10.3389/fmolb.2022.835976 35359595
    [Google Scholar]
  15. Sun Z. Liu B. Liu Z.H. Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/β-catenin axis. Mol. Ther. Nucleic Acids 2020 22 1092 1106 10.1016/j.omtn.2020.10.021 33294295
    [Google Scholar]
  16. Zhang Q. Shen Y. Zhao S. Jiang Y. Zhou D. Zhang Y. Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3. Cell. Signal. 2021 86 110083 10.1016/j.cellsig.2021.110083 34252537
    [Google Scholar]
  17. Chen D. Jiang X. Exosomes-derived miR-125-5p from cartilage endplate stem cells regulates autophagy and ECM metabolism in nucleus pulposus by targeting SUV38H1. Exp. Cell Res. 2022 414 1 113066 10.1016/j.yexcr.2022.113066 35231441
    [Google Scholar]
  18. Chen D. Jiang X. Zou H. hASCs-derived exosomal miR-155-5p targeting TGFβR2 promotes autophagy and reduces pyroptosis to alleviate intervertebral disc degeneration. J. Orthop. Translat. 2023 39 163 176 10.1016/j.jot.2023.02.004 36950198
    [Google Scholar]
  19. Li W. Xu Y. Chen W. Bone mesenchymal stem cells deliver exogenous lncRNA CAHM via exosomes to regulate macrophage polarization and ameliorate intervertebral disc degeneration. Exp. Cell Res. 2022 421 2 113408 10.1016/j.yexcr.2022.113408 36334792
    [Google Scholar]
  20. Yang M. Feng C. Zhang Y. Autophagy protects nucleus pulposus cells from cyclic mechanical tension induced apoptosis. Int. J. Mol. Med. 2019 44 2 750 758 10.3892/ijmm.2019.4212 31173175
    [Google Scholar]
  21. Luo L. Jian X. Sun H. Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy. Stem Cells 2021 39 4 467 481 10.1002/stem.3322 33459443
    [Google Scholar]
  22. Zhan J.W. Feng M.S. Zhu L.G. Zhang P. Yu J. Effect of static load on the nucleus pulposus of rabbit intervertebral disc motion segment in an organ culture. BioMed Res. Int. 2016 2016 1 10 10.1155/2016/2481712 27872846
    [Google Scholar]
  23. Wan Z.Y. Song F. Sun Z. Aberrantly expressed long noncoding RNAs in human intervertebral disc degeneration: A microarray related study. Arthritis Res. Ther. 2014 16 5 465 10.1186/s13075‑014‑0465‑5 25280944
    [Google Scholar]
  24. Pfirrmann C.W.A. Metzdorf A. Zanetti M. Hodler J. Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001 26 17 1873 1878 10.1097/00007632‑200109010‑00011 11568697
    [Google Scholar]
  25. Liao Z. Luo R. Li G. Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo. Theranostics 2019 9 14 4084 4100 10.7150/thno.33638 31281533
    [Google Scholar]
  26. Zhu L.G. Feng M.S. Zhan J.W. Zhang P. Yu J. Effect of static load on the nucleus pulposus of rabbit intervertebral disc motion segment in ex vivo organ culture. Chin. Med. J. 2016 129 19 2338 2346 10.4103/0366‑6999.190666 27647194
    [Google Scholar]
  27. Wang H. Chen X. Hong-Guang X. Ding G. Liu P. Huang D. Correlation between VEGF and HIF-1α expression in vertebral cartilage endplate of cervical spondylosis patients. J Pract Med 2008 1 9
    [Google Scholar]
  28. Yin X. The mechanism of BSHXR on nucleus pulposus cells of IDD by regulating Wnt/beta-catenin pathway. Beijing, China Chinese Academy of Traditional Chinese Medicine 2019 1 8
    [Google Scholar]
  29. Zhan J.W. Wang S.Q. Feng M.S. Effects of axial compression and distraction on vascular bud and VEGFA expression in the vertebral endplate of an ex vivo rabbit spinal motion segment culture model. Spine 2021 46 7 421 432 10.1097/BRS.0000000000003816 33186278
    [Google Scholar]
  30. Tringides C.M. Boulingre M. Khalil A. Lungjangwa T. Jaenisch R. Mooney D.J. Tunable conductive hydrogel scaffolds for neural cell differentiation. Adv. Healthc. Mater. 2023 12 7 2202221 10.1002/adhm.202202221 36495560
    [Google Scholar]
  31. Motie P. Mohaghegh S. Kouhestani F. Motamedian S.R. Effect of mechanical forces on the behavior of osteoblasts: A systematic review of in vitro studies. Dent. Med. Probl. 2023 60 4 673 686 10.17219/dmp/151639 38133991
    [Google Scholar]
