Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Background

Restructuring of dermal microcapillaries is one of the hallmarks of plaque psoriasis. To control the proliferation of vascular endothelial cells, vascular endothelial growth factor (VEGF) promotes the remodeling of the existing blood vessels and angiogenesis.

Objective

This study aimed to explain the lowering protein and mRNA levels of VEGF in lesional skin of patients with severe psoriasis (the Psoriasis Area and Severity Index, PASI > 25).

Methods

Using the method of qPCR, we assessed the expression of mRNA in lesional and nonlesional psoriatic skin. Using ELISA, we also compared the levels of VEGF in skin homogenates of psoriasis patients and healthy volunteers.

Results

We found that the exacerbation of psoriasis induced VEGF on mRNA and protein levels 12 and 20 times, respectively. We also confirmed a strong correlation between VEGF and PASI score in patients with PASI < 25. In addition, we showed that several factors, namely HGF, HNRPD, and sFLT1 interfere with the biosynthesis of VEGF in skin lesions of patients with PASI > 25%.

Conclusion

Thus, using VEGF as a biomarker to monitor the disease shall be done cautiously in patients with severe psoriasis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240307495240605101526
2024-06-24
2025-10-27
Loading full text...

Full text loading...

References

  1. RobinsonD.Jr HackettM. WongJ. KimballA.B. CohenR. BalaM. Co-occurrence and comorbidities in patients with immune-mediated inflammatory disorders: An exploration using US healthcare claims data, 2001–2002.Curr. Med. Res. Opin.2006225989100010.1185/030079906X104641 16709321
    [Google Scholar]
  2. RichardM.A. PaulC. NijstenT. Prevalence of most common skin diseases in Europe: A population‐based study.J. Eur. Acad. Dermatol. Venereol.20223671088109610.1111/jdv.18050 35274366
    [Google Scholar]
  3. ArmstrongA.W. MehtaM.D. SchuppC.W. GondoG.C. BellS.J. GriffithsC.E.M. Psoriasis prevalence in adults in the United States.JAMA Dermatol.2021157894094610.1001/jamadermatol.2021.2007 34190957
    [Google Scholar]
  4. ParisiR. IskandarI.Y.K. KontopantelisE. AugustinM. GriffithsC.E.M. AshcroftD.M. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study.BMJ2020369m159010.1136/bmj.m1590 32467098
    [Google Scholar]
  5. MukhamadeevaO.R. SharafutdinovaN.K. SaitovaZ.R. The dynamic and structural indicators of population morbidity of diseases of skin and subcutaneous fat: The scientific review.Probl. Sotsialnoi Gig. Istor. Med.20233161313132210.32687/0869‑866X‑2023‑31‑6‑1313‑1322 38142329
    [Google Scholar]
  6. RendonA. SchäkelK. Psoriasis pathogenesis and treatment.Int. J. Mol. Sci.2019206147510.3390/ijms20061475 30909615
    [Google Scholar]
  7. MihuC. NeagM.A. BocşanI.C. Novel concepts in psoriasis: Histopathology and markers related to modern treatment approaches.Rom. J. Morphol. Embryol.202262489790610.47162/RJME.62.4.02 35673809
    [Google Scholar]
  8. PiruzianE.S. SobolevV.V. AbdeevR.M. Study of molecular mechanisms involved in the pathogenesis of immune-mediated inflammatory diseases, using psoriasis as a model.Acta Nat. (Engl. Ed.)20091312513510.32607/20758251‑2009‑1‑3‑125‑135 22649625
    [Google Scholar]
  9. MogulevtsevaJ.A. MezentsevA. BruskinS.A. The role of matrix metalloproteinases in the pathogenesis of psoriasis.Gene20145401110
    [Google Scholar]
  10. MildzihovaD.R. DenievaM.I. BalabekovaF.G. KorsunskayaI.M. Justivifaction of using vascular therapeutics in the complex therapy of psoriasis.Russ Med J20188104108
    [Google Scholar]
  11. RobertM. MiossecP. HotA. The Th17 pathway in vascular inflammation: Culprit or consort?Front. Immunol.20221388876310.3389/fimmu.2022.888763 35479069
    [Google Scholar]
