Skip to content
2000
image of Benzopyrene Aggravates Nonalcoholic Liver Fatty Diseases in Female Mice Via the AHR/ERα Axis

Abstract

Objective

Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver condition worldwide, and the statistics show that men have a higher incidence and prevalence than women, but its toxicological mechanism is not completely clear. This research is intended to explore the role of BaP in NAFLD and to study how the environmental pollutant BaP influences the AHR/ERα axis to mediate the progression of NAFLD.

Methods

In this study, we established NAFLD models and by treating HepG2 cells with a high-fat diet and Oleic acid (OA) in C57BL/6J mice. Liver injury indexes ALT, AST, and lipid metabolism indexes TG and TC were evaluated to verify the success of modeling. Then, the model was treated with BaP, and the mRNA and protein expressions of CYP1A1, ERα, and SREBP-1c were evaluated by RT-PCR and WB, and the changes of liver fat were evaluated by HE and oil red O staining. Next, BaP was added into the cells treated with or without estradiol (E2), and the lipid metabolism in the cells was evaluated by oil red O staining, and whether the above levels of CYP1A1, ERα and SREBP-1c were changed.

Results

Our results show that after exposure to BaP, ERα protein levels in mice and cells are inhibited, mRNA and protein levels of SREBP-1c are reduced, and lipid metabolism processes are obstructed. The addition of E2 can reduce the increase of SREBP-1c mRNA and protein expression induced by OA, and reduce the deposition of lipids in cells. However, BaP treatment can weaken the action of E2 and destroy the protection of E2 in cells.

Conclusion

The results showed that E2 could reduce SREBP-1c mRNA and protein levels. BaP can stimulate AHR, leading to the degradation of ERα protein, reducing the binding of E2 to ERα, and aggravating the progression of NAFLD. This reveals the toxicological mechanism by which environmental pollutant BaP influences E2 to mediate NAFLD, and provides strong evidence for differences in NAFLD between the sexes.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240338923241219152329
2025-01-02
2025-09-14
Loading full text...

Full text loading...