  32. Shen T. Qiu L. Chang H. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int. J. Clin. Exp. Pathol. 2014 7 11 7872 7880 25550827
    [Google Scholar]
  33. Colombo A. Cahill P.A. Lally C. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Proc. Inst. Mech. Eng. H 2008 222 8 1235 1245 10.1243/09544119JEIM428 19143417
    [Google Scholar]
  34. López-Martínez C. Huidobro C. Albaiceta G.M. López-Alonso I. Mechanical stretch modulates cell migration in the lungs. Ann. Transl. Med. 2018 6 2 28 10.21037/atm.2017.12.08 29430445
    [Google Scholar]
  35. Hilscher M.B. Sehrawat T. Arab J.P. Mechanical stretch increases expression of cxcl1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology 2019 157 1 193 209.e9 10.1053/j.gastro.2019.03.013 30872106
    [Google Scholar]
  36. Zhou X. Cao H. Liao T. Mechanosensitive lncRNA H19 promotes chondrocyte autophagy, but not pyroptosis, by targeting miR-148a in post-traumatic osteoarthritis. Noncoding RNA Res. 2025 10 163 176 10.1016/j.ncrna.2024.07.005 39399379
    [Google Scholar]
  37. Liu C. Gao X. Lou J. Aberrant mechanical loading induces annulus fibrosus cells apoptosis in intervertebral disc degeneration via mechanosensitive ion channel Piezo1. Arthritis Res. Ther. 2023 25 1 117 10.1186/s13075‑023‑03093‑9 37420255
    [Google Scholar]
  38. Liu J. Liu R. Wang H. Zhang Z. Wang J. Wei F. CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells. J. Orthop. Surg. Res. 2024 19 1 257 10.1186/s13018‑024‑04727‑7 38649946
    [Google Scholar]
  39. Hochreiter B. Lindner C. Postl M. Characterizing SV40-hTERT immortalized human lung microvascular endothelial cells as model system for mechanical stretch-induced lung injury. Int. J. Mol. Sci. 2025 26 2 683 10.3390/ijms26020683 39859396
    [Google Scholar]
  40. Feng C. Liu M. Fan X. Yang M. Liu H. Zhou Y. Intermittent cyclic mechanical tension altered the microRNA expression profile of human cartilage endplate chondrocytes. Mol. Med. Rep. 2018 17 4 5238 5246 10.3892/mmr.2018.8517 29393457
    [Google Scholar]
  41. Zhang P. Wang Y. Bai J. Single‐cell transcriptomic analysis reveals biomechanical loading‐induced imbalance in bone and fat, leading to ossification in lumbar intervertebral disc nucleus pulposus degeneration. J. Cell. Physiol. 2025 240 1 e31506 10.1002/jcp.31506 39854079
    [Google Scholar]
  42. Xu H. Zheng Q. Song J. Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk. Osteoarthritis Cartilage 2016 24 1 158 168 10.1016/j.joca.2015.07.019 26247612
    [Google Scholar]
  43. Xu H. Zhang X. Wang H. Intermittent cyclic mechanical tension-induced calcification and downregulation of ankh gene expression of end plate chondrocytes. Spine 2012 37 14 1192 1197 10.1097/BRS.0b013e318244d989 22695244
    [Google Scholar]
  44. Xu H. Zhang X. Wang H. Zhang Y. Shi Y. Zhang X. Continuous cyclic mechanical tension increases ank expression in endplate chondrocytes through the TGF-β1 and p38 pathway. Eur. J. Histochem. 2013 57 3 28 10.4081/ejh.2013.e28 24085277
    [Google Scholar]
  45. Feng C. Yang M. Zhang Y. Cyclic mechanical tension reinforces DNA damage and activates the p53-p21-Rb pathway to induce premature senescence of nucleus pulposus cells. Int. J. Mol. Med. 2018 41 6 3316 3326 10.3892/ijmm.2018.3522 29512682
    [Google Scholar]
  46. Zhang Y.H. Zhao C.Q. Jiang L.S. Dai L.Y. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. Eur. Spine J. 2011 20 8 1233 1243 10.1007/s00586‑011‑1718‑5 21336971
    [Google Scholar]
  47. Wahlsten A. Rütsche D. Nanni M. Mechanical stimulation induces rapid fibroblast proliferation and accelerates the early maturation of human skin substitutes. Biomaterials 2021 273 120779 10.1016/j.biomaterials.2021.120779 33932701
    [Google Scholar]
  48. Yang Y. Wang B.K. Chang M.L. Wan Z.Q. Han G.L. Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. BioMed Res. Int. 2018 2018 1 12 10.1155/2018/2174824 30519570
    [Google Scholar]
  49. Munich S. Sobo-Vujanovic A. Buchser W.J. Beer-Stolz D. Vujanovic N.L. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. OncoImmunology 2012 1 7 1074 1083 10.4161/onci.20897 23170255
