Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Cadmium-Zinc-Telluride (CZT) detector-based Single Photon Emission Computed Tomography (SPECT) represents a paradigm shift in Myocardial Perfusion Imaging (MPI), overcoming major limitations inherent to conventional Anger-type systems, including prolonged acquisition times and constrained quantitative functionality. The cardiac-optimized CZT platform enables rapid image acquisition with reduced radiation burden while achieving enhanced diagnostic precision through superior spatial resolution and photon sensitivity. Clinical evidence demonstrates superior performance in detecting hemodynamically significant Coronary Artery Disease (CAD) compared to traditional SPECT, coupled with quantitative assessment of myocardial blood flow and flow reserve, which strengthens risk stratification and prognostic capability. This technology supports personalized clinical management through improved detection of subclinical ischemia and protocol optimization for radiation reduction. Integration with advanced attenuation/scatter correction methodologies enhances prognostic discrimination, enabling robust differentiation between low-risk and high-risk patient cohorts for Major Adverse Cardiac Events (MACEs). Persistent challenges, including motion-related artifacts and protocol standardization, are being addressed through innovations in data-driven motion correction, next-generation detector architectures, collimators, and hybrid imaging system integration. As the field of cardiovascular imaging evolves, CZT-SPECT stands as a transformative modality that optimally balances operational efficiency, patient safety, and diagnostic confidence. Continued technological refinement and rigorous clinical validation will solidify its position as an indispensable tool for guiding precision interventions and optimizing CAD management pathways.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056412716251027064220
2025-11-28
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056412716.html?itemId=/content/journals/cmir/10.2174/0115734056412716251027064220&mimeType=html&fmt=ahah

References

  1. OwensA. PeacockA. Compound semiconductor radiation detectors.Nucl. Instrum. Methods Phys. Res. A20045311-2183710.1016/j.nima.2004.05.071
    [Google Scholar]
  2. Del SordoS. AbbeneL. CaroliE. ManciniA.M. ZappettiniA. UbertiniP. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications.Sensors2009953491352610.3390/s9050349122412323
    [Google Scholar]
  3. GambhirS.S. BermanD.S. ZifferJ. NaglerM. SandlerM. PattonJ. HuttonB. SharirT. HaimS.B. HaimS.B. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera.J. Nucl. Med.200950463564310.2967/jnumed.108.06002019339672
    [Google Scholar]
  4. EstevesF.P. RaggiP. FolksR.D. KeidarZ. Wells AskewJ. RisplerS. O’ConnorM.K. VerdesL. GarciaE.V. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras.J. Nucl. Cardiol.200916692793410.1007/s12350‑009‑9137‑219688410
    [Google Scholar]
  5. SmithM.F. Recent advances in cardiac SPECT instrumentation and system design.Curr. Cardiol. Rep.201315838710.1007/s11886‑013‑0387‑x23832650
    [Google Scholar]
  6. BuechelR.R. HerzogB.A. HusmannL. BurgerI.A. PazhenkottilA.P. TreyerV. ValentaI. von SchulthessP. NkoulouR. WyssC.A. KaufmannP.A. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation.Eur. J. Nucl. Med. Mol. Imaging201037477377810.1007/s00259‑009‑1375‑720107783
    [Google Scholar]
  7. SharirT. Ben-HaimS. MerzonK. ProchorovV. DickmanD. Ben-HaimS. BermanD.S. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging.JACC Cardiovasc. Imaging20081215616310.1016/j.jcmg.2007.12.00419356422
    [Google Scholar]
  8. BermanD.S. KangX. TamarappooB. WolakA. HayesS.W. NakazatoR. ThomsonL.E.J. KiteF. CohenI. SlomkaP.J. EinsteinA.J. FriedmanJ.D. Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging.JACC Cardiovasc. Imaging20092327328210.1016/j.jcmg.2008.12.01219356571
