Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L. = “around or approximately”; = “a day”) rhythms are biological responses to the geophysical light/dark (LD) cycle in which an organism adjusts to alterations in its internal physiology or external environment as a function of the time of day. Sleep has been considered a biological rhythm. Normal human sleep, an essential physiologic process, comprises two distinct phases: non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. A mature adult human's sleep/wake cycle displays a circadian rhythm with a ~24-hour cycle. According to the two-process model of sleep regulation, the human sleep/wake cycle is orchestrated by circadian and homeostatic processes. Sleep homeostasis (a sleep-dependent process) and circadian rhythm (a sleep-independent process) are two biological processes controlling the sleep/wake cycle. There are also ultradian (< 24-hour) rhythms, including the NREM-REM sleep cycle, which has been extensively studied. The clock and sleep genes both influence sleep. In this overview, we have reviewed the circadian genes and their role in regulating sleep. Besides, the gene expression and biological pathways associated with sleep and circadian rhythm-associated diseases also have been highlighted.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240305615240630113434
2024-12-17
2025-10-02
Loading full text...

Full text loading...

References

  1. EugeneA.R. MasiakJ. The neuroprotective aspects of sleep.MEDtube Sci.2015313540 26594659
    [Google Scholar]
  2. AminoffM.J. BollerF. SwaabD.F. We spend about one-third of our life either sleeping or attempting to do so.Handb. Clin. Neurol.201198viii10.1016/B978‑0‑444‑52006‑7.00047‑2 21056174
    [Google Scholar]
  3. WorleyS.L. The extraordinary importance of sleep: the detrimental effects of inadequate sleep on health and public safety drive an explosion of sleep research.P&T20184312758763 30559589
    [Google Scholar]
  4. AlvaroP.K. RobertsR.M. HarrisJ.K. A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression.Sleep20133671059106810.5665/sleep.2810 23814343
    [Google Scholar]
  5. AndersonK. BradleyA.J. Sleep disturbance in mental health problems and neurodegenerative disease.Nat. Sci. Sleep20135617510.2147/NSS.S34842 23761983
    [Google Scholar]
  6. ZielinskiM.R. McKennaJ.T. McCarleyR.W. Functions and mechanisms of sleep.AIMS Neurosci.2016316710410.3934/Neuroscience.2016.1.67 28413828
    [Google Scholar]
  7. WeaverD.R. The suprachiasmatic nucleus: A 25-year retrospective.J. Biol. Rhythms199813210011210.1177/074873098128999952 9554572
    [Google Scholar]
  8. RalphM.R. FosterR.G. DavisF.C. MenakerM. Transplanted suprachiasmatic nucleus determines circadian period.Science1990247494597597810.1126/science.2305266 2305266
    [Google Scholar]
  9. LehmanM.N. SilverR. GladstoneW.R. KahnR.M. GibsonM. BittmanE.L. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain.J. Neurosci.1987761626163810.1523/JNEUROSCI.07‑06‑01626.1987 3598638
    [Google Scholar]
  10. DaiJ. SwaabD.F. Van Der VlietJ. BuijsR.M. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain.J. Comp. Neurol.199840018710210.1002/(SICI)1096‑9861(19981012)400:1<87::AID‑CNE6>3.0.CO;2‑P 9762868
    [Google Scholar]
  11. MistlbergerR.E. SkeneD.J. Social influences on mammalian circadian rhythms: Animal and human studies.Biol. Rev. Camb. Philos. Soc.200479353355610.1017/S1464793103006353 15366762
    [Google Scholar]
  12. SharmaV.K. ChandrashekaranM. Zeitgebers (time cues) for biological clocks.Curr. Sci.200589711361146
