Skip to content
2000
image of Gut Microbiota-induced Long Non-coding RNA Snhg9 Regulates the Development of Human Malignant Tumors

Abstract

Gut microbes influence the progression of human malignancies through their recognition by the immune system and their effects on numerous metabolic pathways. Long non-coding RNA is a key target of intestinal microbiota involved in the progression of human malignant tumors. Current research shows that there is a close cross-talk between long non-coding RNA Snhg9 and intestinal microorganisms, and it is widely involved in the progression of human malignant tumors. An in-depth study of the interaction between long non-coding RNA and intestinal flora and the intrinsic regulatory mechanism of snhg9 will provide new and powerful therapeutic targets for future research on human malignant tumors.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240366916250629064055
2025-07-03
2025-09-14
Loading full text...

Full text loading...

References

  1. Nagata N. Nishijima S. Miyoshi-Akiyama T. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology 2022 163 4 1038 1052 10.1053/j.gastro.2022.06.070 35788347
    [Google Scholar]
  2. Jaswal K. Todd O.A. Behnsen J. Neglected gut microbiome: Interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023 15 1 2226916 10.1080/19490976.2023.2226916 37365731
    [Google Scholar]
  3. Manor O. Dai C.L. Kornilov S.A. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020 11 1 5206 10.1038/s41467‑020‑18871‑1 33060586
    [Google Scholar]
  4. Schmidt F. Autobiography of a gut bacterium. Science 2022 378 6622 844 845 10.1126/science.adf4442 36423293
    [Google Scholar]
  5. Jaye K. Li C.G. Chang D. Bhuyan D.J. The role of key gut microbial metabolites in the development and treatment of cancer. Gut Microbes 2022 14 1 2038865 10.1080/19490976.2022.2038865 35220885
    [Google Scholar]
  6. Kretz M. Siprashvili Z. Chu C. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 2013 493 7431 231 235 10.1038/nature11661 23201690
    [Google Scholar]
  7. Wang Y. Wang M. Chen J. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 2023 381 6660 851 857 10.1126/science.ade0522 37616368
    [Google Scholar]
  8. Derrien T. Johnson R. Bussotti G. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012 22 9 1775 1789 10.1101/gr.132159.111 22955988
    [Google Scholar]
  9. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  10. Zuckerman B. Ron M. Mikl M. Segal E. Ulitsky I. Gene architecture and sequence composition underpin selective dependency of nuclear export of long RNAs on NXF1 and the TREX complex. Mol. Cell 2020 79 2 251 267.e6 10.1016/j.molcel.2020.05.013 32504555
    [Google Scholar]
  11. Wang K.C. Chang H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011 43 6 904 914 10.1016/j.molcel.2011.08.018 21925379
    [Google Scholar]
  12. Marchese F.P. Raimondi I. Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017 18 1 206 10.1186/s13059‑017‑1348‑2 29084573
    [Google Scholar]
  13. Konermann S. Brigham M.D. Trevino A.E. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015 517 7536 583 588 10.1038/nature14136 25494202
    [Google Scholar]
  14. Yang J. Yang H. Li Y. The triple interactions between gut microbiota, mycobiota and host immunity. Crit. Rev. Food Sci. Nutr. 2023 63 33 11604 11624 10.1080/10408398.2022.2094888 35776086
    [Google Scholar]
