Skip to content
2000
image of Urinary CFHR2 as a Biomarker for Early Diagnosis and Disease Progression Prediction in Diabetic Kidney Disease

Abstract

Aim

The pathogenesis of diabetic kidney disease (DKD) is complex, and the specific biomarkers for detecting early diagnosis and monitoring kidney function deterioration are insufficient, which affects the prognosis of patients. The complement activation in glomeruli and renal interstitium contributes to the aggravation of DKD. Several key complement proteins, such as complement factor 3 (C3), CD59, and complement factor H-related protein 2 (CFHR2) were reported to be potential biomarkers for early diagnosis and prognosis for DKD.

Methods

In the current study, we focus on CFHR2, to investigate its capability and sensitivity as a DKD biomarker. As a non-invasive detection sample, urine has the characteristic of convenient sampling. In the current study, the urine samples were collected from three groups: diabetic patients without albuminuria, with micro-albuminuria, and macroalbuminuria, to analyze whether CFHR2 was associated with albuminuria concentration and declined renal function. Meanwhile, the urinary neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and C3 were also examined by enzyme-linked immunosorbent assay (ELISA) to compare with CFHR2 to determine whether CFHR2 had an advantage in predicting the early detection and progression of DKD. The Spearman correlation analysis was performed for the correlation analysis. The receiver operating characteristic curve was used to analyze the diagnostic efficacy.

Results

CFHR2 had superior diagnostic power to predict the early occurrence of DKD and disease progression, compared with NGAL, microalbumin, and C3 in urine.

Conclusion

CFHR2 has satisfactory potential to be a biomarker for early diagnosis and risk of progression of DKD.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240350524250524065114
2025-05-26
2025-09-14
Loading full text...

Full text loading...