References

  1. Powell E.E. Wong V.W.S. Rinella M. Non-alcoholic fatty liver disease. Lancet 2021 397 10290 2212 2224 10.1016/S0140‑6736(20)32511‑3 33894145
    [Google Scholar]
  2. Huby T. Gautier E.L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 2022 22 7 429 443 10.1038/s41577‑021‑00639‑3 34741169
    [Google Scholar]
  3. Kumar S. Duan Q. Wu R. Harris E.N. Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug Deliv. Rev. 2021 176 113869 10.1016/j.addr.2021.113869 34280515
    [Google Scholar]
  4. Abhinav V. Mittal R. Navaneethakannan M. Singh A.S. Sukhes M. Ashwin K. Metabolic derangement in non-alcoholic fatty liver disease: Opportunities for early diagnostic and prognostic markers. Curr. Mol. Med. 2024 24 10.2174/0115665240269082240213115711 38409703
    [Google Scholar]
  5. Riazi K. Azhari H. Charette J.H. Underwood F.E. King J.A. Afshar E.E. Swain M.G. Congly S.E. Kaplan G.G. Shaheen A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022 7 9 851 861 10.1016/S2468‑1253(22)00165‑0 35798021
    [Google Scholar]
  6. Xiao J. Wang F. Wong N.K. He J. Zhang R. Sun R. Xu Y. Liu Y. Li W. Koike K. He W. You H. Miao Y. Liu X. Meng M. Gao B. Wang H. Li C. Global liver disease burdens and research trends: Analysis from a Chinese perspective. J. Hepatol. 2019 71 1 212 221 10.1016/j.jhep.2019.03.004 30871980
    [Google Scholar]
  7. Yu Y. Cai J. She Z. Li H. Insights into the epidemiology, pathogenesis, and therapeutics of nonalcoholic fatty liver diseases. Adv. Sci. 2019 6 4 1801585 10.1002/advs.201801585 30828530
    [Google Scholar]
  8. Byrne C.D. Targher G. NAFLD: A multisystem disease. J. Hepatol. 2015 62 1 Suppl. S47 S64 10.1016/j.jhep.2014.12.012 25920090
    [Google Scholar]
  9. Deprince A. Haas J.T. Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 2020 42 101092 10.1016/j.molmet.2020.101092
    [Google Scholar]
  10. Yki-Järvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014 2 11 901 910 10.1016/S2213‑8587(14)70032‑4 24731669
    [Google Scholar]
  11. Barbosa F. Jr Rocha B.A. Souza M.C.O. Bocato M.Z. Azevedo L.F. Adeyemi J.A. Santana A. Campiglia A.D. Polycyclic aromatic hydrocarbons (PAHs): Updated aspects of their determination, kinetics in the human body, and toxicity. J. Toxicol. Environ. Health B Crit. Rev. 2023 26 1 28 65 10.1080/10937404.2022.2164390 36617662
    [Google Scholar]
  12. Gao P. da Silva E. Hou L. Denslow N.D. Xiang P. Ma L.Q. Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environ. Int. 2018 119 466 477 10.1016/j.envint.2018.07.017 30032012
    [Google Scholar]
  13. Bukowska B. Mokra K. Michałowicz J. Benzo[a]pyrene—environmental occurrence, human exposure, and mechanisms of toxicity. Int. J. Mol. Sci. 2022 23 11 6348 10.3390/ijms23116348 35683027
    [Google Scholar]
  14. Schwert R. Verlindo R. Soares J.M. Silva P.F. Cansian R.L. Steffens C. Treichel H. Valduga E. Effect of liquid smoke extract on the oxidative stability, benzopyrene and sensory quality of calabrese sausage. Curr. Nutr. Food Sci. 2020 16 3 343 353 10.2174/1573401315666190126120749
    [Google Scholar]
  15. Li F. Xiang B. Jin Y. Li C. Ren S. Wu Y. Li J. Luo Q. Hepatotoxic effects of inhalation exposure to polycyclic aromatic hydrocarbons on lipid metabolism of C57BL/6 mice. Environ. Int. 2020 134 105000 10.1016/j.envint.2019.105000 31699440
    [Google Scholar]
  16. Wang Y. Zhao J. Xu Y. Tao C. Tong J. Luo Y. Chen Y. Liu X. Xu T. Uncovering SOD3 and GPX4 as new targets of Benzo[α]pyrene-induced hepatotoxicity through metabolomics and chemical proteomics. Redox Biol. 2023 67 102930 10.1016/j.redox.2023.102930 37847980