  12. JohnsonK.E. WilgusT.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair.Adv. Wound Care (New Rochelle)201431064766110.1089/wound.2013.0517 25302139
    [Google Scholar]
  13. Terraza-AguirreC. Campos-MoraM. Elizondo-VegaR. Mechanisms behind the immunoregulatory dialogue between mesenchymal stem cells and Th17 cells.Cells202097166010.3390/cells9071660 32664207
    [Google Scholar]
  14. Al-KhalafH.H. AboussekhraA. AUF1 positively controls angiogenesis through mRNA stabilization-dependent up-regulation of HIF-1α and VEGF-A in human osteosarcoma.Oncotarget201910474868487910.18632/oncotarget.27115 31448053
    [Google Scholar]
  15. LužnikZ. AnchoucheS. DanaR. YinJ. Regulatory T cells in angiogenesis.J. Immunol.2020205102557256510.4049/jimmunol.2000574 33168598
    [Google Scholar]
  16. ChuE.C. TarnawskiA.S. PTEN regulatory functions in tumor suppression and cell biology.Med. Sci. Monit.20041010RA235RA241 15448614
    [Google Scholar]
  17. KimB.R. LeeS.H. ParkM.S. MARCKSL1 exhibits anti-angiogenic effects through suppression of VEGFR-2-dependent Akt/PDK-1/mTOR phosphorylation.Oncol. Rep.20163521041104810.3892/or.2015.4408 26555156
    [Google Scholar]
  18. FeldmanSR KruegerGG Psoriasis assessment tools in clinical trials. Ann Rheum Dis200564Suppl 2)(Suppl. 2ii65815708941
    [Google Scholar]
  19. KeselmanH.J. RoganJ.C. The Tukey multiple comparison test: 1953–1976.Psychol. Bull.19778451050105610.1037/0033‑2909.84.5.1050
    [Google Scholar]
  20. ShahD. ZaveriT. Hyperspectral endmember extraction using Pearson’s correlation coefficient.Int. J. Comput. Sci. Eng.20212418997
    [Google Scholar]
  21. Calculator.net Sample size calculator.2024Available from: https://www.calculator.net/sample-size-calculator.html
    [Google Scholar]
  22. MicaliG. VerzìA.E. BroggiG. CaltabianoR. MusumeciM.L. LacarrubbaF. Evaluation of capillary density in psoriasis: An intrapatient study and literature review.PLoS One2021163e024783510.1371/journal.pone.0247835 33690732
    [Google Scholar]
  23. Shahidi-DadrasM. AbdollahimajdF. YounespourS. NikvarM. Serum vascular endothelial growth factor in Iranian patients with moderate-severe psoriasis before and after treatment: A PASI-75 response as a practical treatment goal.Iran J Dermatol2016194119124
    [Google Scholar]
  24. BhushanM. McLaughlinB. WeissJ.B. GriffithsC.E.M. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis.Br. J. Dermatol.199914161054106010.1046/j.1365‑2133.1999.03205.x 10606852
    [Google Scholar]
  25. FlisiakI. ZaniewskiP. RogalskaM. MyśliwiecH. JaroszewiczJ. ChodynickaB. Effect of psoriasis activity on VEGF and its soluble receptors concentrations in serum and plaque scales.Cytokine201361269010.1016/j.cyto.2012.11.012 23273668
    [Google Scholar]
  26. NofalA. Al-MakhzangyI. AttwaE. NassarA. AbdalmoatiA. Vascular endothelial growth factor in psoriasis: An indicator of disease severity and control.J. Eur. Acad. Dermatol. Venereol.200923780380610.1111/j.1468‑3083.2009.03181.x 19309427
    [Google Scholar]
  27. AkmanA. DicleO. YilmazF. CoskunM. YilmazE. Discrepant levels of vascular endothelial growth factor in psoriasis patients treated with PUVA, Re‐PUVA and narrow‐band UVB.Photodermatol. Photoimmunol. Photomed.200824312312710.1111/j.1600‑0781.2008.00349.x 18477130
    [Google Scholar]
  28. WangX. BoveA.M. SimoneG. MaB. Molecular bases of VEGFR-2-mediated physiological function and pathological role.Front. Cell Dev. Biol.2020859928110.3389/fcell.2020.599281 33304904
    [Google Scholar]
  29. TroyanovaSY KorsunskayaIM SorkinaIL SobolevVV Justification of the efficacy of metronidazole in the treatment of rosacea. Klinicheskaya dermatologiya i venerologiya201716545810.17116/klinderma201716545‑48
    [Google Scholar]