References

  1. Zhang S. Yang J. Li H. Skimmin, a coumarin, suppresses the streptozotocin-induced diabetic nephropathy in wistar rats. Eur. J. Pharmacol. 2012 692 1-3 78 83 10.1016/j.ejphar.2012.05.017 22664227
    [Google Scholar]
  2. Wang W. Sheng L. Chen Y. Total coumarin derivates from Hydrangea paniculata attenuate renal injuries in cationized-BSA induced membranous nephropathy by inhibiting complement activation and interleukin 10-mediated interstitial fibrosis. Phytomedicine 2022 96 153886 10.1016/j.phymed.2021.153886 35026512
    [Google Scholar]
  3. Yang M. Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J. Pharm. Anal. 2024 14 1 39 51 10.1016/j.jpha.2023.09.003 38352948
    [Google Scholar]
  4. Gupta S. Dominguez M. Golestaneh L. Diabetic kidney disease. Med. Clin. North Am. 2023 107 4 689 705 10.1016/j.mcna.2023.03.004 37258007
    [Google Scholar]
  5. Su S. Ma Z. Wu H. Xu Z. Yi H. Oxidative stress as a culprit in diabetic kidney disease. Life Sci. 2023 322 121661 10.1016/j.lfs.2023.121661 37028547
    [Google Scholar]
  6. Yu J. Liu Y. Li H. Zhang P. Pathophysiology of diabetic kidney disease and autophagy. : A review. Medicine 2023 102 30 33965 10.1097/MD.0000000000033965 37505163
    [Google Scholar]
  7. McGrath K. Edi R. Diabetic kidney disease: Diagnosis, treatment, and prevention. Am. Fam. Physician 2019 99 12 751 759 [PMID: 31194487
    [Google Scholar]
  8. Zhang X. Jia B. Zhang Y. Zhang S. LINCRNA01094 promotes renal interstitial fibrosis via the Mir-513b-5p/MELK/Smad3 axis. Endocr. Metab. Immune Disord. Drug Targets 2024 24 1 9 10.2174/0118715303306110240820072347 39318012
    [Google Scholar]
  9. ElSayed N.A. McCoy R.G. Aleppo G. 11. Chronic kidney disease and risk management: Standards of care in diabetes—2025. Diabetes Care 2025 48 Suppl. 1 S239 S251 10.2337/dc25‑S011
    [Google Scholar]
  10. Shuaib M. Masoom M. Khan M.A. Role of KIM-1 in early diagnosis of contrast-induced nephropathy following invasive cardiac procedure: A systematic review. Clin. Epidemiol. Glob. Health 2024 30 101765 10.1016/j.cegh.2024.101765
    [Google Scholar]
  11. Szumilas D. Owczarek A.J. Brzozowska A. Niemir Z.I. Olszanecka-Glinianowicz M. Chudek J. The Value of Urinary NGAL, KIM-1, and IL-18 Measurements in the Early Detection of Kidney Injury in Oncologic Patients Treated with Cisplatin-Based Chemotherapy. Int. J. Mol. Sci. 2024 25 2 1074 10.3390/ijms25021074 38256147
    [Google Scholar]
  12. Mori Y. Ajay A.K. Chang J.H. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. 2021 33 5 1042 1061.e7 10.1016/j.cmet.2021.04.004 33951465
    [Google Scholar]
  13. Wang W. Li Z. Chen Y. Wu H. Zhang S. Chen X. Prediction value of serum ngal in the diagnosis and prognosis of experimental acute and chronic kidney injuries. Biomolecules 2020 10 7 981 10.3390/biom10070981 32630021
    [Google Scholar]
  14. Zhang S. Ma J. Sheng L. Total coumarins from Hydrangea paniculata show renal protective effects in lipopolysaccharide-induced acute kidney injury via anti-inflammatory and antioxidant activities. Front. Pharmacol. 2017 8 872 872 10.3389/fphar.2017.00872 29311915
    [Google Scholar]
  15. Baldimtsi E. Whiss P.A. Wahlberg J. Systemic biomarkers of microvascular alterations in type 1 diabetes associated neuropathy and nephropathy - A prospective long-term follow-up study. J. Diabetes Complications 2023 37 12 108635 10.1016/j.jdiacomp.2023.108635 37989066
    [Google Scholar]
  16. Prashant P. Dahiya K. Bansal A. Vashist S. Dokwal S. Prakash G. Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a potential early biomarker for diabetic nephropathy: A meta-analysis. Int. J. Biochem. Mol. Biol. 2024 15 1 1 7 10.62347/FVBS3902 38505131
    [Google Scholar]
  17. Bakri SJ Bektas M Sharp D Luo R Sarda SP Khan S Geographic atrophy: Mechanism of disease, pathophysiology, and role of the complement system J Manag Care Spec Pharm 2023 29 (5-a Suppl) S2 S11 10.18553/jmcp.2023.29.5‑a.s2 37125931
    [Google Scholar]
  18. Zhang Y. Li Z. Wu H. Wang J. Zhang S. Esculetin alleviates murine lupus nephritis by inhibiting complement activation and enhancing Nrf2 signaling pathway. J. Ethnopharmacol. 2022 288 115004 10.1016/j.jep.2022.115004 35051603
    [Google Scholar]
  19. Ricklin D. Reis E.S. Lambris J.D. Complement in disease: A defence system turning offensive. Nat. Rev. Nephrol. 2016 12 7 383 401 10.1038/nrneph.2016.70 27211870