    [Google Scholar]
  17. Yang M. Mao K. Cao X. Liu H. Mao W. Hao L. Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice. Toxicol. Appl. Pharmacol. 2024 491 117050 10.1016/j.taap.2024.117050 39111554
    [Google Scholar]
  18. Parrish A.R. Fisher R. Bral C.M. Burghardt R.C. Gandolfi A.J. Brendel K. Ramos K.S. Benzo(a)pyrene-induced alterations in growth-related gene expression and signaling in precision-cut adult rat liver and kidney slices. Toxicol. Appl. Pharmacol. 1998 152 2 302 308 10.1006/taap.1998.8525 9852999
    [Google Scholar]
  19. Park S.H. Schatz R.A. Soo Hee Park, Robert A. Schatz Effect of low-level short-term o-xylene inhalation of benzo[a]pyrene (BaP) metabolism and BaP-DNA adduct formation in rat liver and lung microsomes. J. Toxicol. Environ. Health A 1999 58 5 299 312 10.1080/009841099157269 10598955
    [Google Scholar]
  20. Murray I.A. Patterson A.D. Perdew G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer 2014 14 12 801 814 10.1038/nrc3846 25568920
    [Google Scholar]
  21. Sun M. Ma N. He T. Johnston L.J. Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr. 2020 60 10 1760 1768 10.1080/10408398.2019.1598334 30924357
    [Google Scholar]
  22. Stockinger B. Shah K. Wincent E. AHR in the intestinal microenvironment: Safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 2021 18 8 559 570 10.1038/s41575‑021‑00430‑8 33742166
    [Google Scholar]
  23. Esser C. Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol. Rev. 2015 67 2 259 279 10.1124/pr.114.009001 25657351
    [Google Scholar]
  24. Mi P. Li N. Ai K. Li L. Yuan D. AhR-mediated lipid peroxidation contributes to TCDD-induced cardiac defects in zebrafish. Chemosphere 2023 317 137942 10.1016/j.chemosphere.2023.137942 36702031
    [Google Scholar]
  25. Ma Z. Li Z. Mao Y. Ye J. Liu Z. Wang Y. Wei C. Cui J. Liu Z. Liang X. AhR diminishes the efficacy of chemotherapy via suppressing STING dependent type-I interferon in bladder cancer. Nat. Commun. 2023 14 1 5415 10.1038/s41467‑023‑41218‑5 37670034
    [Google Scholar]
  26. Ohtake F. Baba A. Takada I. Okada M. Iwasaki K. Miki H. Takahashi S. Kouzmenko A. Nohara K. Chiba T. Fujii-Kuriyama Y. Kato S. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007 446 7135 562 566 10.1038/nature05683 17392787
    [Google Scholar]
  27. Ohtake F. Fujii-Kuriyama Y. Kato S. AhR acts as an E3 ubiquitin ligase to modulate steroid receptor functions. Biochem. Pharmacol. 2009 77 4 474 484 10.1016/j.bcp.2008.08.034 18838062
    [Google Scholar]
  28. Chen C. Wang Z. Liao Z. Zhang Y. Lei W. Shui X. Aryl hydrocarbon receptor: An emerging player in breast cancer pathogenesis and its potential as a drug target (Review). Mol. Med. Rep. 2023 29 1 11 10.3892/mmr.2023.13134 37997818
    [Google Scholar]
  29. Al-Dhfyan A. Alhoshani A. Korashy H.M. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol. Cancer 2017 16 1 14 10.1186/s12943‑016‑0570‑y 28103884
    [Google Scholar]
  30. Chen Z. Xia X. Chen H. Huang H. An X. Sun M. Yao Q. Kim K. Zhang H. Chu M. Chen R. Bhutia Y.D. Ganapathy V. Kou L. Carbidopa suppresses estrogen receptor-positive breast cancer via AhR-mediated proteasomal degradation of ERα. Invest. New Drugs 2022 40 6 1216 1230 10.1007/s10637‑022‑01289‑5 36070108
    [Google Scholar]
  31. Ogura J. Miyauchi S. Shimono K. Yang S. Gonchigar S. Ganapathy V. Bhutia Y.D. Carbidopa is an activator of aryl hydrocarbon receptor with potential for cancer therapy. Biochem. J. 2017 474 20 3391 3402 10.1042/BCJ20170583
