Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1566-5240
  • E-ISSN: 1875-5666

Abstract

Introduction

Skeletal muscle degeneration is a common effect of chronic muscle injuries, including fibrosis and fatty infiltration, which is the replacement of pre-existing parenchymal tissue by extracellular matrix proteins and abnormal invasive growth of fibroblasts and adipocytes.

Methods

This remodeling limits muscle function and strength, eventually leading to reduced quality of life for those affected. Chemokines play a major role in the regulation of immunocyte migration, inflammation, and tissue remodeling and are implicated in various fibrotic and degenerative diseases. In this study, we aimed to investigate the role of the B-cell chemokine CXCL13 in the gastrocnemius muscle of the Achilles tendon rupture model mouse. We hypothesize that CXCL13 may promote fibrosis and aggravate skeletal muscle degeneration. We performed RNA sequencing and bioinformatics analysis of gastrocnemius muscle from normal and model mice to identify differentially expressed genes and signal pathways related to skeletal muscle degeneration and fibrosis.

Results

Our results show that CXCL13 is highly expressed in chronically degenerating skeletal muscle. Furthermore, CXCL13-neutralising antibodies with therapeutic potential were observed to inhibit fibrosis and adipogenesis and

Conclusion

Our study reveals the underlying therapeutic implications of CXCL13 inhibition for clinical intervention in skeletal muscle degeneration, thereby improving patient prognosis.

Loading

Article metrics loading...

/content/journals/cmm/10.2174/0115665240275029240306045214
2025-05-01
2025-09-03
Loading full text...

Full text loading...

