Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Antigen 85B (Ag85B) is a signature antigen of (MTB). In this study, we aimed to investigate the impact of macrophages stimulated with Ag85B on bronchial epithelial cells and T cells, as well as the underlying mechanisms involved.

Methods

We used Ag85B to stimulate macrophage and investigated the impact of Ag85B on macrophage polarization. We assessed the impact of TLR4 on Ag85B-mediated macrophage polarization by silencing TLR4. Additionally, the regulatory role of TLR4 on the TRAF6/NF-κB pathway was evaluated through immunoblotting. Activated macrophages with Ag85B were co-cultured with mouse bronchial epithelial cells (MBECs) and T cells, respectively. Through immunoblotting quantification, biochemical methods, and flow cytometry, we explored the effects and molecular mechanisms of Ag85B-induced macrophage activation on bronchial epithelial cell damage and T-cell transformation.

Results

In macrophages stimulated with Ag85B, levels of M1 polarization-related genes (CXCL9, CXCL10, and iNOS) and cytokines (IL-6, TNF-α, IL-1β, and IL-12) were increased, and the M1/M2 ratio was elevated. TLR4 silence inhibited the effects of Ag85B on macrophages and decreased TRAF6 and p-NF-κB/NF-κB levels. TRAF6 overexpression reversed the inhibitory effect of TLR4 on macrophage stimulation with Ag85B. After co-culturing with macrophages induced by Ag85B, MBEC cell proliferation was inhibited, apoptosis was promoted, and the TH17/Treg ratio of T cells was increased. Silencing TLR4 reversed the impact of Ag85B-induced macrophage polarization on bronchial epithelial cells and T cells, which was further reversed by TRAF6 overexpression.

Conclusion

Ag85B promoted M1 polarization in macrophages through the TLR4/TRAF6/NF-κB axis, resulting in bronchial epithelial cell damage and an imbalance in TH17/Treg cells.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240319773241204073135
2025-01-15
2025-11-01
Loading full text...

Full text loading...

References

  1. SchitoM. MiglioriG.B. FletcherH.A. Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines.Clin. Infect. Dis.201561Suppl. 3S102S11810.1093/cid/civ609 26409271
    [Google Scholar]
  2. SanchiniA. LanniA. GiannoniF. MustazzoluA. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview.Tuberculosis202414810252210.1016/j.tube.2024.102522 38850839
    [Google Scholar]
  3. RungelrathV. AhmedM. HicksL. Vaccination with Mincle agonist UM-1098 and mycobacterial antigens induces protective Th1 and Th17 responses.NPJ Vaccines20249110010.1038/s41541‑024‑00897‑x 38844494
    [Google Scholar]
  4. LarsenS.E. ErasmusJ.H. ReeseV.A. An RNA-based vaccine platform for use against mycobacterium tuberculosis.Vaccines202311113010.3390/vaccines11010130 36679975
    [Google Scholar]
  5. OrgeurM. SousC. MadackiJ. BroschR. Evolution and emergence of Mycobacterium tuberculosis.FEMS Microbiol. Rev.2024482fuae00610.1093/femsre/fuae006 38365982
    [Google Scholar]
  6. Guerrero-BustamanteC.A. DedrickR.M. GarlenaR.A. RussellD.A. HatfullG.F. Toward a phage cocktail for tuberculosis: Susceptibility and tuberculocidal action of mycobacterio-phages against diverse mycobacterium tuberculosis strains.MBio2021123e00973e2110.1128/mBio.00973‑21 34016711
    [Google Scholar]