    [Google Scholar]
  50. Mulcahy L.A. Pink R.C. Carter D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 2014 3 1 24641 10.3402/jev.v3.24641 25143819
    [Google Scholar]
  51. Tian T. Zhu Y.L. Hu F.H. Wang Y.Y. Huang N.P. Xiao Z.D. Dynamics of exosome internalization and trafficking. J. Cell. Physiol. 2013 228 7 1487 1495 10.1002/jcp.24304 23254476
    [Google Scholar]
  52. Wang H. Li F. Ban W. Zhang J. Zhang G. Human bone marrow mesenchymal stromal cell-derived extracellular vesicles promote proliferation of degenerated nucleus pulposus cells and the synthesis of extracellular matrix through the sox4/wnt/β-catenin axis. Front. Physiol. 2021 12 723220 10.3389/fphys.2021.723220 34777000
    [Google Scholar]
  53. Huang J. Guo X. Li W. Zhang H. Activation of Wnt/β-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes. Sci. Rep. 2017 7 1 40716 10.1038/srep40716 28094799
    [Google Scholar]
  54. Cheng X. Wu C. Xu H. Zou R. Li T. Ye S. miR-557 inhibits hepatocellular carcinoma progression through Wnt/β-catenin signaling pathway by targeting RAB10. Aging 2024 16 4 3716 3733 10.18632/aging.205554 38364252
    [Google Scholar]
  55. Yang F. Xiong H. Duan L. Li Q. Li X. Zhou Y. MiR-1246 promotes metastasis and invasion of a549 cells by targeting GSK-3B‒Mediated WNT/β-catenin pathway. Cancer Res. Treat. 2019 51 4 1420 1429 10.4143/crt.2018.638 30913872
    [Google Scholar]
  56. Liu J. Xiao Q. Xiao J. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  57. Hu L. Chen W. Qian A. Li Y.P. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024 12 1 39 10.1038/s41413‑024‑00342‑8 38987555
    [Google Scholar]
  58. Silwal P. Nguyen-Thai A.M. Mohammad H.A. Cellular senescence in intervertebral disc aging and degeneration: Molecular mechanisms and potential therapeutic opportunities. Biomolecules 2023 13 4 686 10.3390/biom13040686 37189433
    [Google Scholar]
  59. Zhao H. Ming T. Tang S. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer 2022 21 1 144 10.1186/s12943‑022‑01616‑7 35836256
    [Google Scholar]
  60. Zhu D. Chen S. Sheng P. Wang Z. Li Y. Kang X. POSTN promotes nucleus pulposus cell senescence and extracellular matrix metabolism via activing Wnt/β-catenin and NF-κB signal pathway in intervertebral disc degeneration. Cell. Signal. 2024 121 111277 10.1016/j.cellsig.2024.111277 38944256
    [Google Scholar]
  61. Wang B. Xu N. Cao L. miR-31 from Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviates Intervertebral Disc Degeneration by Inhibiting NFAT5 and Upregulating the Wnt/β-Catenin Pathway. Stem Cells Int. 2022 2022 1 16 10.1155/2022/2164057 36311041
    [Google Scholar]
  62. Sun Z. Jian Y. Fu H. Li B. MiR-532 downregulation of the Wnt/β-catenin signaling via targeting Bcl-9 and induced human intervertebral disc nucleus pulposus cells apoptosis. J. Pharmacol. Sci. 2018 138 4 263 270 10.1016/j.jphs.2018.10.007 30472057
    [Google Scholar]
  63. Zhang Q.C. Hu S.Q. Hu A.N. Zhang T.W. Jiang L.B. Li X.L. Autophagy‐activated nucleus pulposus cells deliver exosomal miR‐27a to prevent extracellular matrix degradation by targeting MMP‐13. J. Orthop. Res. 2021 39 9 1921 1932 10.1002/jor.24880 33038032
    [Google Scholar]
  64. Zhuang Y. Song S. Xiao D. Exosomes secreted by nucleus pulposus stem cells derived from degenerative intervertebral disc exacerbate annulus fibrosus cell degradation via let-7b-5p. Front. Mol. Biosci. 2022 8 766115 10.3389/fmolb.2021.766115 35111808
    [Google Scholar]
  65. Yang G. Ji B. Li H. Inhibition of CRLF1 expression by miR-8485 alleviates IL-1β-induced chondrocyte inflammation, apoptosis, and extracellular matrix degradation. Int. Immunopharmacol. 2025 144 113643 10.1016/j.intimp.2024.113643 39580860
    [Google Scholar]
  66. Li Z. Wang Y. Xiang S. Chondrocytes-derived exosomal miR-8485 regulated the Wnt/β-catenin pathways to promote chondrogenic differentiation of BMSCs. Biochem. Biophys. Res. Commun. 2020 523 2 506 513 10.1016/j.bbrc.2019.12.065 31898972