    [Google Scholar]
  20. Wu H. Jia B. Zhao X. Pathophysiology and system biology of rat c-BSA induced immune complex glomerulonephritis and pathway comparison with human gene sequencing data. Int. Immunopharmacol. 2022 109 108891 10.1016/j.intimp.2022.108891 35691274
    [Google Scholar]
  21. Shi W. Li Z. Wang W. Dynamic gut microbiome-metabolome in cationic bovine serum albumin induced experimental immune-complex glomerulonephritis and effect of losartan and mycophenolate mofetil on microbiota modulation. J. Pharm. Anal. 2024 14 4 100931 10.1016/j.jpha.2023.12.021 38655401
    [Google Scholar]
  22. Lucarelli N. Yun D. Han D. Ginley B. Moon K.C. Rosenberg A.Z. Discovery of novel digital biomarkers for type 2 diabetic nephropathy classification via integration of urinary proteomics and pathology. medRxiv 2023 2023.04.28.23289272 10.1101/2023.04.28.23289272
    [Google Scholar]
  23. Jung C.Y. Yoo T.H. Novel biomarkers for diabetic kidney disease. Kidney Res. Clin. Pract. 2022 41 Suppl. 2 S46 S62 10.23876/j.krcp.22.084 36239061
    [Google Scholar]
  24. Eberhardt H.U. Buhlmann D. Hortschansky P. Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 2013 8 11 78617 10.1371/journal.pone.0078617 24260121
    [Google Scholar]
  25. Du J. Yuan X. Deng H. Single-cell and spatial heterogeneity landscapes of mature epicardial cells. J. Pharm. Anal. 2023 13 8 894 907 10.1016/j.jpha.2023.07.011 37719196
    [Google Scholar]
  26. Lorés-Motta L. van Beek A.E. Willems E. Common haplotypes at the CFH locus and low-frequency variants in CFHR2 and CFHR5 associate with systemic FHR concentrations and age-related macular degeneration. Am. J. Hum. Genet. 2021 108 8 1367 1384 10.1016/j.ajhg.2021.06.002 34260947
    [Google Scholar]
  27. Kubista K.E. Tosakulwong N. Wu Y. Copy number variation in the complement factor H-related genes and age-related macular degeneration. Mol. Vis. 2011 17 2080 2092 [PMID: 21850184
    [Google Scholar]
  28. Zipfel P.F. Wiech T. Stea E.D. Skerka C. CFHR gene variations provide insights in the pathogenesis of the kidney diseases atypical hemolytic uremic syndrome and C3 glomerulopathy. J. Am. Soc. Nephrol. 2020 31 2 241 256 10.1681/ASN.2019050515 31980588
    [Google Scholar]
  29. Hu X. Liu H. Du J. The clinical significance of plasma CFHR 1–5 in lupus nephropathy. Immunobiology 2019 224 3 339 346 10.1016/j.imbio.2019.03.005 30975435
    [Google Scholar]
  30. Wang D. Wu C. Chen S. Urinary complement profile in IgA nephropathy and its correlation with the clinical and pathological characteristics. Front. Immunol. 2023 14 1117995 10.3389/fimmu.2023.1117995 37020564
    [Google Scholar]
  31. Chen X. Jia X. Lei H. Screening and identification of serum biomarkers of osteoarticular tuberculosis based on mass spectrometry. J. Clin. Lab. Anal. 2020 34 7 23297 10.1002/jcla.23297 32162728
    [Google Scholar]
  32. Peters K.E. Davis W.A. Ito J. Identification of novel circulating biomarkers predicting rapid decline in renal function in type 2 diabetes: The fremantle diabetes study phase II. Diabetes Care 2017 40 11 1548 1555 10.2337/dc17‑0911 28851702
    [Google Scholar]
  33. Zheng J.M. Jiang Z.H. Chen D.J. Wang S.S. Zhao W.J. Li L.J. Pathological significance of urinary complement activation in diabetic nephropathy: A full view from the development of the disease. J. Diabetes Investig. 2019 10 3 738 744 10.1111/jdi.12934 30239170
    [Google Scholar]
  34. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020 98 4S S1 S115 10.1016/j.kint.2020.06.01932998798 32998798
    [Google Scholar]
  35. Zang Y.D. Wu H.J. Chen X.Y. Synthesis and biological evaluation of novel psidium meroterpenoid derivatives against cisplatin-induced acute kidney injury. J. Med. Chem. 2024 67 16 14234 14255 10.1021/acs.jmedchem.4c01099 39137258
    [Google Scholar]
  36. Meng J. Li X. Liu W. The role of vitamin D in the prevention and treatment of SARS-CoV-2 infection: A meta-analysis of randomized controlled trials. Clin. Nutr. 2023 42 11 2198 10.1016/j.clnu.2023.09.008 37802017
    [Google Scholar]
  37. Liu P. Meng J. Tang H. Association between bariatric surgery and outcomes of total joint arthroplasty: A meta-analysis. Int. J. Surg. 2025 111 1 1541 1546 10.1097/JS9.0000000000002002 39051909