  7. MottaI. BoereeM. ChesovD. Recent advances in the treatment of tuberculosis.Clin. Microbiol. Infect.20243091107111410.1016/j.cmi.2023.07.013 37482332
    [Google Scholar]
  8. PalanivelJ. SounderrajanV. ThangamT. RaoS.S. HarshavardhanS. ParthasarathyK. Latent tuberculosis: Challenges in diagnosis and treatment, perspectives, and the crucial role of biomarkers.Curr. Microbiol.2023801239210.1007/s00284‑023‑03491‑x 37884822
    [Google Scholar]
  9. FrankD.J. HorneD.J. DuttaN.K. Remembering the host in tuberculosis drug development.J. Infect. Dis.2019219101518152410.1093/infdis/jiy712 30590592
    [Google Scholar]
  10. RaienA. DavisS. ZhangM. Effects of everolimus in modulating the host immune responses against mycobacterium tuberculosis infection.Cells20231222265310.3390/cells12222653 37998388
    [Google Scholar]
  11. LiuY. WangJ. YangJ. Nanomaterial-mediated host directed therapy of tuberculosis by manipulating macrophage autophagy.J. Nanobiotechnology202422160810.1186/s12951‑024‑02875‑w 39379986
    [Google Scholar]
  12. BoH. MoureU.A.E. YangY. Mycobacterium tuberculosis-macrophage interaction: Molecular updates.Front. Cell. Infect. Microbiol.202313106296310.3389/fcimb.2023.1062963 36936766
    [Google Scholar]
  13. Guzmán-TéllezP. Rivero-SilvaM.A. Moreno-AltamiranoM.M.B. Sánchez-GarcíaF.J. Macrophages, metabolism, mitochondria, circadian rhythmicity and the pathogen: the multidimensional nature of tuberculosis.Results Probl. Cell Differ.20247434136410.1007/978‑3‑031‑65944‑7_14 39406913
    [Google Scholar]
  14. KadowakiM. YoshidaS. ItoyamaT. Involvement of M1/M2 macrophage polarization in reparative dentin formation.Life20221211181210.3390/life12111812 36362965
    [Google Scholar]
  15. StrizovaZ. BenesovaI. BartoliniR. M1/M2 macrophages and their overlaps – myth or reality?Clin. Sci.2023137151067109310.1042/CS20220531 37530555
    [Google Scholar]
  16. BassiouniM. ArensP. ZabanehS.I. OlzeH. HorstD. RoßnerF. The relationship between the M1/M2 macrophage polarization and the degree of ossicular erosion in human acquired cholesteatoma: An immunohistochemical study.J. Clin. Med.20221116482610.3390/jcm11164826 36013064
    [Google Scholar]
  17. NguyenT.K.T. NiazZ. d’AigleJ. HwangS.A. KruzelM.L. ActorJ.K. Lactoferrin reduces mycobacterial M1-type inflammation induced with trehalose 6,6′-dimycolate and facilitates the entry of fluoroquinolone into granulomas.Biochem. Cell Biol.2021991738010.1139/bcb‑2020‑0057 32402212
    [Google Scholar]
  18. YangZ. WangJ. PiJ. Identification and validation of genes related to macrophage polarization and cell death modes under Mycobacterium tuberculosis infection.J. Inflamm. Res.2024171397141110.2147/JIR.S448372 38476473
    [Google Scholar]
  19. ChengP. LiS. ChenH. Macrophages in lung injury, repair, and fibrosis.Cells202110243610.3390/cells10020436 33670759
    [Google Scholar]
  20. ReddyD.V.S. SofiH.S. RoyT. Macrophage-targeted versus free calcitriol as host-directed adjunct therapy against Mycobacterium tuberculosis infection in mice is bacteriostatic and mitigates tissue pathology.Tuberculosis202414810253610.1016/j.tube.2024.102536 38976934
    [Google Scholar]
  21. HammondF.R. LewisA. PollaraG. Tribbles1 is host protective during in vivo mycobacterial infection.eLife202413e9598010.7554/eLife.95980 38896446
    [Google Scholar]
