Skip to content
2000
image of Neuroprotective Potential of Conditioned Medium from Adipose and Liver Mesenchymal Stem Cells in a Rat Model of Global Cerebral Ischemia-Reperfusion Injury

Abstract

Background

Mesenchymal stem cell-derived conditioned medium (MSC-CM) contains bioactive factors that provide neuroprotection in cases of cerebral ischemia-reperfusion (IR) injury. This study aimed to compare the therapeutic potential of rat adipose-derived MSC-CM (rAD-MSC-CM) and chicken embryo liver-derived MSC-CM (cLD-MSC-CM) following global cerebral IR injury in male rats.

Material and Methods

We harvested rAD-MSC-CM from the adipose tissue surrounding the epididymis of Wistar rats and cLD-MSC-CM from the liver tissue of 10-day-old chicken embryos. To induce global cerebral ischemia, we utilized a four-vessel occlusion (4VO) model in rats. After inducing ischemia, the conditioned media were administered via intravenous injection 30 minutes post-reperfusion. We evaluated the cognitive and non-cognitive functions of the animals using standard behavioral tests. Additionally, we assessed blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and conducted histopathological analyses of the hippocampal tissue in the IR rats.

Results

Our findings demonstrated that treatment with both rAD-MSC-CM and cLD-MSC-CM significantly improved memory function, reduced anxiety- and depression-like behaviors, and enhanced exploratory activities. These behavioral improvements correlated with decreased BBB permeability and BWC, reduced oxidative stress, and mitigated histopathological changes in the hippocampal tissue.

Conclusion

Our findings suggest that both rAD-MSC-CM and cLD-MSC-CM offer protective benefits against IR injury, likely owing to their antioxidant properties.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240351634250506164609
2025-05-12
2025-09-14
Loading full text...

Full text loading...

References

  1. Feigin V.L. Brainin M. Norrving B. Martins S. Sacco R.L. Hacke W. Fisher M. Pandian J. Lindsay P. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke 2022 17 1 18 29 10.1177/17474930211065917 34986727
    [Google Scholar]
  2. Farzaneh M. Anbiyaee O. Azizidoost S. Nasrolahi A. Ghaedrahmati F. Kempisty B. Mozdziak P. Khoshnam S.E. Najafi S. The mechanisms of long non-coding RNA-XIST in ischemic stroke: Insights into functional roles and therapeutic potential. Mol. Neurobiol. 2024 61 5 2745 2753 10.1007/s12035‑023‑03740‑x 37932544
    [Google Scholar]
  3. Dhapola R. Medhi B. HariKrishnaReddy D. Insight into the pathophysiological advances and molecular mechanisms underlying cerebral stroke: Current status. Mol. Biol. Rep. 2024 51 1 649 10.1007/s11033‑024‑09597‑0 38733445
    [Google Scholar]
  4. Kuriakose D. Xiao Z. Pathophysiology and treatment of stroke: Present status and future perspectives. Int. J. Mol. Sci. 2020 21 20 7609 10.3390/ijms21207609 33076218
    [Google Scholar]
  5. Zhang Y. Dong N. Hong H. Qi J. Zhang S. Wang J. Mesenchymal stem cells: Therapeutic mechanisms for stroke. Int. J. Mol. Sci. 2022 23 5 2550 10.3390/ijms23052550 35269692
    [Google Scholar]
  6. Guo Y. Peng Y. Zeng H. Chen G. Progress in mesenchymal stem cell therapy for ischemic stroke. Stem Cells Int. 2021 2021 1 1 24 10.1155/2021/9923566 34221026
    [Google Scholar]