    [Google Scholar]
  13. CzeislerC.A. DuffyJ.F. ShanahanT.L. Stability, precision, and near-24-hour period of the human circadian pacemaker.Science199928454232177218110.1126/science.284.5423.2177 10381883
    [Google Scholar]
  14. LewyA.J. WehrT.A. GoodwinF.K. NewsomeD.A. MarkeyS.P. Light suppresses melatonin secretion in humans.Science198021044751267126910.1126/science.7434030 7434030
    [Google Scholar]
  15. FarsiH. AchaâbanM.R. PiroM. Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel.Sci. Rep.20201011951510.1038/s41598‑020‑76535‑y 33177571
    [Google Scholar]
  16. TaharaY. ShibataS. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition.Free Radic. Biol. Med.201811912913810.1016/j.freeradbiomed.2017.12.026 29277444
    [Google Scholar]
  17. ChambersL. SeidlerK. BarrowM. Nutritional entrainment of circadian rhythms under alignment and misalignment: A mechanistic review.Clin. Nutr. ESPEN202251507110.1016/j.clnesp.2022.06.010 36184249
    [Google Scholar]
  18. MistlbergerR.E. Food as circadian time cue for appetitive behavior.F1000 Res.202096110.12688/f1000research.20829.1 32047614
    [Google Scholar]
  19. VerweyM. AmirS. Food‐entrainable circadian oscillators in the brain.Eur. J. Neurosci.20093091650165710.1111/j.1460‑9568.2009.06960.x 19863660
    [Google Scholar]
  20. FuchikawaT. Eban-RothschildA. NagariM. ShemeshY. BlochG. Potent social synchronization can override photic entrainment of circadian rhythms.Nat. Commun.2016711166210.1038/ncomms11662 27210069
    [Google Scholar]
  21. ChandrashekaranM. Social cues and circadian rhythms.Curr. Sci.198251158167
    [Google Scholar]
  22. ClaustratB. BrunJ. ChazotG. The basic physiology and pathophysiology of melatonin.Sleep Med. Rev.200591112410.1016/j.smrv.2004.08.001 15649735
    [Google Scholar]
  23. ScheerF.A.J.L. CzeislerC.A. Melatonin, sleep, and circadian rhythms.Sleep Med. Rev.2005915910.1016/j.smrv.2004.11.004 15649734
    [Google Scholar]
  24. CrowleyS.J. EastmanC.I. Phase advancing human circadian rhythms with morning bright light, afternoon melatonin, and gradually shifted sleep: Can we reduce morning bright-light duration?Sleep Med.201516228829710.1016/j.sleep.2014.12.004 25620199
    [Google Scholar]
  25. HannibalJ. Comparative neurology of circadian photoreception: The retinohypothalamic tract (RHT) in sighted and naturally blind mammals.Front. Neurosci.20211564011310.3389/fnins.2021.640113 34054403
    [Google Scholar]
  26. DaiJ. VlietJ.V.D. SwaabD.F. BuijsR.M. Human retinohypothalamic tract as revealed by in vitro postmortem tracing.J. Comp. Neurol.1998397335737010.1002/(SICI)1096‑9861(19980803)397:3<357::AID‑CNE4>3.0.CO;2‑1 9674562
    [Google Scholar]
  27. MagninM. CooperH.M. MickG. Retinohypothalamic pathway: A breach in the law of Newton-Müller-Gudden?Brain Res.19894881-239039710.1016/0006‑8993(89)90737‑3 2743136
    [Google Scholar]
  28. SadunA.A. SchaechterJ.D. SmithL.E.H. A retinohypothalamic pathway in man: Light mediation of circadian rhythms.Brain Res.1984302237137710.1016/0006‑8993(84)90252‑X 6733517
    [Google Scholar]
  29. Teclemariam-MesbahR. Ter HorstG.J. PostemaF. WortelJ. BuijsR.M. Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway.J. Comp. Neurol.1999406217118210.1002/(SICI)1096‑9861(19990405)406:2<171::AID‑CNE3>3.0.CO;2‑U 10096604
    [Google Scholar]
  30. ParishJ.M. Genetic and immunologic aspects of sleep and sleep disorders.Chest201314351489149910.1378/chest.12‑1219 23648914
    [Google Scholar]