  22. Irizarry-CaroR.A. McDanielM.M. OvercastG.R. JainV.G. TroutmanT.D. PasareC. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation.Proc. Natl. Acad. Sci. USA202011748306283063810.1073/pnas.2009778117 33199625
    [Google Scholar]
  23. ChenR. WangX. LiZ. DaiY. DuW. WuL. Human Toll-like receptor 2 genetic polymorphisms with tuberculosis susceptibility: A systematic review and meta-analysis.Cytokine202317215640510.1016/j.cyto.2023.156405 37883839
    [Google Scholar]
  24. SivananthamA. AlktaishW. MurugeasanS. GongB. LeeH. JinY. Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors.Front. Immunol.202314104483410.3389/fimmu.2023.1044834 36817491
    [Google Scholar]
  25. OrtegaE. Hernández-BazánS. Sánchez-HernándezB. Licona-LimónI. Fuentes-DominguezJ. Single nucleotide polymorphisms in TLR4 affect susceptibility to tuberculosis in mexican population from the state of veracruz.J. Immunol. Res.2020202011010.1155/2020/2965697 32411792
    [Google Scholar]
  26. WangX.L. ChenF. ShiH. Oxymatrine inhibits neuroinflammation by Regulating M1/M2 polarization in N9 microglia through the TLR4/NF-κB pathway.Int. Immunopharmacol.202110010813910.1016/j.intimp.2021.108139 34517275
    [Google Scholar]
  27. MaX. WangF. ZhenL. CaiQ. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosisvia TLR4/NF-κB signalling pathway.Clin. Exp. Pharmacol. Physiol.202350213213910.1111/1440‑1681.13716 36048566
    [Google Scholar]
  28. WangW.B. LiJ.T. HuiY. ShiJ. WangX.Y. YanS.G. Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway.Chin. Med.20221711910.1186/s13020‑021‑00562‑8 35123524
    [Google Scholar]
  29. YueC. CuiG. ChengY. Aucubin suppresses TLR4/NF-κB signalling to shift macrophages toward M2 phenotype in glucocorticoid-associated osteonecrosis of the femoral head.J. Cell. Mol. Med.20242815e1858310.1111/jcmm.18583 39123292
    [Google Scholar]
  30. MinY. KimM.J. LeeS. ChunE. LeeK.Y. Inhibition of TRAF6 ubiquitin-ligase activity by PRDX1 leads to inhibition of NFKB activation and autophagy activation.Autophagy20181481347135810.1080/15548627.2018.1474995 29929436
    [Google Scholar]
  31. LuoY. LiY. HeL. Xinyang tablet ameliorates sepsis-induced myocardial dysfunction by regulating Beclin-1 to mediate macrophage autophagy and M2 polarization through LncSICRNT1 targeting E3 ubiquitin ligase TRAF6.Chin. Med.202318114310.1186/s13020‑023‑00832‑7 37919806
    [Google Scholar]
  32. GongZ.T. XiongY.Y. NingY. Nicorandil-Pretreated Mesenchymal Stem Cell-Derived Exosomes Facilitate Cardiac Repair After Myocardial Infarction via Promoting Macrophage M2 Polarization by Targeting miR-125a-5p/TRAF6/IRF5 Signaling Pathway.Int. J. Nanomedicine2024192005202410.2147/IJN.S441307 38469055
    [Google Scholar]
  33. YinY. MuC. WangJ. CXCL17 attenuates diesel exhaust emissions exposure-induced lung damage by regulating macrophage function.Toxics202311864610.3390/toxics11080646 37624152
    [Google Scholar]
  34. WenC. YuZ. WangJ. Inhalation of Citrus Reticulata essential oil alleviates airway inflammation and emphysema in COPD rats through regulation of macrophages.J. Ethnopharmacol.202432011740710.1016/j.jep.2023.117407 37981111
    [Google Scholar]
  35. FukuyamaK. ZhuangT. ToyoshiE. Establishment of a porcine bronchial epithelial cell line and its application to study innate immunity in the respiratory epithelium.Front. Immunol.202314111710210.3389/fimmu.2023.1117102 37465671