References

  1. WynnT.A. RamalingamT.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease.Nat. Med.20121871028104010.1038/nm.2807 22772564
    [Google Scholar]
  2. DakinS.G. NewtonJ. MartinezF.O. Chronic inflammation is a feature of Achilles tendinopathy and rupture.Br. J. Sports Med.201852635936710.1136/bjsports‑2017‑098161 29118051
    [Google Scholar]
  3. FarupJ. JustJ. de PaoliF. Human skeletal muscle CD90+ fibro-adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients.Cell Metab.2021331122012214.e1010.1016/j.cmet.2021.10.001 34678202
    [Google Scholar]
  4. KohelaA. van KampenS.J. MoensT. Epicardial differentiation drives fibro-fatty remodeling in arrhythmogenic cardiomyopathy.Sci. Transl. Med.202113612eabf275010.1126/scitranslmed.abf2750 34550725
    [Google Scholar]
  5. de Castro BrásL.E. FrangogiannisN.G. Extracellular matrix-derived peptides in tissue remodeling and fibrosis.Matrix Biol.202091-9217618710.1016/j.matbio.2020.04.006 32438055
    [Google Scholar]
  6. BurasE.D. Converso-BaranK. DavisC.S. Fibro-adipogenic remodeling of the diaphragm in obesity-associated respiratory dysfunction.Diabetes2019681455610.2337/db18‑0209 30361289
    [Google Scholar]
  7. BertelliR. GaianiL. PalmonariM. Neglected rupture of the Achilles tendon treated with a percutaneous technique.Foot Ankle Surg.200915416917310.1016/j.fas.2008.12.003 19840746
    [Google Scholar]
  8. TheretM. SaclierM. MessinaG. RossiF.M.V. Macrophages in skeletal muscle dystrophies, an entangled partner.J. Neuromuscul. Dis.20229112310.3233/JND‑210737 34542080
    [Google Scholar]
  9. SunY. LuoZ. ChenY. si-Tgfbr1-loading liposomes inhibit shoulder capsule fibrosis via mimicking the protective function of exosomes from patients with adhesive capsulitis.Biomater. Res.20222613910.1186/s40824‑022‑00286‑2 35986376
    [Google Scholar]
  10. SunY. LinJ. LuoZ. ChenJ. Preoperative lymphocyte to monocyte ratio can be a prognostic factor in arthroscopic repair of small to large rotator cuff tears.Am. J. Sports Med.202048123042305010.1177/0363546520953427 32931300
    [Google Scholar]
  11. ChenY. LuoZ. SunY. Exercise improves choroid plexus epithelial cells metabolism to prevent glial cell-associated neurodegeneration.Front. Pharmacol.202213101078510.3389/fphar.2022.1010785 36188600
    [Google Scholar]
  12. KiselevaE. SerbinaO. KarpukhinaA. MoulyV. VassetzkyY.S. Interaction between mesenchymal stem cells and myoblasts in the context of facioscapulohumeral muscular dystrophy contributes to the disease phenotype.J. Cell. Physiol.202223783328333710.1002/jcp.30789 35621301
    [Google Scholar]
  13. RiddellD.O. HildyardJ.C.W. HarronR.C.M. HornbyN.L. WellsD.J. PiercyR.J. Serum inflammatory cytokines as disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy.Dis. Model. Mech.20221512dmm04939410.1242/dmm.049394 36444978
    [Google Scholar]
  14. PrabhuS.D. FrangogiannisN.G. The biological basis for cardiac repair after myocardial infarction.Circ. Res.201611919111210.1161/CIRCRESAHA.116.303577 27340270
    [Google Scholar]
  15. LiS. ZhouB. XueM. Macrophage-specific FGF12 promotes liver fibrosis progression in mice.Hepatology202377381683310.1002/hep.32640 35753047
    [Google Scholar]
  16. DokeT. AbediniA. AldridgeD.L. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis.Nat. Immunol.202223694795910.1038/s41590‑022‑01200‑7 35552540
    [Google Scholar]
  17. LiuS. LiuC. LvX. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis.Immunity202154920422056.e810.1016/j.immuni.2021.06.008 34407391
    [Google Scholar]
  18. PiehlN. van OlstL. RamakrishnanA. Cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.Cell20221852650285039.e1310.1016/j.cell.2022.11.019 36516855
    [Google Scholar]
  19. ZhangY. YeY. TangX. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure.J. Exp. Med.20222198e2020041810.1084/jem.20200418 35687056
    [Google Scholar]
  20. LeglerD.F. LoetscherM. RoosR.S. Clark-LewisI. BaggioliniM. MoserB. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5.J. Exp. Med.1998187465566010.1084/jem.187.4.655 9463416
    [Google Scholar]
  21. WengnerA.M. HöpkenU.E. PetrowP.K. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis.Arthritis Rheum.200756103271328310.1002/art.22939 17907173
    [Google Scholar]
  22. JiangB.C. CaoD.L. ZhangX. CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5.J. Clin. Invest.2016126274576110.1172/JCI81950 26752644
    [Google Scholar]
  23. TaniguchiT. MiyagawaT. ToyamaS. CXCL13 produced by macrophages due to Fli1 deficiency may contribute to the development of tissue fibrosis, vasculopathy and immune activation in systemic sclerosis.Exp. Dermatol.20182791030103710.1111/exd.13724 29947047
    [Google Scholar]
  24. WadaN.I. BreamJ.H. Martínez-MazaO. Inflammatory biomarkers and mortality risk among hiv-suppressed men: A multisite prospective cohort study.Clin. Infect. Dis.201663798499010.1093/cid/ciw409 27343547
    [Google Scholar]
  25. VugaL.J. TedrowJ.R. PanditK.V. C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2014189896697410.1164/rccm.201309‑1592OC 24628285
    [Google Scholar]
  26. RupprechtT.A. KoedelU. FingerleV. PfisterH.W. The pathogenesis of lyme neuroborreliosis: From infection to inflammation.Mol. Med.2008143-420521210.2119/2007‑00091.Rupprecht 18097481
    [Google Scholar]
  27. LinJ. LuoZ. LiuS. ChenQ. LiuS. ChenJ. Long non-coding RNA H19 promotes myoblast fibrogenesis via regulating the miR-20a-5p-Tgfbr2 axis.Clin. Exp. Pharmacol. Physiol.202148692193110.1111/1440‑1681.13489 33615521
    [Google Scholar]
