Skip to content
2000
image of Analysis of Cytokine mRNA Expression During Zika Virus Infection In Mesocricetus auratus

Abstract

Background

The (ZIKV), a member of the family, has been associated with severe neurological issues, particularly microcephaly, due to its ability to infect neural progenitor cells. This study investigates the mRNA expression of cytokines involved in the inflammatory response during ZIKV infection in . The research aims to understand the immune response to ZIKV in the context of sexual transmission.

Methods

The study utilized hamsters of the species , divided into four groups: three infected with ZIKV and one control group. The animals were euthanized according to ethical guidelines, and renal tissues were collected. Total RNA was extracted and quantified, and both viral load and cytokine mRNA levels were measured using RT-qPCR. The study targeted cytokines such as TNF-A, RIG-I, RANTES, MDA5, IFN-A, and IFN-B. Statistical analysis was performed using Jamovi v 1.6.

Results

The study found that the viral load peaked between 3 and 5 days post-infection and then significantly decreased. The expression of cytokine mRNAs showed distinct patterns, with peaks and declines at various time points post-infection. These patterns differed between male and female subgroups. Pearson correlation analysis revealed negative correlations between mRNA expression and days post-infection in most groups.

Conclusion

The study concludes that ZIKV infection in hamsters induces a robust inflammatory response in the kidneys, with dynamic cytokine expression profiles that could serve as markers for monitoring infection and related pathologies. Gender-specific immune responses highlight the complexity of ZIKV pathogenesis, suggesting potential therapeutic targets for Zika-related complications.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240344536250319054657
2025-04-30
2025-09-14
Loading full text...

Full text loading...