  15. Roviello G. Iannone L.F. Bersanelli M. Mini E. Catalano M. The gut microbiome and efficacy of cancer immunotherapy. Pharmacol. Ther. 2022 231 107973 10.1016/j.pharmthera.2021.107973 34453999
    [Google Scholar]
  16. Shi F. Liu G. Lin Y. Altered gut microbiome composition by appendectomy contributes to colorectal cancer. Oncogene 2023 42 7 530 540 10.1038/s41388‑022‑02569‑3 36539569
    [Google Scholar]
  17. Taddese R. Garza D.R. Ruiter L.N. Growth rate alterations of human colorectal cancer cells by 157 gut bacteria. Gut Microbes 2020 12 1 1799733 10.1080/19490976.2020.1799733 32915102
    [Google Scholar]
  18. Brezina S. Borkovec M. Baierl A. Using fecal immmunochemical cartridges for gut microbiome analysis within a colorectal cancer screening program. Gut Microbes 2023 15 1 2176119 10.1080/19490976.2023.2176119 36794815
    [Google Scholar]
  19. Chrysostomou D. Roberts L.A. Marchesi J.R. Kinross J.M. Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 2023 164 2 198 213 10.1053/j.gastro.2022.10.018 36309208
    [Google Scholar]
  20. Hong J. Guo F. Lu S.Y. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021 70 11 2123 2137 10.1136/gutjnl‑2020‑322780 33318144
    [Google Scholar]
  21. Wang J. Liu Z. Xu Y. Enterobacterial LPS-inducible LINC00152 is regulated by histone lactylation and promotes cancer cells invasion and migration. Front. Cell. Infect. Microbiol. 2022 12 913815 10.3389/fcimb.2022.913815 35959377
    [Google Scholar]
  22. Wang M Liu K Bao W Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9. Dev Cell 2025 S1534-5807 24 00734 2 10.1016/j.devcel.2024.12.013 39755115
    [Google Scholar]
  23. Ostrom Q.T. Price M. Ryan K. CBTRUS statistical report: Pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-oncol. 2022 24 3 iii1 iii38 10.1093/neuonc/noac161 36066969
    [Google Scholar]
  24. Yang K. Wu Z. Zhang H. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer 2022 21 1 39 10.1186/s12943‑022‑01513‑z 35135556
    [Google Scholar]
  25. Wang C.J. Chao C.R. Zhao W.F. Liu H.M. Feng J.S. Cui Y.X. Long noncoding RNA SNHG9 facilitates growth of glioma stem‐like cells via miR‐326/SOX9 axis. J. Gene Med. 2021 2021 24 33789359
    [Google Scholar]
  26. Miele E. Po A. Mastronuzzi A. Downregulation of miR‐326 and its host gene β‐arrestin1 induces pro‐survival activity of E2F1 and promotes medulloblastoma growth. Mol. Oncol. 2021 15 2 523 542 10.1002/1878‑0261.12800 32920979
    [Google Scholar]
  27. Zhang N. Nan A. Chen L. Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Mol. Cancer 2020 19 1 101 10.1186/s12943‑020‑01221‑6 32493389
    [Google Scholar]
  28. Jacob F. Salinas R.D. Zhang D.Y. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 2020 180 1 188 204.e22 10.1016/j.cell.2019.11.036 31883794
    [Google Scholar]
  29. Zhang H. Qin D. Jiang Z. Zhang J. SNHG9/miR-199a-5p/Wnt2 axis regulates cell growth and aerobic glycolysis in glioblastoma. J. Neuropathol. Exp. Neurol. 2019 78 10 939 948 10.1093/jnen/nlz078 31504670
    [Google Scholar]
  30. Huang T.X. Tan X.Y. Huang H.S. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity. Gut 2022 71 2 333 344 10.1136/gutjnl‑2020‑322924 33692094
    [Google Scholar]
  31. Nanki K. Toshimitsu K. Takano A. Divergent routes toward Wnt and R-spondin Niche Independency during human gastric carcinogenesis. Cell 2018 174 4 856 869.e17 10.1016/j.cell.2018.07.027 30096312