  7. El-Sayed M.E. Atwa A. Sofy A.R. Helmy Y.A. Amer K. Seadawy M.G. Bakry S. Mesenchymal stem cell transplantation in burn wound healing: Uncovering the mechanisms of local regeneration and tissue repair. Histochem. Cell Biol. 2024 161 2 165 181 10.1007/s00418‑023‑02244‑y 37847258
    [Google Scholar]
  8. Giovannelli L. Bari E. Jommi C. Tartara F. Armocida D. Garbossa D. Cofano F. Torre M.L. Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact. Mater. 2023 29 16 35 10.1016/j.bioactmat.2023.06.013 37456581
    [Google Scholar]
  9. He J. Liu J. Huang Y. Tang X. Xiao H. Hu Z. Oxidative stress, inflammation, and autophagy: Potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Front. Neurosci. 2021 15 641157 10.3389/fnins.2021.641157 33716657
    [Google Scholar]
  10. Dhir N. Jain A. Sharma A.R. Sharma S. Mahendru D. Patial A. Malik D. Prakash A. Attri S.V. Bhattacharyya S. Das Radotra B. Medhi B. Rat BM-MSCs secretome alone and in combination with stiripentol and ISRIB, ameliorated microglial activation and apoptosis in experimental stroke. Behav. Brain Res. 2023 449 114471 10.1016/j.bbr.2023.114471 37146724
    [Google Scholar]
  11. Einenkel A.M. Salameh A. Selective vulnerability of hippocampal CA1 and CA3 pyramidal cells: What are possible pathomechanisms and should more attention be paid to the CA3 region in future studies? J. Neurosci. Res. 2024 102 1 e25276 10.1002/jnr.25276 38284845
    [Google Scholar]
  12. Eslamizade M.J. Madjd Z. Rasoolijazi H. Saffarzadeh F. Pirhajati V. Aligholi H. Janahmadi M. Mehdizadeh M. Impaired memory and evidence of histopathology in CA1 pyramidal neurons through injection of Aβ1-42 peptides into the frontal cortices of rat. Basic Clin. Neurosci. 2016 7 1 31 41 27303597
    [Google Scholar]
  13. Yaqubi S. Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. Curr. Res. Pharmacol. Drug Discov. 2024 6 100183 10.1016/j.crphar.2024.100183 38831867
    [Google Scholar]
  14. Raoufinia R. Rahimi H.R. Saburi E. Moghbeli M. Advances and challenges of the cell-based therapies among diabetic patients. J. Transl. Med. 2024 22 1 435 10.1186/s12967‑024‑05226‑3 38720379
    [Google Scholar]
  15. Taylor M.R. Cole S.W. Strom J. Brazauskas R. Baker K.S. Phelan R. Buchbinder D. Hamilton B. Schoemans H. Shaw B.E. Sharma A. Bhatt N.S. Badawy S.M. Winestone L.E. Preussler J.M. Mayo S. Jamani K. Nishihori T. Lee M.A. Knight J.M. Unfavorable transcriptome profiles and social disadvantage in hematopoietic cell transplantation: A CIBMTR analysis. Blood Adv. 2023 7 22 6830 6838 10.1182/bloodadvances.2023010746 37773924
    [Google Scholar]
  16. Rahimi B. Panahi M. Saraygord-Afshari N. Taheri N. Bilici M. Jafari D. Alizadeh E. The secretome of mesenchymal stem cells and oxidative stress: Challenges and opportunities in cell-free regenerative medicine. Mol. Biol. Rep. 2021 48 7 5607 5619 10.1007/s11033‑021‑06360‑7 34191238
    [Google Scholar]
  17. Karimian A. Khoshnazar S.M. Kazemi T. Asadi A. Abdolmaleki A. Role of secretomes in cell-free therapeutic strategies in regenerative medicine. Cell Tiss. Bank. 2023 25 2 1 16 10.1007/s10561‑023‑10073‑5 36725732
    [Google Scholar]
  18. Castelli V. Antonucci I. d’Angelo M. Tessitore A. Zelli V. Benedetti E. Ferri C. Desideri G. Borlongan C. Stuppia L. Cimini A. Neuroprotective effects of human amniotic fluid stem cells-derived secretome in an ischemia/reperfusion model. Stem Cells Transl. Med. 2021 10 2 251 266 10.1002/sctm.20‑0268 33027557
    [Google Scholar]