    [Google Scholar]
  36. GrantN.L. KellyK. MaielloP. Mycobacterium tuberculosis-Specific CD4 T Cells Expressing Transcription Factors T-Bet or RORγT Associate with Bacterial Control in Granulomas.MBio2023143e00477e2310.1128/mbio.00477‑23 37039646
    [Google Scholar]
  37. LiangP. WangL. YangS. 5-Methoxyflavone alleviates LPS-mediated lung injury by promoting Nrf2-mediated the suppression of NOX4/TLR4 axis in bronchial epithelial cells and M1 polarization in macrophages.J. Inflamm.20221912410.1186/s12950‑022‑00319‑6 36451220
    [Google Scholar]
  38. LuoJ. ZhangM. YanB. ZhangK. ChenM. DengS. Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients.Braz. J. Infect. Dis.201721215516110.1016/j.bjid.2016.10.011 27932286
    [Google Scholar]
  39. LiJ. LiM. ZhangC. Active targeting microemulsion-based thermosensitive hydrogel against periodontitis by reconstructing Th17/Treg homeostasis via regulating ROS-macrophages polarization cascade.Int. J. Pharm.202465912426310.1016/j.ijpharm.2024.124263 38815639
    [Google Scholar]
  40. HuangL. ZhaoY. ShanM. Targeting crosstalk of STAT3 between tumor-associated M2 macrophages and Tregs in colorectal cancer.Cancer Biol. Ther.2023241222641810.1080/15384047.2023.2226418 37381162
    [Google Scholar]
  41. ZhangM. WangL. ZhouC. WangJ. ChengJ. FanY.E. coli LPS/TLR4/NF-κB signaling pathway regulates TH17/TREG balance mediating inflammatory responses in oral lichen planus.Inflammation20234631077109010.1007/s10753‑023‑01793‑7 37017858
    [Google Scholar]
  42. ChengC. HuJ. LiY. Qing-Chang-Hua-Shi granule ameliorates DSS-induced colitis by activating NLRP6 signaling and regulating Th17/Treg balance.Phytomedicine202210715445210.1016/j.phymed.2022.154452 36150347
    [Google Scholar]
  43. ParkN. ParkS.J. KimM.H. YangW.M. Efficacy and mechanism of essential oil from Abies holophylla leaf on airway inflammation in asthma: Network pharmacology and in vivo study.Phytomedicine20229615389810.1016/j.phymed.2021.153898 35026513
    [Google Scholar]
  44. BishtM.K. PalR. DahiyaP. The PPE2 protein of Mycobacterium tuberculosis is secreted during infection and facilitates mycobacterial survival inside the host.Tuberculosis202314310242110.1016/j.tube.2023.102421 37879126
    [Google Scholar]
  45. PrendergastK.A. CounoupasC. LeottaL. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.Vaccine201634232608261510.1016/j.vaccine.2016.03.089 27060378
    [Google Scholar]
  46. LiangX. CuiR. LiX. Ag85B with c-di-AMP as mucosal adjuvant showed immunotherapeutic effects on persistent Mycobacterium tuberculosis infection in mice.Braz. J. Med. Biol. Res.202457e1340910.1590/1414‑431X2024e13409 38958367
    [Google Scholar]
  47. LuoL. ZhouL. LuoL. Triamcinolone acetonide induces the autophagy of Ag85B-treated WI-38 cells via SIRT1/FOXO3 pathway.Allergol. Immunopathol.2023512273510.15586/aei.v51i2.775 36916085
    [Google Scholar]
  48. GilleronJ. BougetG. IvanovS. Rab4b deficiency in T cells promotes adipose TREG/TH17 imbalance, adipose tissue dysfunction, and insulin resistance.Cell Rep.2018251233293341.e510.1016/j.celrep.2018.11.083 30566860
    [Google Scholar]
  49. TongL. HaoH. ZhangZ. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota.Theranostics202111178570858610.7150/thno.62046 34373759