  31. Al-kuraishyH.M. Al-GareebA.I. AlbuhadilyA.K. Sleep disorders cause Parkinson’s disease or the reverse is true: Good GABA good night.CNS Neurosci. Ther.2024303e1452110.1111/cns.14521 38491789
    [Google Scholar]
  32. OishiY. SaitoY.C. SakuraiT. GABAergic modulation of sleep-wake states.Pharmacol. Ther.202324910850510.1016/j.pharmthera.2023.108505 37541595
    [Google Scholar]
  33. JonesB.E. Arousal and sleep circuits.Neuropsychopharmacology202045162010.1038/s41386‑019‑0444‑2 31216564
    [Google Scholar]
  34. LuppiP.H. FortP. Sleep–wake physiology.Handb. Clin. Neurol.201916035937010.1016/B978‑0‑444‑64032‑1.00023‑0 31277860
    [Google Scholar]
  35. UrsinR. Serotonin and sleep.Sleep Med. Rev.200261556710.1053/smrv.2001.0174 12531142
    [Google Scholar]
  36. KocevskaD. BarclayN.L. BramerW.M. GehrmanP.R. Van SomerenE.J.W. Heritability of sleep duration and quality: A systematic review and meta-analysis.Sleep Med. Rev.20215910144810.1016/j.smrv.2021.101448 33636423
    [Google Scholar]
  37. Pandi-PerumalS.R. SaravananK.M. PaulS. NamasivayamG.P. ChidambaramS.B. Waking up the sleep field: An overview on the implications of genetics and bioinformatics of sleep.Mol. Biotechnol.202466591993110.1007/s12033‑023‑01009‑1 38198051
    [Google Scholar]
  38. HeathA.C. KendlerK.S. EavesL.J. MartinN.G. Evidence for genetic influences on sleep disturbance and sleep pattern in twins.Sleep199013431833510.1093/sleep/13.4.318 2267475
    [Google Scholar]
  39. PartinenM. KaprioJ. KoskenvuoM. PutkonenP. LanginvainioH. Genetic and environmental determination of human sleep.Sleep19836317918510.1093/sleep/6.3.179 6684786
    [Google Scholar]
  40. HublinC. KaprioJ. PartinenM. KoskenvuoM. Parasomnias: Co-occurrence and genetics.Psychiatr. Genet.2001112657010.1097/00041444‑200106000‑00002 11525419
    [Google Scholar]
  41. HufelandC.W. Hufeland’s art of prolonging life.Lindsay & Blakiston1867
    [Google Scholar]
  42. LavieP. Sleep-wake as a biological rhythm.Annu. Rev. Psychol.200152127730310.1146/annurev.psych.52.1.277 11148307
    [Google Scholar]
  43. WebbW.B. Sleep as a biological rhythm: A historical review.Sleep199417218819410.1093/sleep/17.2.188 8036374
    [Google Scholar]
  44. BorbélyA.A. A two process model of sleep regulation.Hum. Neurobiol.198213195204 7185792
    [Google Scholar]
  45. DijkD.J. ArcherS.N. Circadian and homeostatic regulation of human sleep and cognitive performance and its modulation by PERIOD3.Sleep Med. Clin.20094211112510.1016/j.jsmc.2009.02.001 33162871
    [Google Scholar]
  46. DijkD.J. DuffyJ.F. Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics.Ann. Med.199931213014010.3109/07853899908998789 10344586
    [Google Scholar]
  47. KrygerG. HarelM. GilesK. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.Acta Crystallogr. D Biol. Crystallogr.200056111385139410.1107/S0907444900010659 11053835
    [Google Scholar]
  48. Pandi-PerumalS.R. MoscovitchA. SrinivasanV. SpenceD.W. CardinaliD.P. BrownG.M. Bidirectional communication between sleep and circadian rhythms and its implications for depression: Lessons from agomelatine.Prog. Neurobiol.200988426427110.1016/j.pneurobio.2009.04.007 19454302
    [Google Scholar]
  49. ParkS.H. BaikJ. HongJ. A probabilistic model for the ultradian timing of REM sleep in mice.PLOS Comput. Biol.2021178e100931610.1371/journal.pcbi.1009316 34432801
    [Google Scholar]
  50. WinnebeckE.C. FischerD. LeiseT. RoennebergT. Dynamics and ultradian structure of human sleep in real life.Curr. Biol.201828495910.1016/j.cub.2017.11.063
    [Google Scholar]