  30. PiruzianE.S. MezentsevA.V. BruskinS.A. SobolevaA.G. SobolevV.V. Pharmacological control of receptor of advanced glycation end-products and its biological effects in psoriasis.Int. J. Biomed. Sci.20139311212210.59566/IJBS.2013.9112 24170986
    [Google Scholar]
  31. ChenD. SimonsM. Emerging roles of PLCγ1 in endothelial biology.Sci. Signal.202114694eabc661210.1126/scisignal.abc6612 34344833
    [Google Scholar]
  32. TischN. Ruiz de AlmodóvarC. Contribution of cell death signaling to blood vessel formation.Cell. Mol. Life Sci.20217873247326410.1007/s00018‑020‑03738‑x 33783563
    [Google Scholar]
  33. HeY. TacconiC. DieterichL.C. Novel blood vascular endothelial subtype-specific markers in human skin unearthed by single-cell transcriptomic profiling.Cells2022117111110.3390/cells11071111 35406678
    [Google Scholar]
  34. MinJ.K. LeeY.M. KimJ.H. Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway.Circ. Res.200596330030710.1161/01.RES.0000155330.07887.EE 15637298
    [Google Scholar]
  35. PetriniI. Biology of MET: A double life between normal tissue repair and tumor progression.Ann. Transl. Med.20153682 25992381
    [Google Scholar]
  36. CzyzM. HGF/c-MET signaling in melanocytes and melanoma.Int. J. Mol. Sci.20181912384410.3390/ijms19123844 30513872
    [Google Scholar]
  37. ChmielowiecJ. BorowiakM. MorkelM. c-Met is essential for wound healing in the skin.J. Cell Biol.2007177115116210.1083/jcb.200701086 17403932
    [Google Scholar]
  38. OrganSL TsaoMS An overview of the c-MET signaling pathway. Ther Adv Med Oncol201131_suppl)(Suppl.S7S1910.1177/175883401142255622128289
    [Google Scholar]
  39. MatsumuraA. KubotaT. TaiyohH. HGF regulates VEGF expression via the c-Met receptor downstream pathways, PI3K/Akt, MAPK and STAT3, in CT26 murine cells.Int. J. Oncol.201342253554210.3892/ijo.2012.1728 23233163
    [Google Scholar]
  40. ZhangY.W. SuY. VolpertO.V. WoudeG.F.V. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation.Proc. Natl. Acad. Sci. USA200310022127181272310.1073/pnas.2135113100 14555767
    [Google Scholar]
  41. YouW.K. McDonaldD.M. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis.BMB Rep.2008411283383910.5483/BMBRep.2008.41.12.833 19123972
    [Google Scholar]
  42. FellowsA. GriffinM.E. PetrellaB.L. AUF1/hnRNP D represses expression of VEGF in macrophages.Mol. Biol. Cell20122381414142210.1091/mbc.e11‑06‑0545 22379108
    [Google Scholar]
  43. RayP.S. FoxP.L. A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity.EMBO J.200726143360337210.1038/sj.emboj.7601774 17611605
    [Google Scholar]
  44. SadriN. SchneiderR.J. Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease.J. Invest. Dermatol.2009129365767010.1038/jid.2008.298 18830269
    [Google Scholar]
  45. SadriN. LuJ.Y. BaduraM.L. SchneiderR.J. AUF1 is involved in splenic follicular B cell maintenance.BMC Immunol.2010111110.1186/1471‑2172‑11‑1 20064252
    [Google Scholar]
  46. LemboS. RaimondoA. BalestrinoA. AUF‐1 and skin inflammation: Atopic dermatitis and psoriasis.J. Eur. Acad. Dermatol. Venereol.2024381e110e11210.1111/jdv.19463 37611276
    [Google Scholar]
  47. Al-WakeelH.H. Role of vascular endothelial growth factor receptors in the pathogenesis of psoriasis.J Nat Sci Res2015520155160
    [Google Scholar]
  48. LuJ. XuX. LiY. YuN. DingY. ShiY. CircRAB3B suppresses proliferation, motility, cell cycle progression and promotes the apoptosis of IL-22-induced keratinocytes depending on the regulation of miR-1228-3p/PTEN axis in psoriasis.Autoimmunity202154530331210.1080/08916934.2021.1934825 34096408
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240307495240605101526
Loading
/content/journals/cmm/10.2174/0115665240307495240605101526
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): HGF; HNRPD; MARCKSL; PASI; psoriasis; PTEN; sFLT1; VEGF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test