    [Google Scholar]
  32. Cano-Sánchez J. Murillo-González F.E. de Jesús-Aguilar J. Cabañas-Cortés M.A. Tirado-Garibay A.C. Elizondo G. The aryl hydrocarbon receptor ligand 6-formylindolo(3,2-b)carbazole promotes estrogen receptor alpha and c-Fos protein degradation and inhibits MCF-7 cell proliferation and migration. Pharmacology 2023 108 2 157 165 10.1159/000527993 36657432
    [Google Scholar]
  33. Birzniece V. Ho K.K.Y. Mechanisms in endocrinology: Paracrine and endocrine control of the growth hormone axis by estrogen. Eur. J. Endocrinol. 2021 184 6 R269 R278 10.1530/EJE‑21‑0155 33852424
    [Google Scholar]
  34. Graceli J.B. Zomer H.D. Medrano T.I. Hess R.A. Korach K.S. Cooke P.S. Role for nongenomic estrogen signaling in male fertility. Endocrinology 2024 165 3 bqad180 10.1210/endocr/bqad180 38066676
    [Google Scholar]
  35. Ouyang Q. Xie H. Ran M. Zhang X. He Z. Lin Y. Hu S. Hu J. He H. Li L. Liu H. Wang J. Estrogen receptor gene 1 (ESR1) mediates lipid metabolism in goose hierarchical granulosa cells rather than in pre-hierarchical granulosa cells. Biology 2023 12 7 962 10.3390/biology12070962 37508392
    [Google Scholar]
  36. Tsou T.C. Yeh S.C. Hsu J.W. Tsai F.Y. Estrogenic chemicals at body burden levels attenuate energy metabolism in 3T3‐L1 adipocytes. J. Appl. Toxicol. 2017 37 12 1537 1546 10.1002/jat.3508 28849599
    [Google Scholar]
  37. Ezhilarasan D. Critical role of estrogen in the progression of chronic liver diseases. Hepatobiliary Pancreat. Dis. Int. 2020 19 5 429 434 10.1016/j.hbpd.2020.03.011 32299655
    [Google Scholar]
  38. Porter L.E. Elm M.S. Van Thiel D.H. Eagon P.K. Hepatic estrogen receptor in human liver disease. Gastroenterology 1987 92 3 735 745 10.1016/0016‑5085(87)90026‑6 3028896
    [Google Scholar]
  39. Kley H.K. Keck E. Krüskemper H.L. Estrone and estradiol in patients with cirrhosis of the liver: Effects of ACTH and dexamethasone. J. Clin. Endocrinol. Metab. 1976 43 3 557 560 10.1210/jcem‑43‑3‑557 182710
    [Google Scholar]
  40. Chen P. Li B. Ou-Yang L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022 13 839005 10.3389/fendo.2022.839005 36060947
    [Google Scholar]
  41. McCarthy M. Raval A.P. The peri-menopause in a woman’s life: A systemic inflammatory phase that enables later neurodegenerative disease. J. Neuroinflammation 2020 17 1 317 10.1186/s12974‑020‑01998‑9 33097048
    [Google Scholar]
  42. Hojnik M. Sinreih M. Anko M. Hevir-Kene N. Knific T. Pirš B. Grazio S.F. Rižner T.L. The Co-expression of estrogen receptors ERα, ERβ, and GPER in endometrial cancer. Int. J. Mol. Sci. 2023 24 3 3009 10.3390/ijms24033009 36769338
    [Google Scholar]
  43. Palmisano B.T. Zhu L. Stafford J.M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 2017 1043 227 256 10.1007/978‑3‑319‑70178‑3_12 29224098
    [Google Scholar]
  44. Pham T.H. Lee G.H. Jin S.W. Lee S.Y. Han E.H. Kim N.D. Choi C.Y. Jeong G.S. Ki Lee S. Kim H.S. Jeong H.G. Sesamin ameliorates lipotoxicity and lipid accumulation through the activation of the estrogen receptor alpha signaling pathway. Biochem. Pharmacol. 2023 216 115768 10.1016/j.bcp.2023.115768 37652106
    [Google Scholar]