    [Google Scholar]
  50. ShiL. ZhaoY. FengC. Therapeutic effects of shaogan fuzi decoction in rheumatoid arthritis: Network pharmacology and experimental validation.Front. Pharmacol.20221396716410.3389/fphar.2022.967164 36059943
    [Google Scholar]
  51. JiaoY. ZhangT. ZhangC. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury.Crit. Care202125135610.1186/s13054‑021‑03775‑3 34641966
    [Google Scholar]
  52. ChenX. LiuY. SunD. Long noncoding RNA lnc-H2AFV-1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma.Cancer Sci.202211362071208410.1111/cas.15366 35403343
    [Google Scholar]
  53. AbdelwahabW.M. Le-VinhB. RiffeyA. Promotion of Th17 polarized immunity via co-delivery of mincle agonist and tuberculosis antigen using silica nanoparticles.ACS Appl. Bio Mater.2024763877388910.1021/acsabm.4c00245 38832760
    [Google Scholar]
  54. GolettiD. DeloguG. MatteelliA. MiglioriG.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection.Int. J. Infect. Dis.2022124Suppl. 1S12S1910.1016/j.ijid.2022.02.047 35257904
    [Google Scholar]
  55. VasiliuA. MartinezL. GuptaR.K. Tuberculosis prevention: Current strategies and future directions.Clin. Microbiol. Infect.20243091123113010.1016/j.cmi.2023.10.023 37918510
    [Google Scholar]
  56. StarshinovaA. MalkovaA. KudryavtsevI. KudlayD. ZinchenkoY. YablonskiyP. Tuberculosis and autoimmunity: Common features.Tuberculosis202213410220210.1016/j.tube.2022.102202 35430551
    [Google Scholar]
  57. OgongoP. WassieL. TranA. Rare Variable M. tuberculosis Antigens induce predominant Th17 responses in human infection.bioRxiv20243849651810.1101/2024.03.05.583634
    [Google Scholar]
  58. ZhangJ. CuiY. ZangX. PE12 interaction with TLR4 promotes intracellular survival of Mycobacterium tuberculosis by suppressing inflammatory response.Int. J. Biol. Macromol.2023253Pt 812754710.1016/j.ijbiomac.2023.127547 37863130
    [Google Scholar]
  59. ZhangT. WangJ. WangY. Wenyang-Tianjing-jieyu decoction improves depression rats of kidney yang deficiency pattern by regulating T cell homeostasis and inflammation level.Neuropsychiatr. Dis. Treat.20242063164710.2147/NDT.S445636 38545129
    [Google Scholar]
  60. HwangS.A. AliY. FedotovaE. HunterR.L. BrownR.E. Morphoproteomics identifies the foamy alveolar macrophage as an M2 phenotype with Pd-L1 expression in the early lesion of post-primary tuberculosis: implications for host immune surveillance and therapy.Ann. Clin. Lab. Sci.2020504429438 32826237
    [Google Scholar]
  61. SunF. LiJ. CaoL. YanC. Mycobacterium tuberculosis virulence protein ESAT-6 influences M1/M2 polarization and macrophage apoptosis to regulate tuberculosis progression.Genes Genomics2024461374710.1007/s13258‑023‑01469‑4 37971619
    [Google Scholar]
  62. RumpelN. RiechertG. SchumannJ. miRNA-mediated fine regulation of TLR-induced M1 polarization.Cells202413870110.3390/cells13080701 38667316
    [Google Scholar]
  63. FischD. ZhangT. SunH. Molecular definition of the endogenous Toll-like receptor signalling pathways.Nature2024631802163564410.1038/s41586‑024‑07614‑7 38961291
    [Google Scholar]
  64. ShariqM. QuadirN. SharmaN. Mycobacterium tuberculosis RipA dampens TLR4-mediated host protective response using a multi-pronged approach involving autophagy, apoptosis, metabolic repurposing, and immune modulation.Front. Immunol.20211263664410.3389/fimmu.2021.636644 33746976