  19. Seo H.G. Yi Y. Oh B.M. Paik N.J. Neuroprotective effect of secreted factors from human adipose stem cells in a rat stroke model. Neurol. Res. 2017 39 12 1114 1124 10.1080/01616412.2017.1379293 28948857
    [Google Scholar]
  20. Jiang R.H. Wu C.J. Xu X.Q. Lu S.S. Zu Q.Q. Zhao L.B. Wang J. Liu S. Shi H.B. Hypoxic conditioned medium derived from bone marrow mesenchymal stromal cells protects against ischemic stroke in rats. J. Cell. Physiol. 2019 234 2 1354 1368 10.1002/jcp.26931 30076722
    [Google Scholar]
  21. Zhang Y. Ma L. Su Y. Su L. Lan X. Wu D. Han S. Li J. Kvederis L. Corey S. Borlongan C.V. Ji X. Hypoxia conditioning enhances neuroprotective effects of aged human bone marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. Brain Res. 2019 1725 146432 10.1016/j.brainres.2019.146432 31491422
    [Google Scholar]
  22. Liu G. Wang D. Jia J. Hao C. Ge Q. Xu L. Zhang C. Li X. Mi Y. Wang H. Miao L. Chen Y. Zhou J. Xu X. Liu Y. Neuroprotection of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in alleviating ischemic stroke-induced brain injury by regulating inflammation and oxidative stress. Neurochem. Res. 2024 49 10 2871 2887 10.1007/s11064‑024‑04212‑x 39026086
    [Google Scholar]
  23. Choudhery M.S. Arif T. Mahmood R. Harris D.T. Stem cell-based acellular therapy: Insight into biogenesis, bioengineering and therapeutic applications of exosomes. Biomolecules 2024 14 7 792 10.3390/biom14070792 39062506
    [Google Scholar]
  24. Wang Y. Yi H. Song Y. The safety of MSC therapy over the past 15 years: A meta-analysis. Stem Cell Res. Ther. 2021 12 1 545 10.1186/s13287‑021‑02609‑x 34663461
    [Google Scholar]
  25. Jeon D. Chu K. Lee S.T. Jung K.H. Ban J.J. Park D.K. Yoon H.J. Jung S. Yang H. Kim B.S. Choi J.Y. Kim S.H. Kim J.M. Won C.H. Kim M. Lee S.K. Roh J.K. Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models. Neurobiol. Dis. 2013 54 414 420 10.1016/j.nbd.2013.01.015 23376682
    [Google Scholar]
  26. Tang L. Xu Y. Wang L. Pan J. Adipose-derived stem cell exosomes ameliorate traumatic brain injury through the NLRP3 signaling pathway. Neuroreport 2023 34 13 677 684 10.1097/WNR.0000000000001941 37506308
    [Google Scholar]
  27. Amini N. Nejaddehbashi F. Badavi M. Bayati V. Zahra Basir Combined effect of naringin and adipose tissue-derived mesenchymal stem cell on cisplatin nephrotoxicity through Sirtuin1/Nrf-2/HO-1 signaling pathway: A promising nephroprotective candidate. Cell Tissue Res. 2024 397 3 193 204 10.1007/s00441‑024‑03902‑w 38953985
    [Google Scholar]
  28. Mahdavi R. Akbari Jonoush Z. Ghafourian M. Khoshnam S.E. Nezhad Dehbashi F. Farzaneh M. The effect of remdesivir as an anti-COVID-19 drug on chicken hepatocyte enzymes: An in vitro study. Iran. J. Med. Microbiol. 2023 17 3 309 317 10.30699/ijmm.17.3.309
    [Google Scholar]
  29. Akbari Jonoush Z. Mahdavi R. Ghafourian M. Khoshnam S.E. Nezhad Dehbashi F. Farzaneh M. The effect of remdesivir as an anti-COVID-19 drug on the secretion of inflammatory markers by chicken liver cells: An in vitro study. J. Inflammat. Dis. 2023 26 4 173 182 10.32598/JID.26.4.2
    [Google Scholar]
  30. Sun H.S. Jackson M.F. Martin L.J. Jansen K. Teves L. Cui H. Kiyonaka S. Mori Y. Jones M. Forder J.P. Golde T.E. Orser B.A. MacDonald J.F. Tymianski M. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat. Neurosci. 2009 12 10 1300 1307 10.1038/nn.2395 19734892
    [Google Scholar]