    [Google Scholar]
  38. Ding S. Yang R. Meng J. Prognostic and immune correlation of IDO1 promoter methylation in breast cancer. Sci. Rep. 2024 14 1 27836 10.1038/s41598‑024‑79149‑w 39537860
    [Google Scholar]
  39. Mercado M.G. Smith D.K. Guard E.L. Acute kidney injury: Diagnosis and management. Am. Fam. Physician 2019 100 11 687 694 [PMID: 31790176
    [Google Scholar]
  40. Kato M. Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019 15 6 327 345 10.1038/s41581‑019‑0135‑6 30894700
    [Google Scholar]
  41. Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int. 2021 2021 1 1497449 10.1155/2021/1497449 34307650
    [Google Scholar]
  42. Basi S. Fesler P. Mimran A. Lewis J.B. Microalbuminuria in type 2 diabetes and hypertension: A marker, treatment target, or innocent bystander? Diabetes Care 2008 31 Suppl. 2 S194 S201 10.2337/dc08‑s249 18227485
    [Google Scholar]
  43. Zhao X. Ma C. Li L. Yang Y. Zhang S. Wang X. Human adipose tissue-derived stromal cells ameliorate adriamycin-induced nephropathy by promoting angiogenesis. Organogenesis 2024 20 1 2356339 10.1080/15476278.2024.2356339 38796830
    [Google Scholar]
  44. Lin C.H. Chang Y.C. Chuang L.M. Early detection of diabetic kidney disease: Present limitations and future perspectives. World J. Diabetes 2016 7 14 290 301 10.4239/wjd.v7.i14.290 27525056
    [Google Scholar]
  45. Siddiqui K Al-Malki B George TP Nawaz SS Rubeaan KA Urinary N-acetyl-beta-d-glucosaminidase (NAG) with neutrophil gelatinase-associated lipocalin (NGAL) improves the diagnostic value for proximal tubule damage in diabetic kidney disease. 3 Biotech 2019 9 (3) 66 10.1007/s13205‑019‑1593‑z 30729090
    [Google Scholar]
  46. Tuttle K.R. Alicic R.Z. Glycemic Variability and KIM-1–Induced Inflammation in the Diabetic Kidney. Diabetes 2021 70 8 1617 1619 10.2337/dbi21‑0021 34285120
    [Google Scholar]
  47. Zhao L. Zhang Y. Liu F. Urinary complement proteins and risk of end-stage renal disease: Quantitative urinary proteomics in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. J. Endocrinol. Invest. 2021 44 12 2709 2723 10.1007/s40618‑021‑01596‑3 34043214
    [Google Scholar]
  48. Tang S. Wang X. Deng T. Ge H. Xiao X. Identification of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis. Sci. Rep. 2020 10 1 13468 10.1038/s41598‑020‑70540‑x 32778679
    [Google Scholar]
  49. Skerka C. Chen Q. Fremeaux-Bacchi V. Roumenina L.T. Complement factor H related proteins (CFHRs). Mol. Immunol. 2013 56 3 170 180 10.1016/j.molimm.2013.06.001 23830046
    [Google Scholar]
  50. 11. Microvascular complications and foot care: Standards of medical care in diabetes−2020. Diabetes Care 2020 43 Suppl. 1 S135 S151 10.2337/dc20‑S011 31862754
    [Google Scholar]
  51. Levey A.S. Stevens L.A. Schmid C.H. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009 150 9 604 612 10.7326/0003‑4819‑150‑9‑200905050‑00006 19414839
    [Google Scholar]
  52. Stevens L.A. Coresh J. Greene T. Levey A.S. Assessing kidney function--measured and estimated glomerular filtration rate. N. Engl. J. Med. 2006 354 23 2473 2483 10.1056/NEJMra054415 16760447
    [Google Scholar]
  53. Usman M.S. Khan M.S. Butler J. The Interplay Between Diabetes, Cardiovascular Disease, and Kidney Disease. American Diabetes Assoc 2021 13 18
    [Google Scholar]
  54. Wu H. Shi X. Zang Y. 7-hydroxycoumarin-β-D-glucuronide protects against cisplatin-induced acute kidney injury via inhibiting p38 MAPK-mediated apoptosis in mice. Life Sci. 2023 327 121864 10.1016/j.lfs.2023.121864 37336359
    [Google Scholar]
  55. Wang T. Cui S. Liu X. LncTUG1 ameliorates renal tubular fibrosis in experimental diabetic nephropathy through the miR-145-5p/dual-specificity phosphatase 6 axis. Ren. Fail. 2023 45 1 2173950 10.1080/0886022X.2023.2173950 36794657
    [Google Scholar]
  56. Danobeitia J.S. Djamali A. Fernandez L.A. The role of complement in the pathogenesis of renal ischemia-reperfusion injury and fibrosis. Fibrog Tissue Rep 2014 7 1 16 10.1186/1755‑1536‑7‑16 25383094
    [Google Scholar]
  57. Petr V. Thurman J.M. The role of complement in kidney disease. Nat. Rev. Nephrol. 2023 19 12 771 787 10.1038/s41581‑023‑00766‑1 37735215
    [Google Scholar]
  58. Shi X. Li Z. Lin W. Altered intestinal microbial flora and metabolism in patients with idiopathic membranous nephropathy. Am. J. Nephrol. 2023 54 11-12 451 470 10.1159/000533537 37793354