    [Google Scholar]
  9. AskewJ.W. MillerT.D. RuterR.L. JordanL.G. HodgeD.O. GibbonsR.J. O’ConnorM.K. Early image acquisition using a solid-state cardiac camera for fast myocardial perfusion imaging.J. Nucl. Cardiol.201118584084610.1007/s12350‑011‑9423‑721748520
    [Google Scholar]
  10. MoudenM. TimmerJ.R. OttervangerJ.P. ReiffersS. OostdijkA.H.J. KnollemaS. JagerP.L. Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: Fewer equivocal results and lower radiation dose.Eur. J. Nucl. Med. Mol. Imaging20123961048105510.1007/s00259‑012‑2086‑z22426827
    [Google Scholar]
  11. CaseJ.A. CourterS.A. McGhieA.I. PatelK.K. SperryB.W. MoloneyE. CaseK.O. BurgettE.V. BatemanT.M. Accurate and efficient rapid acquisition early post-injection stress-first CZT SPECT myocardial perfusion imaging with tetrofosmin and attenuation correction.J. Nucl. Cardiol.20233062644265410.1007/s12350‑023‑03336‑x37464251
    [Google Scholar]
  12. MochulaA. MaltsevaA. KopevaK. GrakovaE. MochulaO. ZavadovskyK. The influence of kinetic models and attenuation correction on cadmium–zinc–telluride single-photon emission computed tomography (CZT SPECT)-derived myocardial blood flow and reserve: Correlation with invasive angiography data.J. Clin. Med.2024135127110.3390/jcm1305127138592092
    [Google Scholar]
  13. ZhaoF. ChenY. ZhaoJ. PangZ. WangJ. CaoB. LiJ. Impact of CT attenuation correction on viable myocardium detection in combined SPECT and PET/CT: A retrospective cohort study.Medicine202410343e4017510.1097/MD.000000000004017539470532
    [Google Scholar]
  14. HesseM DupontF GheysensO CT-free attenuation correction for cardiac-dedicated CZT SPECT: first results of the CASCTEC study.European Heart Journal - Cardiovascular Imaging202425(Suppl 1) jeae142.053.10.1093/ehjci/jeae142.053
    [Google Scholar]
  15. SprauelT. ImbertL. DoyeuxK. PerrinM. ClaudinM. RochV. DoyenM. RothN. LamashY. ChequerR. RouzetF. HyafilF. MarieP.Y. Assessment of sestamibi CZT-SPECT reconstructed using deep-learning-based virtual attenuation correction maps according to coronary artery territory and with comparison to rubidium-PET.J. Nucl. Cardiol.20254910222610.1016/j.nuclcard.2025.10222640258438
    [Google Scholar]
  16. DaouD. SabbahR. CoaguilaC. AlattarY. BoulahdourH. A new era in gated myocardial perfusion imaging: Feasibility of data-driven cardiac contraction gating with multiple pinhole CZT SPECT.J. Nucl. Cardiol.201825125726810.1007/s12350‑017‑1010‑028776313
    [Google Scholar]
  17. SongC. YangY. WernickM.N. PretoriusP.H. SlomkaP.J. KingM.A. Cardiac motion correction for improving perfusion defect detection in cardiac SPECT at standard and reduced doses of activity.Phys. Med. Biol.201964505500510.1088/1361‑6560/aafefe30650394
    [Google Scholar]
  18. WengF. BagchiS. ZanY. HuangQ. SeoY. An energy-optimized collimator design for a CZT-based SPECT camera.Nucl. Instrum. Methods Phys. Res. A201680633033910.1016/j.nima.2015.09.11526640308
    [Google Scholar]
  19. SantarelliM.F. MoriA. BertasiM. PositanoV. GimelliA. ScipioniM. MarzulloP. LandiniL. CZT Detectors-based spect imaging: How detector and collimator arrangement can determine the overall performance of the tomograph.Electronics20211018223010.3390/electronics10182230
    [Google Scholar]
  20. GhoneimM.A. A simulation study for optimal pinhole collimator design in gamma camera systems.J. Med. Phys.202449464865310.4103/jmp.jmp_127_2439926144
    [Google Scholar]
  21. VauchotF. DuboisJ. BourdonA. Improving multi-pinhole CZT myocardial perfusion imaging specificity without changing sensibility by using adapted filter parameters.EJNMMI Res.20241412710.1186/s13550‑024‑01083‑938453724
    [Google Scholar]
  22. YokotaS. OttervangerJ.P. MoudenM. TimmerJ.R. KnollemaS. JagerP.L. Prevalence, location, and extent of significant coronary artery disease in patients with normal myocardial perfusion imaging.J. Nucl. Cardiol.201421228429010.1007/s12350‑013‑9837‑524469846