  31. Vastegani S.M. Hajipour S. Sarkaki A. Basir Z. Farbood Y. Bavarsad K. Khoshnam S.E. Curcumin ameliorates neurobehavioral deficits in ambient dusty particulate matter-exposure rats: The role of oxidative stress. Neurochem. Res. 2023 48 6 1798 1810 10.1007/s11064‑023‑03877‑0 36708454
    [Google Scholar]
  32. Belayev L. Busto R. Ikeda M. Rubin L.L. Kajiwara A. Morgan L. Ginsberg M.D. Protection against blood–brain barrier disruption in focal cerebral ischemia by the type IV phosphodiesterase inhibitor BBB022: A quantitative study. Brain Res. 1998 787 2 277 285 10.1016/S0006‑8993(97)01499‑6 9518648
    [Google Scholar]
  33. Khoshnam S.E. Farbood Y. Fathi Moghaddam H. Sarkaki A. Badavi M. Khorsandi L. Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab. Brain Dis. 2018 33 3 785 793 10.1007/s11011‑018‑0187‑5 29356980
    [Google Scholar]
  34. Gerriets T. Walberer M. Ritschel N. Tschernatsch M. Mueller C. Bachmann G. Schoenburg M. Kaps M. Nedelmann M. Edema formation in the hyperacute phase of ischemic stroke. J. Neurosurg. 2009 111 5 1036 1042 10.3171/2009.3.JNS081040 19408985
    [Google Scholar]
  35. Xiao W. Shi J. Application of adipose-derived stem cells in ischemic heart disease: Theory, potency, and advantage. Front. Cardiovasc. Med. 2024 11 1324447 10.3389/fcvm.2024.1324447 38312236
    [Google Scholar]
  36. Kostecka A. Kalamon N. Skoniecka A. Koczkowska M. Skowron P.M. Piotrowski A. Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci. 2024 351 122761 10.1016/j.lfs.2024.122761 38866216
    [Google Scholar]
  37. Bunnell B.A. Adipose tissue-derived mesenchymal stem cells. Cells 2021 10 12 3433 10.3390/cells10123433
    [Google Scholar]
  38. Moll G. Alm J.J. Davies L.C. von Bahr L. Heldring N. Stenbeck-Funke L. Hamad O.A. Hinsch R. Ignatowicz L. Locke M. Lönnies H. Lambris J.D. Teramura Y. Nilsson-Ekdahl K. Nilsson B. Blanc K. Do cryopreserved mesenchymal stromal cells display impaired immunomodulatory and therapeutic properties? Stem Cells 2014 32 9 2430 2442 10.1002/stem.1729 24805247
    [Google Scholar]
  39. Levy O. Kuai R. Siren E.M.J. Bhere D. Milton Y. Nissar N. De Biasio M. Heinelt M. Reeve B. Abdi R. Alturki M. Fallatah M. Almalik A. Alhasan A.H. Shah K. Karp J.M. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 2020 6 30 eaba6884 10.1126/sciadv.aba6884 32832666
    [Google Scholar]
  40. Sadr S. Lotfalizadeh N. Ghaniei A. Ahmadi Simab P. Hajjafari A. An update on characterisation and applications of mesenchymal stem cells from chickens with challenges and prospective review. Worlds Poult. Sci. J. 2024 80 2 589 610 10.1080/00439339.2023.2288321
    [Google Scholar]
  41. Maryam F. Shirin A. In vitro generation of hepatocytes across different stages of chicken embryos. Curr. Mol. Med. 2024 1 843 10.21203/rs.3.rs‑4095843/v1
    [Google Scholar]
  42. Panta A. Montgomery K. Nicolas M. Mani K.K. Sampath D. Sohrabji F. Mir363-3p treatment attenuates long-term cognitive deficits precipitated by an ischemic stroke in middle-aged female rats. Front. Aging Neurosci. 2020 12 586362 10.3389/fnagi.2020.586362 33132904
    [Google Scholar]
  43. Ögren S. Stiedl O. Passive avoidance. Amsterdam, Netherlands Elsevier 2010 1 6
    [Google Scholar]
  44. D’Souza C.E. Greenway M.R.F. Graff-Radford J. Meschia J.F. Cognitive impairment in patients with stroke. Semin. Neurol. 2021 40 75 84 10.1055/s‑0040‑1722217 33418591
    [Google Scholar]
  45. Lee S.S. Kim C.J. Shin M.S. Lim B.V. Treadmill exercise ameliorates memory impairment through ERK-Akt-CREB-BDNF signaling pathway in cerebral ischemia gerbils. J. Exerc. Rehabil. 2020 16 1 49 57 10.12965/jer.2040014.007 32161734