  51. BorbélyA. The two‐process model of sleep regulation: Beginnings and outlook †.J. Sleep Res.2022314e1359810.1111/jsr.13598 35502706
    [Google Scholar]
  52. KishiA. YasudaH. MatsumotoT. NREM sleep stage transitions control ultradian REM sleep rhythm.Sleep201134101423143210.5665/SLEEP.1292 21966074
    [Google Scholar]
  53. CampbellS. ZulleyJ. Ultradian components of human sleep/wake patterns during disentrainment.Exp. Brain Res.1993234255
    [Google Scholar]
  54. SchulzH. DirlichG. ZulleyJ. Untersuchungen zur Stabilität ultradianer Rhythmen beim Menschen. (Studies on the stability of human ultradian rhythms (author’s transl.)). Arzneimittel-Forschung.Drug Res.19762610551058
    [Google Scholar]
  55. LamontE. AmirS. Circadian and ultradian clocks/rhythms. In: Reference Module in Neuroscience and Biobehavioral Psychology.Research Gate2017
    [Google Scholar]
  56. XuX. WuH. ZhuangJ. Sleep–wake patterns, non-rapid eye movement, and rapid eye movement sleep cycles in teenage narcolepsy.Sleep Med.201733475610.1016/j.sleep.2016.08.012 28449905
    [Google Scholar]
  57. SchulzH. SalzaruloP. Forerunners of REM sleep.Sleep Med. Rev.20121619510810.1016/j.smrv.2011.05.006 21906979
    [Google Scholar]
  58. Le BonO. LanquartJ.P. HeinM. LoasG. Sleep ultradian cycling: Statistical distribution and links with other sleep variables, depression, insomnia and sleepiness—A retrospective study on 2,312 polysomnograms.Psychiatry Res.201927914014710.1016/j.psychres.2018.12.141 30819535
    [Google Scholar]
  59. NobiliL. FerrilloF. BessetA. RosadiniG. SchiaviG. BilliardM. Ultradian aspects of sleep in narcolepsy.Neurophysiol. Clin.1996261515910.1016/0987‑7053(96)81534‑6
    [Google Scholar]
  60. BroughtonR. MullingtonJ. Chronobiological aspects of narcolepsy.Sleep1994178Suppl. 8S35S4410.1093/sleep/17.suppl_8.S35 7701198
    [Google Scholar]
  61. HeinM. LanquartJ.P. MungoA. HubainP. LoasG. Impact of number of sleep ultradian cycles on polysomnographic parameters related to REM sleep in major depression: Implications for future sleep research in psychiatry.Psychiatry Res.202028511281810.1016/j.psychres.2020.112818 32035377
    [Google Scholar]
  62. BurgessN. MaguireE.A. O’KeefeJ. The human hippocampus and spatial and episodic memory.Neuron200235462564110.1016/S0896‑6273(02)00830‑9 12194864
    [Google Scholar]
  63. LewyA.J. AhmedS. JacksonJ.M.L. SackR.L. Melatonin shifts human circadian rhythms according to a phase-response curve.Chronobiol. Int.19929538039210.3109/07420529209064550 1394610
    [Google Scholar]
  64. MinorsD.S. WaterhouseJ.M. Wirz-JusticeA. A human phase-response curve to light.Neurosci. Lett.19911331364010.1016/0304‑3940(91)90051‑T 1791996
    [Google Scholar]
  65. LewyA.J. BauerV.K. AhmedS. The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light.Chronobiol. Int.1998151718310.3109/07420529808998671 9493716
    [Google Scholar]
  66. ZaidanH. LeshemM. Gaisler-SalomonI. Prereproductive stress to female rats alters corticotropin releasing factor type 1 expression in ova and behavior and brain corticotropin releasing factor type 1 expression in offspring.Biol. Psychiatry201374968068710.1016/j.biopsych.2013.04.014 23726318
    [Google Scholar]
  67. ArendtJ. DeaconS. Treatment of circadian rhythm disorders-melatonin.Chronobiol. Int.199714218520410.3109/07420529709001155 9095378
    [Google Scholar]
  68. LewyA.J. EmensJ.S. LeflerB.J. YuhasK. JackmanA.R. Melatonin entrains free-running blind people according to a physiological dose-response curve.Chronobiol. Int.20052261093110610.1080/07420520500398064 16393710