References

  1. Wang Z. Wang P. An J. Zika virus and Zika fever. Virol. Sin. 2016 31 2 103 109 10.1007/s12250‑016‑3780‑y 27129450
    [Google Scholar]
  2. JUNIOR Zika virus: A review to clinicians. Acta Med. Port. 2015 28 760 765
    [Google Scholar]
  3. Wikan N. Smith D.R. Zika virus: History of a newly emerging arbovirus. Lancet Infect. Dis. 2016 16 7 e119 e126 10.1016/S1473‑3099(16)30010‑X 27282424
    [Google Scholar]
  4. Musso D. Gubler D.J. Zika virus. Clin. Microbiol. Rev. 2016 29 3 487 524 10.1128/CMR.00072‑15 27029595
    [Google Scholar]
  5. Duffy M.R. Chen T.H. Hancock W.T. Zika virus outbreak on Yap Island, federated states of Micronesia. N. Engl. J. Med. 2009 360 24 2536 2543 10.1056/NEJMoa0805715 19516034
    [Google Scholar]
  6. Wang A. Thurmond S. Islas L. Hui K. Hai R. Zika virus genome biology and molecular pathogenesis. Emerg. Microbes Infect. 2017 6 1 1 6 10.1038/emi.2016.141 28325921
    [Google Scholar]
  7. Haddow A.D. Schuh A.J. Yasuda C.Y. Genetic characterization of Zika virus strains: Geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 2012 6 2 e1477 10.1371/journal.pntd.0001477 22389730
    [Google Scholar]
  8. Liu L. Zhang S. Wu D. Identification and genetic characterization of Zika virus isolated from an imported case in China. Infect. Genet. Evol. 2017 48 40 46 10.1016/j.meegid.2016.10.023 27810502
    [Google Scholar]
  9. Blitvich B. Firth A. A review of flaviviruses that have no known arthropod vector. Viruses 2017 9 6 154 10.3390/v9060154 28635667
    [Google Scholar]
  10. Collins N.D. Widen S.G. Li L. Inter- and intra-lineage genetic diversity of wild-type Zika viruses reveals both common and distinctive nucleotide variants and clusters of genomic diversity. Emerg. Microbes Infect. 2019 8 1 1126 1138 10.1080/22221751.2019.1645572 31355708
    [Google Scholar]
  11. Lin H.H. Yip B.S. Huang L.M. Wu S.C. Zika virus structural biology and progress in vaccine development. Biotechnol. Adv. 2018 36 1 47 53 10.1016/j.biotechadv.2017.09.004 28916391
    [Google Scholar]
  12. Contreras D. Arumugaswami V. Zika virus infectious cell culture system and the in vitro prophylactic effect of interferons. J. Vis. Exp. 2016 114 54767 10.3791/54767‑v 27584546
    [Google Scholar]
  13. Liu T. Tang L. Tang H. Zika virus infection induces acute kidney injury through activating NLRP3 inflammasome via suppressing Bcl-2. Front. Immunol. 2019 10 1925 10.3389/fimmu.2019.01925 31474993
    [Google Scholar]
  14. Azeredo E.L. dos Santos F.B. Barbosa L.S. Clinical and laboratory profile of zika and dengue infected patients: Lessons learned from the co-circulation of dengue, zika and chikungunya in Brazil. PLoS Curr. 2018 10 10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5 29588874
    [Google Scholar]
  15. Schuler-Faccini L. Ribeiro E.M. Feitosa I.M. Possible association between Zika virus infection and microcephaly — Brazil. Available from 2016 65 https://www.cdc.gov/mmwr/volumes/65/wr/pdfs/mm6503e2_portuguese.pdf
    [Google Scholar]
  16. Fecury P.C.M.S. Ferreira J.F.L. Holanda G.M. Evaluation of the expression of genes related to the microrna’s via and apotose in neural cells experimentally infected by Zika Virus (ZIKV). BJHR 2020 3 3 7117 7133 10.34119/bjhrv3n3‑242
    [Google Scholar]
  17. Gabaglia C.R. Zika virus and diagnostics. Curr. Opin. Pediatr. 2017 29 1 107 113 10.1097/MOP.0000000000000446 27870689
    [Google Scholar]
  18. Niu X. Yan Q. Yao Z. Longitudinal analysis of the antibody repertoire of a Zika virus-infected patient revealed dynamic changes in antibody response. Emerg. Microbes Infect. 2020 9 1 111 123 10.1080/22221751.2019.1701953 31906823
    [Google Scholar]
  19. Chen J. Yang Y. Chen J. Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects. Emerg. Microbes Infect. 2017 6 1 1 7 10.1038/emi.2017.67 28831192
    [Google Scholar]
  20. Hirsch A.J. Smith J.L. Haese N.N. Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog. 2017 13 3 e1006219 10.1371/journal.ppat.1006219 28278237
    [Google Scholar]
  21. Stassen L. Armitage C.W. Van der Heide D.J. Beagley K.W. Frentiu F.D. Zika virus in the male reproductive tract. Viruses 2018 10 4 198 10.3390/v10040198 29659541
    [Google Scholar]
  22. Valadão A.L.C. Aguiar R.S. de Arruda L.B. Interplay between inflammation and cellular stress triggered by flaviviridae viruses. Front. Microbiol. 2016 7 1233 10.3389/fmicb.2016.01233 27610098