    [Google Scholar]
  46. Kirino T. Delayed neuronal death. Neuropathology 2000 20 s1 Suppl. 95 97 10.1046/j.1440‑1789.2000.00306.x 11037198
    [Google Scholar]
  47. Zhou L.Y.Y. Wright T.E. Clarkson A.N. Prefrontal cortex stroke induces delayed impairment in spatial memory. Behav. Brain Res. 2016 296 373 378 10.1016/j.bbr.2015.08.022 26306825
    [Google Scholar]
  48. Cauda F. Nani A. Manuello J. Premi E. Palermo S. Tatu K. Duca S. Fox P.T. Costa T. Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain 2018 141 11 3211 3232 10.1093/brain/awy252 30346490
    [Google Scholar]
  49. Wang W. Redecker C. Bidmon H.J. Witte O.W. Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischemia. Brain Res. 2004 1023 1 92 101 10.1016/j.brainres.2004.07.034 15364023
    [Google Scholar]
  50. Cunningham C.J. Redondo-Castro E. Allan S.M. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J. Cereb. Blood Flow Metab. 2018 38 8 1276 1292 10.1177/0271678X18776802 29768965
    [Google Scholar]
  51. Drago D. Cossetti C. Iraci N. Gaude E. Musco G. Bachi A. Pluchino S. The stem cell secretome and its role in brain repair. Biochimie 2013 95 12 2271 2285 10.1016/j.biochi.2013.06.020 23827856
    [Google Scholar]
  52. Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: Therapeutic perspectives of regenerative medicine. Cell Tissue Bank. 2021 22 2 249 262 10.1007/s10561‑020‑09885‑6 33231840
    [Google Scholar]
  53. Asgari Taei A. Dargahi L. Nasoohi S. Hassanzadeh G. Kadivar M. Farahmandfar M. The conditioned medium of human embryonic stem cell‐derived mesenchymal stem cells alleviates neurological deficits and improves synaptic recovery in experimental stroke. J. Cell. Physiol. 2021 236 3 1967 1979 10.1002/jcp.29981 32730642
    [Google Scholar]
  54. Vicentini J.E. Weiler M. Almeida S.R.M. de Campos B.M. Valler L. Li L.M. Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging Behav. 2017 11 6 1571 1580 10.1007/s11682‑016‑9605‑7 27743373
    [Google Scholar]
  55. Redmond C. Bushnell C. Duncan P. D’Agostino R. Jr Ambrosius W.T. Bishop L. Gesell S. Prvu-Bettger J. El Husseini N. Association of in-hospital depression and anxiety symptoms following stroke with 3 months- depression, anxiety and functional outcome. J. Clin. Neurosci. 2022 98 133 136 10.1016/j.jocn.2022.02.010 35180502
    [Google Scholar]
  56. Scharf A.C. Gronewold J. Eilers A. Todica O. Moenninghoff C. Doeppner T.R. de Haan B. Bassetti C.L. Hermann D.M. Depression and anxiety in acute ischemic stroke involving the anterior but not paramedian or inferolateral thalamus. Front. Psychol. 2023 14 1218526 10.3389/fpsyg.2023.1218526 37701875
    [Google Scholar]
  57. Ignacio K.H.D. Muir R.T. Diestro J.D.B. Singh N. Yu M.H.L.L. Omari O.E. Abdalrahman R. Barker-Collo S.L. Hackett M.L. Dukelow S.P. Almekhlafi M.A. Prevalence of depression and anxiety symptoms after stroke in young adults: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2024 33 7 107732 10.1016/j.jstrokecerebrovasdis.2024.107732 38657829
    [Google Scholar]
  58. Ranjbaran M. Kianian F. Kadkhodaee M. Seifi B. Ashabi G. Akhondzadeh F. Adelipour M. Izad M. Abdolmohammadi K. Mesenchymal stem cells and their conditioned medium as potential therapeutic strategies in managing comorbid anxiety in rat sepsis induced by cecal ligation and puncture. Iran. J. Basic Med. Sci. 2022 25 6 690 697 35949300
    [Google Scholar]