  28. QinC BaiY ZengZ The cutting and floating method for paraffin-embedded tissue for sectioning.J Vis Exp2018139
    [Google Scholar]
  29. LuoZ.W. WangH.T. WangN. Establishment of an adult zebrafish model of retinal neurodegeneration induced by NMDA.Int. J. Ophthalmol.20191281250126110.18240/ijo.2019.08.04 31456914
    [Google Scholar]
  30. HuaA.Y. WestinO. Hamrin SenorskiE. Mapping functions in health-related quality of life: Mapping from the achilles tendon rupture score to the EQ-5D.Knee Surg. Sports Traumatol. Arthrosc.201826103083308810.1007/s00167‑018‑4954‑y 29691617
    [Google Scholar]
  31. BuckleyC.D. BaroneF. NayarS. BénézechC. CaamañoJ. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.Annu. Rev. Immunol.201533171574510.1146/annurev‑immunol‑032713‑120252 25861980
    [Google Scholar]
  32. RaoD.A. GurishM.F. MarshallJ.L. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis.Nature2017542763911011410.1038/nature20810 28150777
    [Google Scholar]
  33. QianS. HuangQ. ChenR. Single-Cell RNA sequencing identifies new inflammation-promoting cell subsets in asian patients with chronic periodontitis.Front. Immunol.20211271133710.3389/fimmu.2021.711337 34566966
    [Google Scholar]
  34. DistlerJ.H.W. GyörfiA.H. RamanujamM. WhitfieldM.L. KönigshoffM. LafyatisR. Shared and distinct mechanisms of fibrosis.Nat. Rev. Rheumatol.2019151270573010.1038/s41584‑019‑0322‑7 31712723
    [Google Scholar]
  35. El AyadiA. JayJ.W. PrasaiA. Current approaches targeting the wound healing phases to attenuate fibrosis and scarring.Int. J. Mol. Sci.2020213110510.3390/ijms21031105 32046094
    [Google Scholar]
  36. SunY. CaiH. GeJ. Tubule-derived INHBB promotes interstitial fibroblast activation and renal fibrosis.J. Pathol.20222561253710.1002/path.5798 34543458
    [Google Scholar]
  37. KimY.H. JangS.Y. ShinY.K. Serum CXCL13 reflects local B-cell mediated inflammatory demyelinating peripheral neuropathy.Sci. Rep.2019911653510.1038/s41598‑019‑52643‑2 31712675
    [Google Scholar]
  38. ZhaoJ. ChenS. YangC. Activation of CXCL13/CXCR5 axis aggravates experimental autoimmune cystitis and interstitial cystitis/bladder pain syndrome.Biochem. Pharmacol.202220011504710.1016/j.bcp.2022.115047 35452631
    [Google Scholar]
  39. WangJ. YinC. PanY. CXCL13 contributes to chronic pain of a mouse model of CRPS-I via CXCR5-mediated NF-κB activation and pro-inflammatory cytokine production in spinal cord dorsal horn.J. Neuroinflammation202320110910.1186/s12974‑023‑02778‑x 37158939
    [Google Scholar]
  40. DoloffJ.C. VeisehO. VegasA.J. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates.Nat. Mater.201716667168010.1038/nmat4866 28319612
    [Google Scholar]
  41. CarlsenH.S. BaekkevoldE.S. MortonH.C. HaraldsenG. BrandtzaegP. Monocyte-like and mature macrophages produce CXCL13 (B cell–attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis.Blood2004104103021302710.1182/blood‑2004‑02‑0701 15284119
    [Google Scholar]
  42. ZanettiC. KumarR. EnderJ. The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13.Blood2021138191870188410.1182/blood.2021011557 34424946
    [Google Scholar]
  43. KreimannK. JangM.S. RongS. Ischemia reperfusion injury triggers CXCL13 Release and B-Cell recruitment after allogenic kidney transplantation.Front. Immunol.202011120410.3389/fimmu.2020.01204 32849490
    [Google Scholar]
  44. LaroucheJ.A. FraczekP.M. KurpiersS.J. Neutrophil and natural killer cell imbalances prevent muscle stem cell–mediated regeneration following murine volumetric muscle loss.Proc. Natl. Acad. Sci.202211915e211144511910.1073/pnas.2111445119 35377804
    [Google Scholar]
  45. TidballJ.G. Mechanisms of muscle injury, repair, and regeneration.Compr. Physiol.2011142029206210.1002/cphy.c100092 23733696
    [Google Scholar]
  46. BahtG.S. BarejaA. LeeD.E. Meteorin-like facilitates skeletal muscle repair through a Stat3/IGF-1 mechanism.Nat. Metab.20202327828910.1038/s42255‑020‑0184‑y 32694780
    [Google Scholar]
  47. HinzB. PhanS.H. ThannickalV.J. GalliA. Bochaton-PiallatM.L. GabbianiG. The myofibroblast.Am. J. Pathol.200717061807181610.2353/ajpath.2007.070112 17525249
    [Google Scholar]
  48. BergmeierV. EtichJ. PitzlerL. Identification of a myofibroblast-specific expression signature in skin wounds.Matrix Biol.201865597410.1016/j.matbio.2017.07.005 28797711
    [Google Scholar]
  49. BandowK. SmithA. WatkinsT. ShenkS. Gerami-NainiB. GarlickJ.A. CC chemokine ligand 20 (CCL20) positively regulates collagen type I production in 3D skin equivalent tissues.Exp. Dermatol.202332437939110.1111/exd.14712 36398464
    [Google Scholar]
  50. HinzB. LagaresD. Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases.Nat. Rev. Rheumatol.2020161113110.1038/s41584‑019‑0324‑5 31792399
    [Google Scholar]
  51. HinzB. PhanS.H. ThannickalV.J. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling.Am. J. Pathol.201218041340135510.1016/j.ajpath.2012.02.004 22387320
    [Google Scholar]
  52. KuroseH. Cardiac fibrosis and fibroblasts.Cells2021107171610.3390/cells10071716 34359886
    [Google Scholar]
  53. LiuS. LiuX. XiongH. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice.Brain Behav. Immun.20198071172410.1016/j.bbi.2019.05.020 31100371
    [Google Scholar]
/content/journals/cmm/10.2174/0115665240275029240306045214
Loading
/content/journals/cmm/10.2174/0115665240275029240306045214
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): CXCL13; fibroblast; fibrosis; muscle degeneration; skeletal muscle; tissue
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test