    [Google Scholar]
  32. Chen D.W. Lang B.H.H. McLeod D.S.A. Newbold K. Haymart M.R. Thyroid cancer. Lancet 2023 401 10387 1531 1544 10.1016/S0140‑6736(23)00020‑X 37023783
    [Google Scholar]
  33. Wen D. Liu W. Lu Z. Cao Y. Ji Q. Wei W. SNHG9, a papillary thyroid cancer cell exosome-enriched lncRNA, inhibits cell autophagy and promotes cell apoptosis of normal thyroid epithelial cell Nthy-ori-3 through YBOX3/P21 pathway. Front. Oncol. 2021 11 647034 10.3389/fonc.2021.647034 34017682
    [Google Scholar]
  34. Li R.H. Tian T. Ge Q.W. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res. 2021 31 10 1088 1105 10.1038/s41422‑021‑00530‑9 34267352
    [Google Scholar]
  35. Xu Y. Song M. Hong Z. The N6-methyladenosine METTL3 regulates tumorigenesis and glycolysis by mediating m6A methylation of the tumor suppressor LATS1 in breast cancer. J. Exp. Clin. Cancer Res. 2023 42 1 10 10.1186/s13046‑022‑02581‑1 36609396
    [Google Scholar]
  36. Aylon Y. Furth N. Mallel G. Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis. Nat. Commun. 2022 13 1 7199 10.1038/s41467‑022‑34863‑9 36443319
    [Google Scholar]
  37. Zhang Y. Xu H. Cui G. β-Catenin sustains and is required for yes-associated protein oncogenic activity in cholangiocarcinoma. Gastroenterology 2022 163 2 481 494 10.1053/j.gastro.2022.04.028 35489428
    [Google Scholar]
  38. Ajani J.A. Xu Y. Huo L. YAP1 mediates gastric adenocarcinoma peritoneal metastases that are attenuated by YAP1 inhibition. Gut 2021 70 1 55 66 10.1136/gutjnl‑2019‑319748 32345613
    [Google Scholar]
  39. Wang D. Cao X. Han Y. Yu D. LncRNA SNHG9 is downregulated in non-small cell lung cancer and suppressed miR-21 through methylation to promote cell proliferation. Cancer Manag. Res. 2020 12 7941 7948 10.2147/CMAR.S253052 32943928
    [Google Scholar]
  40. Xie M. Cheng B. Yu S. Cuproptosis-related MiR-21-5p/FDX1 axis in clear cell renal cell carcinoma and its potential impact on tumor microenvironment. Cells 2022 12 1 173 10.3390/cells12010173 36611966
    [Google Scholar]
  41. Guo W. Wu Z. Chen J. Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis. J. Immunother. Cancer 2022 10 6 e004381 10.1136/jitc‑2021‑004381 35738798
    [Google Scholar]
  42. Liu S. Yang X. Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Front. Cell. Infect. Microbiol. 2023 13 1140126 10.3389/fcimb.2023.1140126 36968098
    [Google Scholar]
  43. Taniguchi H. Liver Cancer 2.0. Int. J. Mol. Sci. 2023 24 24 17275 10.3390/ijms242417275 38139103
    [Google Scholar]
  44. Lee T.K.W. Guan X.Y. Ma S. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2022 19 1 26 44 10.1038/s41575‑021‑00508‑3 34504325
    [Google Scholar]
  45. Ye S. Ni Y. lncRNA SNHG9 promotes cell proliferation, migration, and invasion in human hepatocellular carcinoma cells by increasing GSTP1 methylation, as revealed by CRISPR-dCas9. Front. Mol. Biosci. 2021 8 649976 10.3389/fmolb.2021.649976 33898523
    [Google Scholar]
  46. He M Hu J Fang T Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway. Cancer Biol Med 2021 19 90 10.20892/j.issn.2095‑3941.2020.0313
    [Google Scholar]
  47. Feng S.G. Bhandari R. Ya L. SNHG9 promotes hepatoblastoma tumorigenesis via miR-23a-5p/Wnt3a axis. J. Cancer 2021 12 20 6031 6049 10.7150/jca.60748 34539877
    [Google Scholar]
