Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Aims

To clarify the roles of PAR-2 (protease-activated receptor 2) in Crohn's disease-associated colonic fibrosis.

Background

G protein-coupled receptor, termed PAR-2, is triggered after serine proteases. Through activating genes encoding extracellular matrix proteins and proinflammatory cytokines, PAR-2 triggering promotes inflammatory / pro-fibrotic pathways. Although PAR-2 is highly expressed within the digestive system, its significance within colonic fibrosis (CF) has not yet been probed.

Objective

To assess the roles and mechanisms of PAR-2 in Crohn's disease-associated colonic fibrosis.

Methods

PAR-2 expression was assessed variably in the colon of human and model mice. Immunofluorescence assay was used to analyze the phenotypic changes of fibroblasts after PAR-2 activation in the lamina propria. In assays, we explored the roles of PAR-2 in CCD-18Co fibroblasts treated with PAR-2 inhibitor ENMD-1068 and PAR-2 agonist SLIGRL-NH2.

Results

PAR-2 was highly expressed in the subepithelial layer surrounding colonic crypts of CD patients or murine fibrosis cohort. Colonic PAR-2 expression was consistent with collagen deposition. Decreasing PAR-2 in experimental colon fibrosis caused a decrease in the amount of colonic collagen and histological fibrosis, followed by a reduction in colonic fibroblast activation. PAR-2 activation enhanced CF by showing a profibrogenic phenotype and collagen synthesis within CCD-18Co fibroblasts.

Conclusion

Our results show that PAR-2 activation could upregulate extracellular matrix (ECM) proteomic levels, encourage CF, and cause a pro-fibrogenic phenotype within human colonic myofibroblasts.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240351860250403112214
2025-04-22
2025-10-27
Loading full text...

Full text loading...