    [Google Scholar]
  69. LindM. GehrmanP. Genetic pathways to insomnia.Brain Sci.2016646410.3390/brainsci6040064 27999387
    [Google Scholar]
  70. BrowerK.J. WojnarM. SliwerskaE. ArmitageR. BurmeisterM. PER3 polymorphism and insomnia severity in alcohol dependence.Sleep201235457157710.5665/sleep.1748 22467995
    [Google Scholar]
  71. PatelS.R. Shared genetic risk factors for obstructive sleep apnea and obesity.J. Appl. Physiol.20059941600160610.1152/japplphysiol.00501.2005 16160021
    [Google Scholar]
  72. PalmerL.J. RedlineS. Genomic approaches to understanding obstructive sleep apnea.Respir. Physiol. Neurobiol.20031352-318720510.1016/S1569‑9048(03)00044‑2 12809619
    [Google Scholar]
  73. KaparianosA. SampsonasF. KarkouliasK. SpiropoulosK. Obstructive sleep apnoea syndrome and genes.Neth. J. Med.2006648280289 16990691
    [Google Scholar]
  74. SzilyM. TarnokiA.D. TarnokiD.L. Genetic influences on the onset of obstructive sleep apnoea and daytime sleepiness: A twin study.Respir. Res.201920112510.1186/s12931‑019‑1095‑x 31208424
    [Google Scholar]
  75. KalraM. ChakrabortyR. Genetic susceptibility to obstructive sleep apnea in the obese child.Sleep Med.20078216917510.1016/j.sleep.2006.09.003 17275401
    [Google Scholar]
  76. WieckiewiczM. Bogunia-KubikK. MazurG. Genetic basis of sleep bruxism and sleep apnea—response to a medical puzzle.Sci. Rep.2020101749710.1038/s41598‑020‑64615‑y 32367059
    [Google Scholar]
  77. BonsignoreM.R. BaiamonteP. MazzucaE. CastrogiovanniA. MarroneO. Obstructive sleep apnea and comorbidities: A dangerous liaison.Multidiscip. Respir. Med.2019141810.1186/s40248‑019‑0172‑9 30809382
    [Google Scholar]
  78. StrohlK.P. SaundersN.A. FeldmanN.T. HallettM. Obstructive sleep apnea in family members.N. Engl. J. Med.19782991896997310.1056/NEJM197811022991801 211413
    [Google Scholar]
  79. MukherjeeS. SaxenaR. PalmerL.J. The genetics of obstructive sleep apnoea.Respirology2018231182710.1111/resp.13212 29113020
    [Google Scholar]
  80. RihaR.L. Genetic aspects of the obstructive sleep apnoea/hypopnoea syndrome--is there a common link with obesity?Respiration200978151710.1159/000221903 19590259
    [Google Scholar]
  81. LaneJ.M. QianJ. MignotE. RedlineS. ScheerF.A.J.L. SaxenaR. Genetics of circadian rhythms and sleep in human health and disease.Nat. Rev. Genet.202324142010.1038/s41576‑022‑00519‑z 36028773
    [Google Scholar]
  82. ParkK.M. KimK.T. LeeD.A. ChoY.W. Redefining the role of the cerebellum in restless legs syndrome.Sleep Med.202311225626110.1016/j.sleep.2023.10.030 37925852
    [Google Scholar]
  83. WaltersA.S. ZeeP.C. Why the worsening at rest and worsening at night criteria for Restless Legs Syndrome are listed separately: Review of the circadian literature on RLS and suggestions for future directions.Front. Neurol.202314115327310.3389/fneur.2023.1153273 37181571
    [Google Scholar]
  84. KouriI. JunnaM.R. LipfordM.C. Restless legs syndrome and periodic limb movements of sleep: From neurophysiology to clinical practice.J. Clin. Neurophysiol.202340321522310.1097/WNP.0000000000000934 36872500
    [Google Scholar]
  85. AslamM.A. MaE.B. HuhJ.Y. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors.Metabolism202314915571110.1016/j.metabol.2023.155711 37871831
    [Google Scholar]
  86. CasaleC. GoelN. Genetic markers of differential vulnerability to sleep loss in adults.Genes2021129131710.3390/genes12091317 34573301
    [Google Scholar]