    [Google Scholar]
  59. Dekkema G.J. Abdulahad W.H. Bijma T. Urinary and serum soluble CD25 complements urinary soluble CD163 to detect active renal anti-neutrophil cytoplasmic autoantibody-associated vasculitis: A cohort study. Nephrol. Dial. Transplant. 2019 34 2 234 242 10.1093/ndt/gfy018 29506265
    [Google Scholar]
  60. Vonbrunn E. Büttner-Herold M. Amann K. Daniel C. Complement inhibition in kidney transplantation: Where are we now? BioDrugs 2023 37 1 5 19 10.1007/s40259‑022‑00567‑1 36512315
    [Google Scholar]
  61. Zhou W. Wang H. Sun S. Association between glomerular C4d deposition, proteinuria, and disease severity in children with IgA nephropathy. Pediatr. Nephrol. 2023 38 4 1147 1157 10.1007/s00467‑022‑05725‑9 36102962
    [Google Scholar]
  62. Tan S.M. Snelson M. Østergaard J.A. Coughlan M.T. The complement pathway: New insights into immunometabolic signaling in diabetic kidney disease. Antioxid. Redox Signal. 2022 37 10-12 781 801 10.1089/ars.2021.0125 34806406
    [Google Scholar]
  63. Li Z. Zhang X. Wu H. Hydrangea paniculata coumarins attenuate experimental membranous nephritis by bidirectional interactions with the gut microbiota. Commun. Biol. 2023 6 1 1189 10.1038/s42003‑023‑05581‑9 37993541
    [Google Scholar]
  64. Wang H. Zhang S. Guo J. Lipotoxic proximal tubular injury: A primary event in diabetic kidney disease. Front. Med. 2021 8 751529 10.3389/fmed.2021.751529 34760900
    [Google Scholar]
  65. Ali H. Abu-Farha M. Alshawaf E. Association of significantly elevated plasma levels of NGAL and IGFBP4 in patients with diabetic nephropathy. BMC Nephrol. 2022 23 1 64 10.1186/s12882‑022‑02692‑z 35148702
    [Google Scholar]
  66. Abdelraheem S. Ahmed N. Zahran F.E. Mohammed G. Ibrahim E.S.I. Diagnostic performance of kidney injury molecule‐1 for detection of abnormal urinary albumin‐to‐creatinine ratio in type 2 diabetes mellitus. J. Immunoassay Immunochem. 2021 42 6 1954947 10.1080/15321819.2021.1954947 34355651
    [Google Scholar]
  67. Kiss M.G. Papac-Miličević N. Porsch F. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity 2023 56 8 1809 1824.e10 10.1016/j.immuni.2023.06.026 37499656
    [Google Scholar]
  68. Cserhalmi M. Papp A. Brandus B. Uzonyi B. Józsi M. Regulation of regulators: Role of the complement factor H-related proteins. Semin. Immunol. 2019 45 101341 10.1016/j.smim.2019.101341 31757608
    [Google Scholar]
  69. García-García P.M. Getino-Melián M.A. Domínguez-Pimentel V. Navarro-González J.F. Inflammation in diabetic kidney disease. World J. Diabetes 2014 5 4 431 443 10.4239/wjd.v5.i4.431 25126391
    [Google Scholar]
  70. Vaisar T. Durbin-Johnson B. Whitlock K. Urine complement proteins and the risk of kidney disease progression and mortality in type 2 diabetes. Diabetes Care 2018 41 11 2361 2369 10.2337/dc18‑0699 30150236
    [Google Scholar]
  71. Calimag A.P.P. Chlebek S. Lerma E.V. Chaiban J.T. Diabetic ketoacidosis. Dis. Mon. 2023 69 3 101418 10.1016/j.disamonth.2022.101418 35577617
    [Google Scholar]
  72. Long B. Lentz S. Koyfman A. Gottlieb M. Euglycemic diabetic ketoacidosis: Etiologies, evaluation, and management. Am. J. Emerg. Med. 2021 44 157 160 10.1016/j.ajem.2021.02.015 33626481
    [Google Scholar]
  73. Song N. Xu H. Wu S. Synergistic activation of AMPK by AdipoR1/2 agonist and inhibitor of EDPs–EBP interaction recover NAFLD through enhancing mitochondrial function in mice. Acta Pharm. Sin. B 2023 13 2 542 558 10.1016/j.apsb.2022.10.003 36873175
    [Google Scholar]
  74. Li X. Zong J. Si S. Complement Factor H related protein 1 and immune inflammatory disorders. Mol. Immunol. 2022 145 43 49 10.1016/j.molimm.2022.03.117 35279539
    [Google Scholar]
  75. Zhang X. Hou H.T. Wang J. Liu X.C. Yang Q. He G.W. Plasma proteomic study in pulmonary arterial hypertension associated with congenital heart diseases. Sci. Rep. 2016 6 1 36541 10.1038/srep36541 27886187
    [Google Scholar]
  76. Navarro-González J.F. Mora-Fernández C. de Fuentes M.M. García-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 2011 7 6 327 340 10.1038/nrneph.2011.51 21537349
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240350524250524065114
Loading
/content/journals/cmm/10.2174/0115665240350524250524065114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test