    [Google Scholar]
  23. CantoniV. GreenR. AcampaW. ZampellaE. AssanteR. NappiC. GaudieriV. MannarinoT. CuocoloR. Di VaiaE. PetrettaM. CuocoloA. Diagnostic performance of myocardial perfusion imaging with conventional and CZT single-photon emission computed tomography in detecting coronary artery disease: A meta-analysis.J. Nucl. Cardiol.202128269871510.1007/s12350‑019‑01747‑331089962
    [Google Scholar]
  24. KalantariF MohseniniaN WetschA Head-to-Head Comparison of CZT-SPECT and SPECT/CT Myocardial Perfusion Imaging: Interobserver and Intraobserver Agreement and Diagnostic Performance.life18791391879
    [Google Scholar]
  25. De LucaG. GibsonM. CutlipD. HuberK. DudekD. BellandiF. NocM. MaioliM. ZormanS. ZeymerU. SeccoG.G. Mesquita GabrielH. EmreA. ArntzH.R. RakowskiT. GyongyosiM. HofA.W.J. Impact of multivessel disease on myocardial perfusion and survival among patients undergoing primary percutaneous coronary intervention with glycoprotein IIb/IIIa inhibitors.Arch. Cardiovasc. Dis.2013106315516110.1016/j.acvd.2012.12.00723582677
    [Google Scholar]
  26. WuD. ZhangZ. MaR. GuoF. WangL. FangW. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure.J. Nucl. Cardiol.201926244345210.1007/s12350‑017‑0952‑628623525
    [Google Scholar]
  27. WangJ. LiS. ChenW. ChenY. PangZ. LiJ. Diagnostic efficiency of quantification of myocardial blood flow and coronary flow reserve with CZT dynamic SPECT imaging for patients with suspected coronary artery disease: a comparative study with traditional semi-quantitative evaluation.Cardiovasc. Diagn. Ther.2021111566710.21037/cdt‑20‑72833708478
    [Google Scholar]
  28. PangZ. WangJ. LiS. ChenY. WangX. LiJ. Diagnostic analysis of new quantitative parameters of low-dose dynamic myocardial perfusion imaging with CZT SPECT in the detection of suspected or known coronary artery disease.Int. J. Cardiovasc. Imaging202137136737810.1007/s10554‑020‑01962‑x32914404
    [Google Scholar]
  29. AcampaW. AssanteR. MannarinoT. ZampellaE. D’AntonioA. BuongiornoP. GaudieriV. NappiC. GiordanoA. MainolfiC.G. PetrettaM. CuocoloA. Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease.Eur. J. Nucl. Med. Mol. Imaging20204771705171210.1007/s00259‑019‑04644‑631848673
    [Google Scholar]
  30. MesquitaC PalazzoI PachecoJ Assessing myocardial flow reserve using CZT SPECT perfusion imaging: A step towards clinical application.European Heart Journal - Cardiovascular Imaging202425Suppl 1jeae142.07310.1093/ehjci/jeae142.073
    [Google Scholar]
  31. NkoulouR. FuchsT.A. PazhenkottilA.P. KuestS.M. GhadriJ.R. StehliJ. FiechterM. HerzogB.A. GaemperliO. BuechelR.R. KaufmannP.A. Absolute myocardial blood flow and flow reserve assessed by gated spect with cadmium–zinc–telluride detectors using 99m tc-tetrofosmin: Head-to-Head Comparison with 13 N-Ammonia PET.J. Nucl. Med.201657121887189210.2967/jnumed.115.16549827363834
    [Google Scholar]
  32. AgostiniD. RouleV. NganoaC. RothN. BaavourR. ParientiJ.J. BeyguiF. ManriqueA. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study.Eur. J. Nucl. Med. Mol. Imaging20184571079109010.1007/s00259‑018‑3958‑729497801
    [Google Scholar]
  33. OtakiY. ManabeO. MillerR.J.H. ManriqueA. NganoaC. RothN. BermanD.S. GermanoG. SlomkaP.J. AgostiniD. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET.J. Nucl. Cardiol.20212841477148610.1007/s12350‑019‑01854‑131452085
    [Google Scholar]
  34. LiC. XuR. YaoK. ZhangJ. ChenS. PangL. LuH. DaiY. QianJ. ShiH. GeJ. Functional significance of intermediate coronary stenosis in patients with single-vessel coronary artery disease: A comparison of dynamic SPECT coronary flow reserve with intracoronary pressure-derived fractional flow reserve (FFR).J. Nucl. Cardiol.202229262262910.1007/s12350‑020‑02293‑z32770319
    [Google Scholar]