  59. Kraeuter A.-K. Guest P.C. Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Meth. Mol. Biol. 2019 1916 99 103 10.1007/978‑1‑4939‑8994‑2_9 30535687
    [Google Scholar]
  60. Balkaya M. Kröber J.M. Rex A. Endres M. Assessing post-stroke behavior in mouse models of focal ischemia. J. Cereb. Blood Flow Metab. 2013 33 3 330 338 10.1038/jcbfm.2012.185 23232947
    [Google Scholar]
  61. Cunningham C.J. Wong R. Barrington J. Tamburrano S. Pinteaux E. Allan S.M. Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Res. Ther. 2020 11 1 32 10.1186/s13287‑020‑1560‑y 31964413
    [Google Scholar]
  62. Ozkan S. Isildar B. Sahin H. Saygi H.I. Konukoglu D. Koyuturk M. Comparative analysis of effects of conditioned mediums obtained from 2D or 3D cultured mesenchymal stem cells on kidney functions of diabetic rats: Early intervention could potentiate transdifferentiation of parietal epithelial cell into podocyte precursors. Life Sci. 2024 343 122543 10.1016/j.lfs.2024.122543 38460812
    [Google Scholar]
  63. Mirshekari Jahangiri H. Sarkaki A. Farbood Y. Dianat M. Goudarzi G. Gallic acid affects blood-brain barrier permeability, behaviors, hippocampus local EEG, and brain oxidative stress in ischemic rats exposed to dusty particulate matter. Environ. Sci. Pollut. Res. Int. 2020 27 5 5281 5292 10.1007/s11356‑019‑07076‑9 31848951
    [Google Scholar]
  64. Blanchette M. Daneman R. Formation and maintenance of the BBB. Mech. Dev. 2015 138 Pt 1 8 16 10.1016/j.mod.2015.07.007 26215350
    [Google Scholar]
  65. Saleem R. Mohamed-Ahmed S. Elnour R. Berggreen E. Mustafa K. Al-Sharabi N. Conditioned Medium from Bone Marrow Mesenchymal Stem Cells Restored Oxidative Stress-Related Impaired Osteogenic Differentiation. Int. J. Mol. Sci. 2021 22 24 13458 10.3390/ijms222413458 34948255
    [Google Scholar]
  66. Fatemi I. Saeed-Askari P. Hakimizadeh E. Kaeidi A. Esmaeil-Moghaddam S. Pak-Hashemi M. Allahtavakoli M. Long-term metformin therapy improves neurobehavioral functions and antioxidative activity after cerebral ischemia/reperfusion injury in rats. Brain Res. Bull. 2020 163 65 71 10.1016/j.brainresbull.2020.07.015 32693150
    [Google Scholar]
  67. Chen Y. Garcia G.E. Huang W. Constantini S. The involvement of secondary neuronal damage in the development of neuropsychiatric disorders following brain insults. Front. Neurol. 2014 5 22 10.3389/fneur.2014.00022 24653712
    [Google Scholar]
  68. Khoshnam S.E. Winlow W. Farzaneh M. Farbood Y. Moghaddam H.F. Pathogenic mechanisms following ischemic stroke. Neurol. Sci. 2017 38 7 1167 1186 10.1007/s10072‑017‑2938‑1 28417216
    [Google Scholar]
  69. Shushanyan R.A. Avtandilyan N.V. Grigoryan A.V. Karapetyan A.F. The role of oxidative stress and neuroinflammatory mediators in the pathogenesis of high-altitude cerebral edema in rats. Respir. Physiol. Neurobiol. 2024 327 104286 10.1016/j.resp.2024.104286 38825093
    [Google Scholar]
  70. Shang J. Jiao J. Yan M. Wang J. Li Q. Shabuerjiang L. Lu Y. Song Q. Bi L. Huang G. Zhang X. Wen Y. Cui Y. Wu K. Li G. Wang P. Liu X. Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed. Pharmacother. 2023 161 114534 10.1016/j.biopha.2023.114534 36933376
    [Google Scholar]
  71. Liu D. Wang H. Zhang Y. Zhang Z. Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related Nrf2 pathway. Drug Des. Devel. Ther. 2020 14 51 60 10.2147/DDDT.S228751 32021091
    [Google Scholar]