References

  1. ThiaK.T. SandbornW.J. HarmsenW.S. ZinsmeisterA.R. LoftusE.V.Jr Risk factors associated with progression to intestinal complications of Crohn’s disease in a population-based cohort.Gastroenterology201013941147115510.1053/j.gastro.2010.06.070 20637205
    [Google Scholar]
  2. HolvoetT. DevrieseS. CastermansK. Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local rho kinase inhibitor.Gastroenterology201715341054106710.1053/j.gastro.2017.06.013 28642198
    [Google Scholar]
  3. WederB. MamieC. RoglerG. BCL2 regulates differentiation of intestinal fibroblasts.Inflamm. Bowel Dis.20182491953196610.1093/ibd/izy147 29796658
    [Google Scholar]
  4. LiuB. YangM.Q. YuT.Y. Mast cell tryptase promotes inflammatory bowel disease–induced intestinal fibrosis.Inflamm. Bowel Dis.202127224225510.1093/ibd/izaa125 32507895
    [Google Scholar]
  5. LouisE.A.C. OgerA.F. DegrooteE. Aboul NasrF. Yafi El, Belaiche J. Behaviour of Crohn’s disease according to the Vienna classification.Gut20014977778210.1136/gut.49.6.777
    [Google Scholar]
  6. LiC. KuemmerleJ.F. Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease.Inflamm. Bowel Dis.20142071250125810.1097/MIB.0000000000000043 24831560
    [Google Scholar]
  7. RiewaldM. RufW. Orchestration of coagulation protease signaling by tissue factor.Trends Cardiovasc. Med.200212414915410.1016/S1050‑1738(02)00153‑6 12069753
    [Google Scholar]
  8. TackeF. LueddeT. TrautweinC. Inflammatory pathways in liver homeostasis and liver injury.Clin. Rev. Allergy Immunol.200936141210.1007/s12016‑008‑8091‑0 18600481
    [Google Scholar]
  9. RoulisM. FlavellR.A. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease.Differentiation201692311613110.1016/j.diff.2016.05.002 27165847
    [Google Scholar]
  10. PowellD.W. PinchukI.V. SaadaJ.I. ChenX. MifflinR.C. Mesenchymal cells of the intestinal lamina propria.Annu. Rev. Physiol.201173121323710.1146/annurev.physiol.70.113006.100646 21054163
    [Google Scholar]
  11. SeymourM.L. BinionD.G. ComptonS.J. HollenbergM.D. MacNaughtonW.K. Expression of proteinase-activated receptor 2 on human primary gastrointestinal myofibroblasts and stimulation of prostaglandin synthesis.Can. J. Physiol. Pharmacol.200583760561610.1139/y05‑046 16091786
    [Google Scholar]
  12. JingX. ZhonghuaZ. JiansheL. YangW. ZhenqiongL. Role of protease activated receptor-2 expression in renal interstitial fibrosis model in mice.J. Huazhong Univ. Sci. Technolog. Med. Sci.200525552352610.1007/BF02896006 16463663
    [Google Scholar]
  13. BorensztajnK. BresserP. van der LoosC. Protease-activated receptor-2 induces myofibroblast differentiation and tissue factor up-regulation during bleomycin-induced lung injury: Potential role in pulmonary fibrosis.Am. J. Pathol.201017762753276410.2353/ajpath.2010.091107 20971733
    [Google Scholar]
  14. FiorucciS. AntonelliE. DistruttiE. PAR1 antagonism protects against experimental liver fibrosis. Role of proteinase receptors in stellate cell activation.Hepatology200439236537510.1002/hep.20054 14767989
    [Google Scholar]
  15. SunQ. WangY. ZhangJ. LuJ. ENMD-1068 inhibits liver fibrosis through attenuation of TGF-β1/Smad2/3 signaling in mice.Sci. Rep.201771549810.1038/s41598‑017‑05190‑7 28710422
    [Google Scholar]
  16. HeZ. SongJ. HuaJ. Mast cells are essential intermediaries in regulating IL-33/ST2 signaling for an immune network favorable to mucosal healing in experi-mentally inflamed colons.Cell Death Dis.2018912117310.1038/s41419‑018‑1223‑4 30518915
    [Google Scholar]
  17. HeZ. LiY. MaS. Degranulation of gastrointestinal mast cells contributes to hepatic ischemia–reperfusion injury in mice.Clin. Sci. (Lond.)2018132202241225910.1042/CS20180662 30301760
    [Google Scholar]
  18. RamachandranR. NoorbakhshF. DeFeaK. HollenbergM.D. Targeting proteinase-activated receptors: Therapeutic potential and challenges.Nat. Rev. Drug Discov.2012111698610.1038/nrd3615 22212680
    [Google Scholar]
  19. SantiagoA. HannA. ConstanteM. Crohn’s disease proteolytic microbiota enhances inflammation through PAR2 pathway in gnotobiotic mice.Gut Microbes2023151220542510.1080/19490976.2023.2205425 37131291
    [Google Scholar]
  20. SunQ. JiY.C. AiQ. Exogenous autoinducer-2 alleviates intestinal damage in necrotizing enterocolitis via PAR2/MMP3 signaling pathway.Int. Immunopharmacol.202413811256710.1016/j.intimp.2024.112567 38950458
    [Google Scholar]
  21. LatorreR. HegronA. PeachC.J. Mice expressing fluorescent PAR 2 reveal that endocytosis mediates colonic inflammation and pain.Proc. Natl. Acad. Sci. USA20221196e211205911910.1073/pnas.2112059119 35110404
    [Google Scholar]