  35. HeM. HanW. ShiC. WangM. LiJ. HeW. XuX. GanQ. GuanS. ZhangL. ChenY. ChangX. LiT. QuX. A comparison of dynamic SPECT coronary flow reserve with TIMI frame count in the treatment of non-obstructive epicardial coronary patients.Clin. Interv. Aging2023181831183910.2147/CIA.S42945037937265
    [Google Scholar]
  36. YahiroD.S. LeiteL.F. AzevedoG.L. Al-MallahM.H. MesquitaC.T. Comparison of PET-CT and CZT-SPECT on myocardial blood flow and flow reserve measurement: A systematic review and meta-analysis.J. Nucl. Cardiol.202510227910.1016/j.nuclcard.2025.10227940527443
    [Google Scholar]
  37. SanoA. MatobaS. MiyakeK. OnoS. TadaT. MaruoT. KadotaK. Comparative accuracy of semiconductor single-photon emission computed tomography (SPECT) versus cardiac magnetic resonance (CMR) for myocardial viability assessment.Cureus2025175e8367910.7759/cureus.8367940342643
    [Google Scholar]
  38. OuX. JiangL. HuangR. LiF. ZhaoZ. LiL. Computed tomography attenuation correction improves the risk stratification accuracy of myocardial perfusion imaging.Nucl. Med. Commun.201334549550010.1097/MNM.0b013e328360053a23478588
    [Google Scholar]
  39. KleinE. MillerR.J.H. SharirT. EinsteinA.J. FishM.B. RuddyT.D. KaufmannP.A. SinusasA.J. MillerE.J. BatemanT.M. DorbalaS. Di CarliM. OtakiY. GransarH. LiangJ.X. DeyD. BermanD.S. SlomkaP.J. Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry.J. Nucl. Cardiol.202229272773610.1007/s12350‑020‑02334‑732929639
    [Google Scholar]
  40. FeherA. PieszkoK. ShanbhagA. LemleyM. BednarskiB. MillerR.J.H. HuangC. MirasL. LiuY.H. SinusasA.J. SlomkaP.J. MillerE.J. CT attenuation correction improves quantitative risk prediction by cardiac SPECT in obese patients.Eur. J. Nucl. Med. Mol. Imaging202451369570610.1007/s00259‑023‑06484‑x37924340
    [Google Scholar]
  41. LiL. PangZ. WangJ. ChenY. ChuH. HeZ. LiJ. Prognostic value of myocardial flow reserve measured with CZT cardiac-dedicated SPECT low-dose dynamic myocardial perfusion imaging in patients with INOCA.J. Nucl. Cardiol.20233062578259210.1007/s12350‑023‑03332‑137434083
    [Google Scholar]
  42. ZhangH. CaobelliF. CheW. HuangY. ZhangY. FanX. HuX. XuC. FeiM. ZhangJ. LvZ. ShiK. YuF. The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study.Eur. J. Nucl. Med. Mol. Imaging20235071940195310.1007/s00259‑023‑06125‑336786817
    [Google Scholar]
  43. van DijkJ.D. BorrenN.M. MoudenM. van DalenJ.A. OttervangerJ.P. JagerP.L. Effect of a patient-specific minimum activity in stress myocardial perfusion imaging using CZT-SPECT: Prognostic value, radiation dose, and scan outcome.J. Nucl. Cardiol.2018251263510.1007/s12350‑017‑1011‑z28822102
    [Google Scholar]
  44. PromteangtrongC. JantaratoA. KunawudhiA. KiatkittikulP. SiripongsatianD. BoonkawinN. ChotipanichC. Clinical impact of quantitative [15O] H2O PET/CT myocardial perfusion imaging on decision-making regarding invasive management of coronary artery disease.J. Nucl. Cardiol.20222941887189910.1007/s12350‑021‑02604‑y33826128
    [Google Scholar]
  45. HageF.G. VenkataramanR. AljaroudiW. BravoP.E. McLarryJ. FaulknerM. HeoJ. IskandrianA.E. The impact of viability assessment using myocardial perfusion imaging on patient management and outcome.J. Nucl. Cardiol.201017337838910.1007/s12350‑010‑9199‑120186583
    [Google Scholar]
  46. AssanteR. D’AntonioA. MannarinoT. NappiC. GaudieriV. ZampellaE. BuongiornoP. CantoniV. GreenR. FregaN. VerberneH.J. PetrettaM. CuocoloA. AcampaW. Simultaneous assessment of myocardial perfusion and adrenergic innervation in patients with heart failure by low-dose dual-isotope CZT SPECT imaging.J. Nucl. Cardiol.20222963341335110.1007/s12350‑022‑02951‑435378694
    [Google Scholar]