  48. Ma W. Hu J. The linear ANRIL transcript P14AS regulates the NF-κB signaling to promote colon cancer progression. Mol. Med. 2023 29 1 162 10.1186/s10020‑023‑00761‑z
    [Google Scholar]
  49. Parsons M.J. Tammela T. Dow L.E. WNT as a driver and dependency in cancer. Cancer Discov. 2021 11 10 2413 2429 10.1158/2159‑8290.CD‑21‑0190 34518209
    [Google Scholar]
  50. Cervantes A. Adam R. Roselló S. Metastatic colorectal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023 34 1 10 32 10.1016/j.annonc.2022.10.003 36307056
    [Google Scholar]
  51. Iqbal I.K. Bajeli S. Sahu S. Bhat S.A. Kumar A. Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 2021 17 11 3511 3529 10.1080/15548627.2021.1876342 33459133
    [Google Scholar]
  52. Wang H. Guo M. Wei H. Chen Y. Targeting p53 pathways: Mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023 8 1 92 10.1038/s41392‑023‑01347‑1 36859359
    [Google Scholar]
  53. Patel A.G. Chen X. Huang X. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev. Cell 2022 57 10 1226 1240.e8 10.1016/j.devcel.2022.04.003 35483358
    [Google Scholar]
  54. Skapek SX Ferrari A Gupta AA Rhabdomyosarcoma. Nat Rev Dis Primers 2019 5 1 1 10.1038/s41572‑018‑0051‑2
    [Google Scholar]
  55. Cocomazzi G. Del Pup L. Contu V. Gynecological cancers and microbiota dynamics: Insights into pathogenesis and therapy. Int. J. Mol. Sci. 2024 25 4 2237 10.3390/ijms25042237 38396914
    [Google Scholar]
  56. Chen G.Y. Zhang Z.S. Chen Y. Li Y. Long non coding RNA SNHG9 inhibits ovarian cancer progression by sponging microRNA 214 5p. Oncol. Lett. 2020 21 2 80 10.3892/ol.2020.12341 33363617
    [Google Scholar]
  57. Bhattacharjee R. Prabhakar N. Kumar L. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell Oncol. (Dordr.) 2023 46 4 885 908 10.1007/s13402‑023‑00806‑9 37245177
    [Google Scholar]
  58. Guo R. Zou B. Liang Y. LncRNA RCAT1 promotes tumor progression and metastasis via miR-214-5p/E2F2 axis in renal cell carcinoma. Cell Death Dis. 2021 12 7 689 10.1038/s41419‑021‑03955‑7 34244473
    [Google Scholar]
  59. Mani C. Acharya G. Saamarthy K. Racial differences in RAD51 expression are regulated by miRNA-214-5P and its inhibition synergizes with olaparib in triple-negative breast cancer. Breast Cancer Res. 2023 25 1 44 10.1186/s13058‑023‑01615‑6 37081516
    [Google Scholar]
  60. Crosbie E.J. Kitson S.J. McAlpine J.N. Mukhopadhyay A. Powell M.E. Singh N. Endometrial cancer. Lancet 2022 399 10333 1412 1428 10.1016/S0140‑6736(22)00323‑3 35397864
    [Google Scholar]
  61. Wang L. Huang Q. Lin Q. Chen L. Shi Q. Knockdown of long non‐coding RNA small nucleolar RNA host gene 9 or hexokinase 2 both suppress endometrial cancer cell proliferation and glycolysis. J. Obstet. Gynaecol. Res. 2021 47 6 2196 2203 10.1111/jog.14777 33821518
    [Google Scholar]
  62. Li X. Yang Y. Zhang B. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022 7 1 305 10.1038/s41392‑022‑01151‑3
    [Google Scholar]
  63. Wang J. Huang Q. Hu X. Disrupting Circadian Rhythm via the PER1–HK2 axis reverses trastuzumab resistance in gastric cancer. Cancer Res. 2022 82 8 1503 1517 10.1158/0008‑5472.CAN‑21‑1820 35255118
    [Google Scholar]
  64. Dong P. Xiong Y. Konno Y. Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. J. Exp. Clin. Cancer Res. 2021 40 1 216 10.1186/s13046‑021‑02018‑1 34174908
    [Google Scholar]