  22. RondeauL.E. Da LuzB.B. SantiagoA. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2.Gut Microbes2024161238785710.1080/19490976.2024.2387857 39171684
    [Google Scholar]
  23. XieY. FontenotL. Chupina EstradaA. Elafin reverses intestinal fibrosis by inhibiting cathepsin s-mediated protease-activated receptor 2.Cell. Mol. Gastroenterol. Hepatol.202214484187610.1016/j.jcmgh.2022.06.011 35840034
    [Google Scholar]
  24. NaritaM. HanadaK. KawamuraY. Rivaroxaban attenuates cardiac hypertrophy by inhibiting protease-activated receptor-2 signaling in renin-overexpressing hypertensive mice.Hypertens. Res.202144101261127310.1038/s41440‑021‑00700‑7 34285375
    [Google Scholar]
  25. HsiehY.A. HsiaoY.H. KoH.K. House dust mites stimulate thymic stromal lymphopoietin production in human bronchial epithelial cells and promote airway remodeling through activation of PAR2 and ERK signaling pathway.Sci. Rep.20241412864910.1038/s41598‑024‑79226‑0 39562597
    [Google Scholar]
  26. VeseyD.A. IyerA. OwenE. PAR2 activation on human tubular epithelial cells engages converging signaling pathways to induce an inflammatory and fibrotic milieu.Front. Pharmacol.202415138209410.3389/fphar.2024.1382094 39005931
    [Google Scholar]
  27. TanH. ChenZ. ChenF. XuW. LiuX. CKAP4 participates in tryptase-induced phenotypic conversion in atrial fibroblasts through PAR2/p38/JNK pathway.Am. J. Transl. Res.202113422702282 34017388
    [Google Scholar]
  28. Meyer zu SchwabedissenA. VergarajaureguiS. BertogM. Protease-activated receptor 2 deficient mice develop less angiotensin II induced left ventricular hypertrophy but more cardiac fibrosis.PLoS One20241912e031009510.1371/journal.pone.0310095 39637045
    [Google Scholar]
  29. ZhangQ. ZhangZ. ChenW. ZhengH. SiD. ZhangW. Rivaroxaban, a direct inhibitor of coagulation factor Xa, attenuates adverse cardiac remodeling in rats by regulating the PAR-2 and TGF-β1 signaling pathways.PeerJ202311e1609710.7717/peerj.16097 37786576
    [Google Scholar]
  30. SimmonsJ.G. PucilowskaJ.B. LundP.K. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors.Am. J. Physiol.19992764G817G827 10198323
    [Google Scholar]
  31. MifflinR.C. PinchukI.V. SaadaJ.I. PowellD.W. Intestinal myofibroblasts: Targets for stem cell therapy.Am. J. Physiol. Gastrointest. Liver Physiol.20113005G684G69610.1152/ajpgi.00474.2010 21252048
    [Google Scholar]
  32. CunninghamM.F. DochertyN.G. BurkeJ.P. O’ConnellP.R. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn’s disease and promotes intestinal fibroblast migration.Am. J. Physiol. Gastrointest. Liver Physiol.20102992G457G46610.1152/ajpgi.00351.2009 20489045
    [Google Scholar]
  33. JohnsonL.A. RodanskyE.S. SauderK.L. Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts.Inflamm. Bowel Dis.201319589190310.1097/MIB.0b013e3182813297 23502354
    [Google Scholar]
  34. BurkeJ.P. MulsowJ.J. O’KeaneC. DochertyN.G. WatsonR.W.G. O’ConnellP.R. Fibrogenesis in Crohn’s disease.Am. J. Gastroenterol.2007102243944810.1111/j.1572‑0241.2006.01010.x 17156147
    [Google Scholar]
  35. HinzB. CelettaG. TomasekJ.J. GabbianiG. ChaponnierC. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity.Mol. Biol. Cell20011292730274110.1091/mbc.12.9.2730 11553712
    [Google Scholar]
  36. PowellD.W. MifflinR.C. ValentichJ.D. CroweS.E. SaadaJ.I. WestA.B. Myofibroblasts. II. Intestinal subepithelial myofibroblasts.Am. J. Physiol. Cell Physiol.19992772C183C20110.1152/ajpcell.1999.277.2.C183 10444394
    [Google Scholar]
  37. ValentichJ.D. PopovV. SaadaJ.I. PowellD.W. Phenotypic characterization of an intestinal subepithelial myofibroblast cell line.Am. J. Physiol. Cell Physiol.19972725C1513C152410.1152/ajpcell.1997.272.5.C1513 9176142
    [Google Scholar]
  38. SimmonsJ.G. PucilowskaJ.B. KekuT.O. LundP.K. IGF-I and TGF-β1 have distinct effects on phenotype and proliferation of intestinal fibroblasts.Am. J. Physiol. Gastrointest. Liver Physiol.20022833G809G81810.1152/ajpgi.00057.2002 12181198
    [Google Scholar]
  39. KoonH.W. ShihD. KaragiannidesI. Substance P modulates colitis-associated fibrosis.Am. J. Pathol.201017752300230910.2353/ajpath.2010.100314 20889569
    [Google Scholar]
  40. VittinghoffE. McCullochC.E. Relaxing the rule of ten events per variable in logistic and Cox regression.Am. J. Epidemiol.2007165671071810.1093/aje/kwk052 17182981
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240351860250403112214
Loading
/content/journals/cmm/10.2174/0115665240351860250403112214
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): colonic fibrosis; Crohn's disease; fibroblast; myofibroblast; PAR-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test