  47. YoshidaS. UnnoK. NanasatoM. NiimiT. InukaiK. MorisakiH. HattoriT. HiroseM. HayashiT. UchidaN. SimodaM. OishiH. AndoM. HirayamaK. TakenakaM. MaedaM. YoshidaR. OguraY. SuzukiH. FurusawaK. MorimotoR. KatoK. IsobeS. YoshidaY. MuroharaT. The potential of dynamic 99mTc-sestamibi cadmium zinc telluride-single-photon emission computed tomography camera assessing myocardial flow reserve in patients with heart failure with preserved ejection fraction.Eur. Heart J. Open202332oead02810.1093/ehjopen/oead02837026023
    [Google Scholar]
  48. D’estanqueE. HedonC. LattucaB. BourdonA. BenkiranM. VerdA. RoubilleF. Mariano-GoulartD. Optimization of a simultaneous dual-isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: Are delayed acquisition and scatter correction necessary?J. Nucl. Cardiol.20172441361136910.1007/s12350‑016‑0524‑127225516
    [Google Scholar]
  49. ClaudinM. ImbertL. DjaballahW. VeranN. PoussierS. RochV. PerrinM. VergerA. BoutleyH. KarcherG. MarieP.Y. Routine evaluation of left ventricular function using CZT-SPECT, with low injected activities and limited recording times.J. Nucl. Cardiol.201825124925610.1007/s12350‑016‑0615‑z27677613
    [Google Scholar]
  50. NudiF. IskandrianA.E. SchillaciO. PeruzziM. FratiG. Biondi-ZoccaiG. Diagnostic accuracy of myocardial perfusion imaging with CZT technology.JACC Cardiovasc. Imaging201710778779410.1016/j.jcmg.2016.10.02328330657
    [Google Scholar]
  51. PanjerM. DobrolinskaM. WagenaarN.R.L. SlartR.H.J.A. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis.J. Nucl. Cardiol.20222941686169710.1007/s12350‑021‑02721‑834350553
    [Google Scholar]
  52. van DijkJ.D. JagerP.L. OttervangerJ.P. SlumpC.H. de BoerJ. OostdijkA.H.J. van DalenJ.A. Minimizing patient-specific tracer dose in myocardial perfusion imaging using CZT SPECT.J. Nucl. Med. Technol.2015431364010.2967/jnmt.114.14860125613337
    [Google Scholar]
  53. KennedyJ.A. William StraussH. Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device.Med. Biol. Eng. Comput.201755466367110.1007/s11517‑016‑1548‑z27417733
    [Google Scholar]
  54. OddstigJ. MartinssonE. JögiJ. EngblomH. HindorfC. Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras.J. Nucl. Cardiol.20192661984199110.1007/s12350‑018‑1296‑629796975
    [Google Scholar]
  55. SchwartzR.G. WexlerO. PetersonB. SchwartzA.M. MisF.J. MackinM. Cadmium-zinc-telluride SPECT in very morbidly obese patients routinely provides high-diagnostic-quality myocardial perfusion imaging.J. Nucl. Med.2013544661.166110.2967/jnumed.112.11796023370696
    [Google Scholar]
  56. RenaudJ.M. Poitrasson-RivièreA. HagioT. MoodyJ.B. Arida-MoodyL. FicaroE.P. MurthyV.L. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application.J. Nucl. Cardiol.20222952078208910.1007/s12350‑021‑02761‑034426935
    [Google Scholar]
  57. WietingW. BengelF.M. DiekmannJ. Comparison of global and regional myocardial blood flow quantification using dynamic solid-state detector SPECT and Tc-99 m-sestamibi or Tc-99 m-tetrofosmin in a routine clinical setting.Int. J. Cardiovasc. Imaging202541353754810.1007/s10554‑025‑03339‑439885112
    [Google Scholar]
  58. HuhY. CaravacaJ. KimJ. CuiY. HuangQ. GullbergG. SeoY. Simulation studies of a full-ring, CZT SPECT system for whole-body imaging of 99m Tc and 177 Lu.Med. Phys.20235063726373710.1002/mp.1636036916755
    [Google Scholar]
  59. LiZ. ChengJ. LiuF. WangQ. WenW.W. HuangG. WuZ. research on the technological progress of czt array detectors.Sensors202424372510.3390/s2403072538339441
    [Google Scholar]
  60. Noori-AslM. Sayyah-KoohiP. Investigation of response of the pixelated CZT SPECT imaging system and comparison with the conventional SPECT system.J. Med. Phys.202247437438010.4103/jmp.jmp_41_2236908490
    [Google Scholar]
  61. Mohy-ud-DinH. LodgeM.A. RahmimA. Quantitative myocardial perfusion PET parametric imaging at the voxel-level.Phys. Med. Biol.201560156013603710.1088/0031‑9155/60/15/601326216052
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056412716251027064220
Loading
/content/journals/cmir/10.2174/0115734056412716251027064220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test