  65. McCulloch J.A. Davar D. Rodrigues R.R. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 2022 28 3 545 556 10.1038/s41591‑022‑01698‑2 35228752
    [Google Scholar]
  66. Sun J. Chen F. Wu G. Potential effects of gut microbiota on host cancers: Focus on immunity, DNA damage, cellular pathways, and anticancer therapy. ISME J. 2023 17 10 1535 1551 10.1038/s41396‑023‑01483‑0 37553473
    [Google Scholar]
  67. Liu C. Gong J. Zhang Q. Dietary iron modulates gut microbiota and induces SLPI secretion to promote colorectal tumorigenesis. Gut Microbes 2023 15 1 2221978 10.1080/19490976.2023.2221978 37312410
    [Google Scholar]
  68. Davar D. Dzutsev A.K. McCulloch J.A. Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science 2021 371 6529 595 602 10.1126/science.abf3363 33542131
    [Google Scholar]
  69. Tong Y. Gao H. Qi Q. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021 11 12 5889 5910 10.7150/thno.56157 33897888
    [Google Scholar]
  70. Wolter M. Grant E.T. Boudaud M. Leveraging diet to engineer the gut microbiome. Nat. Rev. Gastroenterol. Hepatol. 2021 18 12 885 902 10.1038/s41575‑021‑00512‑7 34580480
    [Google Scholar]
  71. Parra-Soto S. Ahumada D. Petermann-Rocha F. Association of meat, vegetarian, pescatarian and fish-poultry diets with risk of 19 cancer sites and all cancer: findings from the UK Biobank prospective cohort study and meta-analysis. BMC Med. 2022 20 1 79 10.1186/s12916‑022‑02257‑9 35655214
    [Google Scholar]
  72. Winkle M. El-Daly S.M. Fabbri M. Calin G.A. Noncoding RNA therapeutics: Challenges and potential solutions. Nat. Rev. Drug Discov. 2021 20 8 629 651 10.1038/s41573‑021‑00219‑z 34145432
    [Google Scholar]
  73. Liu S.J. Dang H.X. Lim D.A. Feng F.Y. Maher C.A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 2021 21 7 446 460 10.1038/s41568‑021‑00353‑1 33953369
    [Google Scholar]
  74. Briata P. Mastracci L. Zapparoli E. LncRNA EPR regulates intestinal mucus production and protects against inflammation and tumorigenesis. Nucleic Acids Res. 2023 51 10 5193 5209 10.1093/nar/gkad257 37070602
    [Google Scholar]
  75. Tao W. Wang B.Y. Luo L. A urine extracellular vesicle lncRNA classifier for high-grade prostate cancer and increased risk of progression: A multi-center study. Cell Rep. Med. 2023 4 10 101240 10.1016/j.xcrm.2023.101240 37852185
    [Google Scholar]
  76. Cani A.K. Hu K. Liu C.J. Development of a whole-urine, multiplexed, next-generation RNA-sequencing assay for early detection of aggressive prostate cancer. Eur. Urol. Oncol. 2022 5 4 430 439 10.1016/j.euo.2021.03.002 33812851
    [Google Scholar]
  77. Fu H. Si J. Xu L. Long non-coding RNA SNHG9 regulates viral replication in rhabdomyosarcoma cells infected with enterovirus D68 via> miR-150-5p/c-Fos axis. Front. Microbiol. 2023 13 1081237 10.3389/fmicb.2022.1081237 36741904
    [Google Scholar]
  78. Fan S. Xing J. Jiang Z. Zhang Z, Zhang H, Wang D, Tang D. Effects of long non-coding RNAs induced by the gut microbiome on regulating the development of colorectal cancer. Cancers (Basel) 2022 14 23 5813 10.3390/cancers14235813
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240366916250629064055
Loading
/content/journals/cmm/10.2174/0115665240366916250629064055
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomolecular marker ; microRNAs ; Gut microbiome ; regulation ; cancers ; long noncoding RNAs ; Snhg9
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test