    [Google Scholar]
  23. Nazmi A. Dutta K. Hazra B. Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res. 2014 185 32 40 10.1016/j.virusres.2014.03.013 24657789
    [Google Scholar]
  24. Reikine S. Nguyen J.B. Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front. Immunol. 2014 5 342 10.3389/fimmu.2014.00342 25101084
    [Google Scholar]
  25. Laureti M. Narayanan D. Rodriguez-Andres J. Fazakerley J.K. Kedzierski L. Flavivirus receptors: Diversity, identity, and cell entry. Front. Immunol. 2018 9 2180 10.3389/fimmu.2018.02180 30319635
    [Google Scholar]
  26. Muñoz-Jordán J.L. Fredericksen B.L. How flaviviruses activate and suppress the interferon response. Viruses 2010 2 2 676 691 10.3390/v2020676 21994652
    [Google Scholar]
  27. Suthar M.S. Aguirre S. Fernandez-Sesma A. Innate immune sensing of flaviviruses. PLoS Pathog. 2013 9 9 e1003541 10.1371/journal.ppat.1003541 24068919
    [Google Scholar]
  28. Kell A.M. Gale M. Jr RIG-I in RNA virus recognition. Virology 2015 479-480 110 121 10.1016/j.virol.2015.02.017 25749629
    [Google Scholar]
  29. Perry S.T. Buck M.D. Lada S.M. Schindler C. Shresta S. STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog. 2011 7 2 e1001297 10.1371/journal.ppat.1001297 21379341
    [Google Scholar]
  30. Alcendor D.J. Zika virus infection and implications for kidney disease. J. Mol. Med. (Berl.) 2018 96 11 1145 1151 10.1007/s00109‑018‑1692‑z 30171265
    [Google Scholar]
  31. Hamel R. Dejarnac O. Wichit S. Biology of zika virus infection in human skin cells. J. Virol. 2015 89 17 8880 8896 10.1128/JVI.00354‑15 26085147
    [Google Scholar]
  32. Palomino D.C.T. Marti L.C. Chemokines and immunity. Einstein (Sao Paulo) 2015 13 3 469 473 10.1590/S1679‑45082015RB3438 26466066
    [Google Scholar]
  33. Werner H. Jr Zika virus infection. Radiol. Bras. 2019 52 6 IX X 10.1590/0100‑3984.2019.52.6e3 32047340
    [Google Scholar]
  34. Rathakrishnan A. Wang S.M. Hu Y. Cytokine expression profile of dengue patients at different phases of illness. PLoS One 2012 7 12 e52215 10.1371/journal.pone.0052215 23284941
    [Google Scholar]
  35. Alves-Leon S.V. Lima M.R. Nunes P.C.G. Zika virus found in brain tissue of a multiple sclerosis patient undergoing an acute disseminated encephalomyelitis-like episode. Mult. Scler. 2019 25 3 427 430 10.1177/1352458518781992 30226115
    [Google Scholar]
  36. Costa E.I.F.S. Porto M.J. Sousa D.F. Figueiredo C.A.V. Carneiro V.L. Plasma levels of TNF-alpha in pregnant women with Zika virus (ZIKV) infection and its relationship with severity of congenital syndrome: systematic review and meta-analysis. RSD 2021 10 10 e428101019080 10.33448/rsd‑v10i10.19080
    [Google Scholar]
  37. Lee J.K. Kim J.A. Oh S.J. Lee E.W. Shin O.S. Zika virus induces tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-Mediated apoptosis in human neural progenitor cells. Cells 2020 9 11 2487 10.3390/cells9112487 33207682
    [Google Scholar]
  38. Lum F.M. Narang V. Hue S. Immunological observations and transcriptomic analysis of trimester‐specific full‐term placentas from three Zika virus‐infected women. Clin. Transl. Immunology 2019 8 11 e01082 10.1002/cti2.1082 31709049
    [Google Scholar]
  39. Aguirre S. Maestre A.M. Pagni S. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 2012 8 10 1002934 10.1371/journal.ppat.1002934 23055924
    [Google Scholar]
  40. Bandeira A.C. Gois L.L. Campos G.S. Clinical and laboratory findings of acute Zika virus infection in patients from Salvador during the first Brazilian epidemic. Braz. J. Infect. Dis. 2020 24 5 405 411 10.1016/j.bjid.2020.08.005 32941805
    [Google Scholar]
  41. Naveca F.G. Nascimento V.A. Souza V.C. Figueiredo R.M.P. Human orthobunyavirus infections, tefé, amazonas, brazil. PLoS Curr. 2018 10 10.1371/currents.outbreaks.7d65e5eb6ef75664da68905c5582f7f7 29623245
    [Google Scholar]
  42. Rabelo K. de Souza L.J. Salomão N.G. Zika induces human placental damage and inflammation. Front. Immunol. 2020 11 2146 10.3389/fimmu.2020.02146 32983175
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240344536250319054657
Loading
/content/journals/cmm/10.2174/0115665240344536250319054657
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test