  72. Hong H.E. Kim O.H. Kwak B.J. Choi H.J. im K.H. Ahn J. Kim S.J. Antioxidant action of hypoxic conditioned media from adipose-derived stem cells in the hepatic injury of expressing higher reactive oxygen species. Ann. Surg. Treat. Res. 2019 97 4 159 167 10.4174/astr.2019.97.4.159 31620389
    [Google Scholar]
  73. Hosseini M. Baghcheghi Y. Salmani H. Beheshti F. Contribution of brain tissue oxidative damage in hypothyroidism-associated learning and memory impairments. Adv. Biomed. Res. 2017 6 1 59 10.4103/2277‑9175.206699 28584813
    [Google Scholar]
  74. Patki G. Solanki N. Atrooz F. Allam F. Salim S. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res. 2013 1539 73 86 10.1016/j.brainres.2013.09.033 24096214
    [Google Scholar]
  75. Albaqami F.F. Abdel-Rahman R.F. Althurwi H.N. Alharthy K.M. Soliman G.A. Aljarba T.M. Ogaly H.A. Abdel-Kader M.S. Targeting inflammation and oxidative stress for protection against ischemic brain injury in rats using cupressuflavone. Saudi Pharm. J. 2024 32 1 101933 10.1016/j.jsps.2023.101933 38204594
    [Google Scholar]
  76. Wang Y. Liu J. Yu B. Jin Y. Li J. Ma X. Yu J. Niu J. Liang X. Umbilical cord-derived mesenchymal stem cell conditioned medium reverses neuronal oxidative injury by inhibition of TRPM2 activation and the JNK signaling pathway. Mol. Biol. Rep. 2022 49 8 7337 7345 10.1007/s11033‑022‑07524‑9 35585377
    [Google Scholar]
  77. Ma N. Li S. Lin C. Cheng X. Meng Z. Mesenchymal stem cell conditioned medium attenuates oxidative stress injury in hepatocytes partly by regulating the miR-486-5p/PIM1 axis and the TGF-β/Smad pathway. Bioengineered 2021 12 1 6434 6447 10.1080/21655979.2021.1972196 34519263
    [Google Scholar]
  78. Park C.M. Kim M.J. Kim S.M. Park J.H. Kim Z.H. Choi Y.S. Umbilical cord mesenchymal stem cell-conditioned media prevent muscle atrophy by suppressing muscle atrophy-related proteins and ROS generation. In Vitro Cell. Dev. Biol. Anim. 2016 52 1 68 76 10.1007/s11626‑015‑9948‑1 26373864
    [Google Scholar]
  79. Merino-Serrais P. Plaza-Alonso S. Hellal F. Valero-Freitag S. Kastanauskaite A. Plesnila N. DeFelipe J. Structural changes of CA1 pyramidal neurons after stroke in the contralesional hippocampus. Brain Pathol. 2024 34 3 e13222 10.1111/bpa.13222 38012061
    [Google Scholar]
  80. Colbourne F. Li H. Buchan A.M. Clemens J.A. Continuing postischemic neuronal death in CA1: Influence of ischemia duration and cytoprotective doses of NBQX and SNX-111 in rats. Stroke 1999 30 3 662 668 10.1161/01.STR.30.3.662 10066868
    [Google Scholar]
  81. Yamaguchi S. Ogata H. Hamaguchi S. Kitajima T. Superoxide radical generation and histopathological changes in hippocampal CA1 after ischaemia/ reperfusion in gerbils. Can. J. Anaesth. 1998 45 3 226 232 10.1007/BF03012907 9579260
    [Google Scholar]
  82. Huang Y. Mei X. Jiang W. Zhao H. Yan Z. Zhang H. Liu Y. Hu X. Zhang J. Peng W. Zhang J. Qi Q. Chen N. Mesenchymal stem cell-conditioned medium protects hippocampal neurons from radiation damage by suppressing oxidative stress and apoptosis. Dose Resp. 2021 19 1 1559325820984944 10.1177/1559325820984944 33716588
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240351634250506164609
Loading
/content/journals/cmm/10.2174/0115665240351634250506164609
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ischemic stroke ; Conditioned medium ; Rat ; Chicken embryo ; Liver ; Mesenchymal stem cells ; Adipose
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test