  45. Cherubini A. Ostadreza M. Jamialahmadi O. Pelusi S. Rrapaj E. Casirati E. Passignani G. Norouziesfahani M. Sinopoli E. Baselli G. Meda C. Dongiovanni P. Dondossola D. Youngson N. Tourna A. Chokshi S. Bugianesi E. Ronzoni L. Bianco C. Cerami L. Torcianti V. Periti G. Margarita S. Carpani R. Malvestiti F. Marini I. Tomasi M. Lombardi A. Rondena J. Maggioni M. D’Ambrosio R. Vaira V. Fracanzani A.L. Rosso C. Pennisi G. Petta S. Liguori A. Miele L. Tavaglione F. Vespasiani-Gentilucci U. Dallio M. Federico A. Soardo G. Pihlajamäki J. Männistö V. Della Torre S. Prati D. Romeo S. Valenti L. EPIDEMIC Study Investigators Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat. Med. 2023 29 10 2643 2655 10.1038/s41591‑023‑02553‑8 37749332
    [Google Scholar]
  46. Koulouri O. Ostberg J. Conway G.S. Liver dysfunction in Turner’s syndrome: Prevalence, natural history and effect of exogenous oestrogen. Clin. Endocrinol. 2008 69 2 306 310 10.1111/j.1365‑2265.2008.03203.x 18248644
    [Google Scholar]
  47. Ascha M.S. Hanouneh I.A. Lopez R. Tamimi T.A.R. Feldstein A.F. Zein N.N. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010 51 6 1972 1978 10.1002/hep.23527 20209604
    [Google Scholar]
  48. Galmés-Pascual B.M. Martínez-Cignoni M.R. Morán-Costoya A. Bauza-Thorbrügge M. Sbert-Roig M. Valle A. Proenza A.M. Lladó I. Gianotti M. 17β-estradiol ameliorates lipotoxicity-induced hepatic mitochondrial oxidative stress and insulin resistance. Free Radic. Biol. Med. 2020 150 148 160 10.1016/j.freeradbiomed.2020.02.016 32105829
    [Google Scholar]
  49. Tian Y. Hong X. Xie Y. Guo Z. Yu Q. 17β-Estradiol (E2) Upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent bilateral oophorectomy (OVX)-induced nonalcoholic fatty liver disease (NAFLD). Antioxidants 2023 12 12 2100 10.3390/antiox12122100 38136219
    [Google Scholar]
  50. Caballero-Solares A. Hall J.R. Xue X. Rise M.L. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) for gene expression analyses. Methods Mol. Biol. 2022 2508 319 340 10.1007/978‑1‑0716‑2376‑3_21 35737248
    [Google Scholar]
  51. Drummer C. IV Saaoud F. Jhala N.C. Cueto R. Sun Y. Xu K. Shao Y. Lu Y. Shen H. Yang L. Zhou Y. Yu J. Wu S. Snyder N.W. Hu W. Zhuo J.J. Zhong Y. Jiang X. Wang H. Yang X. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front. Immunol. 2023 14 1113883 10.3389/fimmu.2023.1113883 36776889
    [Google Scholar]
  52. Mescher M. Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol. Ther. 2018 187 71 87 10.1016/j.pharmthera.2018.02.012
    [Google Scholar]
  53. Kyoreva M. Li Y. Hoosenally M. Hardman-Smart J. Morrison K. Tosi I. Tolaini M. Barinaga G. Stockinger B. Mrowietz U. Nestle F.O. Smith C.H. Barker J.N. Di Meglio P. CYP1A1 enzymatic activity influences skin inflammation via regulation of the AHR pathway. J. Invest. Dermatol. 2021 141 6 1553 1563.e3 10.1016/j.jid.2020.11.024 33385398
    [Google Scholar]
  54. Dvorák Z. Vrzal R. Ulrichová J. Pascussi J.M. Maurel P. Modriansky M. Involvement of cytoskeleton in AhR-dependent CYP1A1 expression. Curr. Drug Metab. 2006 7 3 301 313 10.2174/138920006776359310 16611024
    [Google Scholar]
  55. Ferré P. Phan F. Foufelle F. SREBP-1c and lipogenesis in the liver: An update. Biochem. J. 2021 478 20 3723 3739 10.1042/BCJ20210071 34673919
    [Google Scholar]
  56. Li N. Li X. Ding Y. Liu X. Diggle K. Kisseleva T. Brenner D.A. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines 2023 11 12 3280 10.3390/biomedicines11123280 38137501
    [Google Scholar]
  57. Zhu X.Y. Xia H.G. Wang Z.H. Li B. Jiang H.Y. Li D.L. Jin R. Jin Y. In vitro and in vivo approaches for identifying the role of aryl hydrocarbon receptor in the development of nonalcoholic fatty liver disease. Toxicol. Lett. 2020 319 85 94 10.1016/j.toxlet.2019.10.010 31730885