    [Google Scholar]
  67. Chang M. Chen Q. Wang B. Zhang Z. Han G. Exosomes from tension force-applied periodontal ligament cells promote mesenchymal stem cell recruitment by altering microRNA profiles. Int. J. Stem Cells 2023 16 2 202 214 10.15283/ijsc21170 36823975
    [Google Scholar]
  68. Chen X. Li Z. Zheng C. Wu J. Hai Y. Expression of MMP1, MMP3, and TIMP1 in intervertebral discs under simulated overload and microgravity conditions. J. Orthop. Surg. Res. 2025 20 1 71 10.1186/s13018‑025‑05508‑6 39833904
    [Google Scholar]
  69. Feki F. Taktak R. Haddar N. Moulart M. Zaïri F. Zaïri F. Overloading effect on the osmo-viscoelastic and recovery behavior of the intervertebral disc. Proc. Inst. Mech. Eng. H 2024 238 4 430 437 10.1177/09544119241232286 38480472
    [Google Scholar]
  70. Zhao X. Sun Z. Xu B. Degenerated nucleus pulposus cells derived exosome carrying miR-27a-3p aggravates intervertebral disc degeneration by inducing M1 polarization of macrophages. J. Nanobiotechnology 2023 21 1 317 10.1186/s12951‑023‑02075‑y 37667246
    [Google Scholar]
  71. An HS Masuda K Relevance of in vitro and in vivo models for intervertebral disc degeneration. J Bone Joint Surg Am 2006 88 88 94 (Suppl. 2) 16595451
    [Google Scholar]
  72. Liu Q. Liang X.F. Wang A.G. Failure mechanical properties of lumbar intervertebral disc under high loading rate. J. Orthop. Surg. Res. 2024 19 1 15 10.1186/s13018‑023‑04424‑x 38167031
    [Google Scholar]
  73. Zhang W. Wang G. Xie R. Traditional Chinese exercises on pain and disability in middle-aged and elderly patients with lumbar disc herniation: A systematic review and meta-analysis of randomized controlled trials. Front. Med. 2023 10 1265040 10.3389/fmed.2023.1265040 38020108
    [Google Scholar]
  74. Samanta A. Lufkin T. Kraus P. Intervertebral disc degeneration—current therapeutic options and challenges. Front. Public Health 2023 11 1156749 10.3389/fpubh.2023.1156749 37483952
    [Google Scholar]
  75. Yang S. Zhang Y. Peng Q. Regulating pyroptosis by mesenchymal stem cells and extracellular vesicles: A promising strategy to alleviate intervertebral disc degeneration. Biomed. Pharmacother. 2024 170 116001 10.1016/j.biopha.2023.116001 38128182
    [Google Scholar]
  76. Vanti C. Panizzolo A. Turone L. Effectiveness of mechanical traction for lumbar radiculopathy: A systematic review and meta-analysis. Phys. Ther. 2021 101 3 pzaa231 10.1093/ptj/pzaa231 33382419
    [Google Scholar]
  77. Feng T. Wang X. Bu H. Cervical rotation-traction manipulation for cervical radiculopathy: A systematic review and meta-analysis of randomized control trials. J. Pain Res. 2024 17 4055 4070 10.2147/JPR.S481803 39629140
    [Google Scholar]
  78. Cheng Y.H. Hsu C.Y. Lin Y.N. The effect of mechanical traction on low back pain in patients with herniated intervertebral disks: A systemic review and meta-analysis. Clin. Rehabil. 2020 34 1 13 22 10.1177/0269215519872528 31456418
    [Google Scholar]
  79. Jellad A. Kalai A. Chaabeni A. Effect of cervical traction on cervicogenic headache in patients with cervical radiculopathy: A preliminary randomized controlled trial. BMC Musculoskelet. Disord. 2024 25 1 842 10.1186/s12891‑024‑07930‑z 39448969
    [Google Scholar]
  80. Tadano S. Tanabe H. Arai S. Fujino K. Doi T. Akai M. Lumbar mechanical traction: A biomechanical assessment of change at the lumbar spine. BMC Musculoskelet. Disord. 2019 20 1 155 10.1186/s12891‑019‑2545‑9 30961554
    [Google Scholar]
  81. Han T. Luo P. Cai C. The influence of different stress loading on the biomechanics of motion segments in isolated rabbit spines. J. Biomech. 2025 182 112592 10.1016/j.jbiomech.2025.112592 39987886
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240370788250617070218
Loading
/content/journals/cmm/10.2174/0115665240370788250617070218
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test