    [Google Scholar]
  65. KimS.Y. KimD. KimS. Mycobacterium tuberculosis Rv2626c-derived peptide as a therapeutic agent for sepsis.EMBO Mol. Med.20201212e1249710.15252/emmm.202012497 33258196
    [Google Scholar]
  66. WangY. LiZ. WangB. LiK. ZhengJ. Naringenin attenuates inflammation and apoptosis of osteoarthritic chondrocytes via the TLR4/TRAF6/NF-κB pathway.PeerJ202311e1630710.7717/peerj.16307 37953787
    [Google Scholar]
  67. AnQ. XiaJ. PuF. ShiS. MCPIP1 alleviates depressive like behaviors in mice by inhibiting the TLR4/TRAF6/NF κB pathway to suppress neuroinflammation.Mol. Med. Rep.2023291610.3892/mmr.2023.13129 37975259
    [Google Scholar]
  68. MaQ. LiuL. YuJ. TRAF6 promotes Bacillus Calmette-Guérin-induced macrophage apoptosis through the intrinsic apoptosis pathway.Nan Fang Yi Ke Da Xue Xue Bao20224291279128710.12122/j.issn.1673‑4254.2022.09.02 36210699
    [Google Scholar]
  69. GaoW. ZhangY. Depression of lncRNA MINCR antagonizes LPS-evoked acute injury and inflammatory response via miR-146b-5p and the TRAF6-NFkB signaling.Mol. Med.202127112410.1186/s10020‑021‑00367‑3 34602057
    [Google Scholar]
  70. RenJ. HanB. FengP. ShaoG. ChangY. Mechanism of miR-7 mediating TLR4/TRAF6/NF-κB inflammatory pathway in colorectal cancer.Funct. Integr. Genomics20242412410.1007/s10142‑024‑01307‑0 38315263
    [Google Scholar]
  71. TianX. ZhaoH. ZhangZ. GuoZ. LiW. Intestinal mucosal injury induced by obstructive jaundice is associated with activation of TLR4/TRAF6/NF-κB pathways.PLoS One20191410e022365110.1371/journal.pone.0223651 31671112
    [Google Scholar]
  72. TianH. LiuZ. PuY. BaoY. Immunomodulatory effects exerted by Poria Cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo.Biomed. Pharmacother.201911210870910.1016/j.biopha.2019.108709 30970514
    [Google Scholar]
  73. LiL. YueS. HanR. Storax protected primary cortical neurons from oxygen-glucose deprivation/reoxygenation injury via inhibiting the TLR4/TRAF6/NF-κB signaling pathway.Brain Res.2022179214802110.1016/j.brainres.2022.148021 35878660
    [Google Scholar]
  74. HuX. DingC. DingX. Inhibition of myeloid differentiation protein 2 attenuates renal ischemia/reperfusion-induced oxidative stress and inflammation via suppressing TLR4/TRAF6/NF-kB pathway.Life Sci.202025611786410.1016/j.lfs.2020.117864 32474021
    [Google Scholar]
  75. SabreenG. RahmanK. GuptaR. Role of miRNAs in T-cell activation and Th17/Treg-cell imbalance in acquired aplastic anemia.Int. J. Lab. Hematol.202446351552210.1111/ijlh.14243 38357712
    [Google Scholar]
  76. TourayB.J.B. HanafyM. PhanseY. HildebrandR. TalaatA.M. Protective RNA nanovaccines against Mycobacterium avium subspecies hominissuis.Front. Immunol.202314118875410.3389/fimmu.2023.1188754 37359562
    [Google Scholar]
  77. AhmedM. FarrisE. SwansonR.V. Saponin TQL1055 adjuvant-containing vaccine confers protection upon Mycobacterium tuberculosis challenge in mice.Hum. Vaccin. Immunother.2024201230207010.1080/21645515.2024.2302070 38190806
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240319773241204073135
Loading
/content/journals/cmm/10.2174/0115665240319773241204073135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test