    [Google Scholar]
  58. Kim K.S. Kim N.Y. Son J.Y. Park J.H. Lee S.H. Kim H.R. Kim B. Kim Y.G. Jeong H.G. Lee B.M. Kim H.S. Curcumin ameliorates Benzo[a]pyrene-induced DNA damages in stomach tissues of sprague-dawley rats. Int. J. Mol. Sci. 2019 20 22 5533 10.3390/ijms20225533 31698770
    [Google Scholar]
  59. Chen J. He X. Song Y. Tu Y. Chen W. Yang G. Sporoderm-broken spores of Ganoderma lucidum alleviates liver injury induced by DBP and BaP co-exposure in rat. Ecotoxicol. Environ. Saf. 2022 241 113750 10.1016/j.ecoenv.2022.113750 35696964
    [Google Scholar]
  60. Gao Y. Zhang W. Zeng L.Q. Bai H. Li J. Zhou J. Zhou G.Y. Fang C.W. Wang F. Qin X.J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020 36 101635 10.1016/j.redox.2020.101635 32863214
    [Google Scholar]
  61. Lian C.Y. Zhai Z.Z. Li Z.F. Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020 330 109199 10.1016/j.cbi.2020.109199 32805210
    [Google Scholar]
  62. Li J. Wang T. Liu P. Yang F. Wang X. Zheng W. Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021 12 9 3898 3918 10.1039/D0FO02736G 33977953
    [Google Scholar]
  63. Rafiei H. Omidian K. Bandy B. Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients 2019 11 3 541 10.3390/nu11030541
    [Google Scholar]
  64. Kim D-K. Kim Y-H. Lee J-H. Jung Y.S. Kim J. Feng R. Jeonh T-I. Lee I-K. Cho S.J. Estrogen-related receptor γ controls sterol regulatory element-binding protein-1c expression and alcoholic fatty liver. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019 1864 158521 10.1016/j.bbalip.2019.158521
    [Google Scholar]
  65. Seo H.Y. Kim M.K. Jung Y.A. Jang B.K. Yoo E.K. Park K.G. Lee I.K. Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Endocrinology 2013 154 5 1722 1730 10.1210/en.2012‑2009 23515283
    [Google Scholar]
  66. Eng P.C. Forlano R. Tan T. Manousou P. Dhillo W.S. Izzi-Engbeaya C. Non-alcoholic fatty liver disease in women – Current knowledge and emerging concepts. JHEP Reports 2023 5 10 100835 10.1016/j.jhepr.2023.100835 37771547
    [Google Scholar]
  67. Pernomian L. Duarte-Silva M. de Barros Cardoso C.R. The aryl hydrocarbon receptor (AHR) as a potential target for the control of intestinal inflammation: Insights from an immune and bacteria sensor receptor. Clin. Rev. Allergy Immunol. 2020 59 3 382 390 10.1007/s12016‑020‑08789‑3 32279195
    [Google Scholar]
  68. Riemschneider S. Hoffmann M. Slanina U. Weber K. Hauschildt S. Lehmann J. Indol-3-carbinol and quercetin ameliorate chronic DSS-induced colitis in C57BL/6 mice by AhR-mediated anti-inflammatory mechanisms. Int. J. Environ. Res. Public Health 2021 18 5 2262 10.3390/ijerph18052262
    [Google Scholar]
  69. Opitz C.A. Holfelder P. Prentzell M.T. Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem. Pharmacol. 2023 216 115798 10.1016/j.bcp.2023.115798
    [Google Scholar]
  70. Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J. Endocrinol. 2023 258 1 e220247 10.1530/JOE‑22‑0247 37074385
    [Google Scholar]
  71. Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. Biol. Sex Differ. 2015 6 1 14 10.1186/s13293‑015‑0033‑y 26339468
    [Google Scholar]
  72. Le Magueresse-Battistoni B. Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side? Chemosphere 2021 268 129212 10.1016/j.chemosphere.2020.129212 33359838
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240338923241219152329
Loading
/content/journals/cmm/10.2174/0115665240338923241219152329
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test