  87. PalermoJ. ChesiA. ZimmermanA. Variant-to-gene mapping followed by cross-species genetic screening identifies GPI-anchor biosynthesis as a regulator of sleep.Sci. Adv.202391eabq084410.1126/sciadv.abq0844 36608130
    [Google Scholar]
  88. HiranoA. HsuP.K. ZhangL. DEC2 modulates orexin expression and regulates sleep.Proc. Natl. Acad. Sci. USA2018115133434343910.1073/pnas.1801693115 29531056
    [Google Scholar]
  89. AshbrookL.H. KrystalA.D. FuY.H. PtáčekL.J. Genetics of the human circadian clock and sleep homeostat.Neuropsychopharmacology2020451455410.1038/s41386‑019‑0476‑7 31400754
    [Google Scholar]
  90. CardinaliD.P. BrownG.M. Pandi-PerumalS.R. Chronotherapy.Handb. Clin. Neurol.202117935737010.1016/B978‑0‑12‑819975‑6.00023‑6 34225975
    [Google Scholar]
  91. KeijzerH. SmitsM.G. DuffyJ.F. CurfsL.M.G. Why the dim light melatonin onset (DLMO) should be measured before treatment of patients with circadian rhythm sleep disorders.Sleep Med. Rev.201418433333910.1016/j.smrv.2013.12.001 24388969
    [Google Scholar]
  92. RahmanS.A. KayumovL. TchmoutinaE.A. ShapiroC.M. Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.Sleep Med.200910554955510.1016/j.sleep.2008.03.020 18725185
    [Google Scholar]
  93. Pandi-PerumalS.R. SmitsM. SpenceW. Dim light melatonin onset (DLMO): A tool for the analysis of circadian phase in human sleep and chronobiological disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry200731111110.1016/j.pnpbp.2006.06.020 16884842
    [Google Scholar]
  94. KrygerM.H. RothT. DementW.C. Principles and Practice of Sleep Medicine E-Book.Elsevier Health Sciences2010
    [Google Scholar]
  95. ReidK.J. ChangA.M. DubocovichM.L. TurekF.W. TakahashiJ.S. ZeeP.C. Familial advanced sleep phase syndrome.Arch. Neurol.20015871089109410.1001/archneur.58.7.1089 11448298
    [Google Scholar]
  96. KushidaC. Encyclopedia of sleep.Academic Press2013
    [Google Scholar]
  97. TohK.L. JonesC.R. HeY. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome.Science200129155061040104310.1126/science.1057499 11232563
    [Google Scholar]
  98. XuY. PadiathQ.S. ShapiroR.E. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome.Nature2005434703364064410.1038/nature03453 15800623
    [Google Scholar]
  99. FigueiroM. Delayed sleep phase disorder: Clinical perspective with a focus on light therapy.Nat. Sci. Sleep201689110610.2147/NSS.S85849 27110143
    [Google Scholar]
  100. PatkeA. MurphyP.J. OnatO.E. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder.Cell201716920321510.1016/j.cell.2017.03.027
    [Google Scholar]
  101. IwaseT. KajimuraN. UchiyamaM. Mutation screening of the human Clock gene in circadian rhythm sleep disorders.Psychiatry Res.2002109212112810.1016/S0165‑1781(02)00006‑9 11927136
    [Google Scholar]
  102. SehgalA. MignotE. Genetics of sleep and sleep disorders.Cell2011146219420710.1016/j.cell.2011.07.004 21784243
    [Google Scholar]
  103. TaheriS. MignotE. The genetics of sleep disorders.Lancet Neurol.20021424225010.1016/S1474‑4422(02)00103‑5 12849457
    [Google Scholar]
  104. Pandi-PerumalS.R. CardinaliD.P. ZakiN.F.W. KarthikeyanR. SpenceD.W. ReiterR.J. BrownG.M. Timing is everything: Circadian rhythms and their role in the control of sleep.Front. Neuroendocrinol.20226610097810.1016/j.yfrne.2022.100978
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240305615240630113434
Loading
/content/journals/cmm/10.2174/0115665240305615240630113434
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): circadian; Clock; homeostasis; NREM sleep; REM sleep; sleep
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test