Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Accurate early diagnosis and assessment of liver fibrosis are important for patient treatment and prognosis. This study explored the value of Gd-BOPTA-enhanced T1 mapping the B1 inhomogeneity-corrected Variable Flip Angle (VFA) method for staging liver fibrosis in rats.

Methods

Sprague‒Dawley rats were divided into one control group (n = 6) and four carbon tetrachloride-induced liver fibrosis groups (n = 6 each group). T1 mapping B1 inhomogeneity-corrected VFA was performed before and 90 minutes after Gd-BOPTA administration. Precontrast T1 values (T1), postcontrast T1 values (T1), and the reduction rate of T1 values (ΔT1%) were quantified on T1 mapping images. The diagnostic performance was evaluated by the Area Under the Receiver Operating Characteristic Curve (AUC). The correlations between T1, T1, ΔT1% values, and the expression levels of hepatocyte transporters (Oatp1a1 and Mrp2) were evaluated.

Results

T1 and ΔT1% were significantly correlated with liver fibrosis stage (r = 0.832, 0.001; r = −0.798, 0.001, respectively), whereas T1 was not significantly correlated with fibrosis stage (r = 0.357, = 0.062). The AUCs of T1 and ΔT1% were greater than those of postcontrast signal intensity for diagnosing stages F2–F4 (0.936, 0.941 0.791; = 0.043, 0.038, respectively), F3–F4 (0.928, 0.861 0.660; = 0.003, 0.028, respectively) and F4 (0.965, 0.896 0.761; = 0.021, 0.049, respectively). Oatp1a1 and Mrp2 expression levels correlated significantly with T1 (r = −0.859, 0.001; r = −0.697, = 0.017) and ΔT1% (r = 0.891, 0.001; r = 0.685, = 0.020), respectively.

Discussion

T1 and ΔT1% were significantly correlated with liver fibrosis stages, and have good diagnostic performance for staging liver fibrosis. The protein expression levels of Oatp1a1 and Mrp2 correlated significantly with T1 and ΔT1%.

Conclusion

Gd-BOPTA-enhanced T1 mapping the B1 inhomogeneity-corrected VFA shows promise as a potentially accurate and reliable tool for quantifying liver fibrosis stages.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056393310250929071043
2025-10-20
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056393310.html?itemId=/content/journals/cmir/10.2174/0115734056393310250929071043&mimeType=html&fmt=ahah

References

  1. PetitclercL. GilbertG. NguyenB.N. TangA. Liver fibrosis quantification by magnetic resonance imaging.Top Magn Reson Imaging201726622924110.1097/RMR.000000000000014928858038
    [Google Scholar]
  2. LuetkensJ.A. KleinS. TräberF. SchmeelF.C. SprinkartA.M. KuettingD.L.R. BlockW. UschnerF.E. SchierwagenR. HittatiyaK. KristiansenG. GiesekeJ. SchildH.H. TrebickaJ. KukukG.M. Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: Preclinical results.Radiology2018288374875410.1148/radiol.201818005129944086
    [Google Scholar]
  3. GinèsP. ThieleM. GrauperaI. Serra-BurrielM. de KnegtR.J. LammertF. CasteraL. KorenjakM. KamathP.S. GrgurevićI. PianoS. FabrellasN. ArslanowA. KragA. Screening for fibrosis to diagnose liver diseases early: The LIVERSCREEN project.Nat Med202329477477510.1038/s41591‑023‑02265‑z37002369
    [Google Scholar]
  4. MorenoC. MuellerS. SzaboG. Non-invasive diagnosis and biomarkers in alcohol-related liver disease.J Hepatol201970227328310.1016/j.jhep.2018.11.02530658728
    [Google Scholar]
  5. YangL. DingY. RaoS. ChenC. WuL. ShengR. FuC. ZengM. Staging liver fibrosis in chronic hepatitis B with T 1 relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4.J Magn Reson Imaging20174541186119410.1002/jmri.2544027563840
    [Google Scholar]
  6. HorowitzJ.M. VenkateshS.K. EhmanR.L. JhaveriK. KamathP. OhligerM.A. SamirA.E. SilvaA.C. TaouliB. TorbensonM.S. WellsM.L. YehB. MillerF.H. Evaluation of hepatic fibrosis: A review from the society of abdominal radiology disease focus panel.Abdom Radiol20174282037205310.1007/s00261‑017‑1211‑728624924
    [Google Scholar]
  7. ShenM. LeeA. LefkowitchJ.H. WormanH.J. Vibration-controlled transient elastography for assessment of liver fibrosis at a USA academic medical center.J Clin Transl Hepatol202210219720610.14218/JCTH.2021.0018835528980
    [Google Scholar]
  8. HoffmanD.H. AyoolaA. NickelD. HanF. ChandaranaH. ShanbhogueK.P. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis.Abdom Radiol202045369270010.1007/s00261‑019‑02382‑931875241
    [Google Scholar]
  9. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis.J Hepatol201563123726410.1016/j.jhep.2015.04.00625911335
    [Google Scholar]
  10. RustogiR. HorowitzJ. HarmathC. WangY. ChalianH. GangerD.R. ChenZ.E. BolsterB.D. ShahS. MillerF.H. Accuracy of MR elastography and anatomic MR imaging features in the diagnosis of severe hepatic fibrosis and cirrhosis.J Magn Reson Imaging20123561356136410.1002/jmri.2358522246952
    [Google Scholar]
  11. CaiS. LinN. YangY. MaW. WangY. LinX. WangX. ZhaoX. The value of contrast-enhanced portal vein imaging at the hepatobiliary phase obtained with gadobenate dimeglumine for predicting decompensation and transplant-free survival in chronic liver disease.Eur Radiol20233353425343410.1007/s00330‑023‑09489‑036897349
    [Google Scholar]
  12. BonnaventureP. CusinF. PastorC.M. Hepatocyte Concentrations of Imaging Compounds Associated with Transporter Inhibition: Evidence in Perfused Rat Livers.Drug Metab Dispos201947441241810.1124/dmd.118.08462430674615
    [Google Scholar]
  13. SoulezG. BloomgardenD.C. RofskyN.M. SmithM.P. AbujudehH.H. MorganD.E. LichtensteinR.J. SchieblerM.L. WippoldF.J. RussoC. KuhnM.J. MennittK.W. MakiJ.H. StolpenA. LiouJ. SemelkaR.C. KirchinM.A. ShenN. PirovanoG. SpinazziA. Prospective Cohort Study of Nephrogenic Systemic Fibrosis in Patients With Stage 3–5 Chronic Kidney Disease Undergoing MRI With Injected Gadobenate Dimeglumine or Gadoteridol.AJR Am J Roentgenol2015205346947810.2214/AJR.14.1426826295633
    [Google Scholar]
  14. CongL. DengY. CaiS. WangG. ZhaoX. HeJ. ZhaoS. WangL. The value of periportal hyperintensity sign from gadobenate dimeglumine-enhanced hepatobiliary phase MRI for predicting clinical outcomes in patients with decompensated cirrhosis.Insights Imaging20241516410.1186/s13244‑024‑01629‑438411746
    [Google Scholar]
  15. DietrichC.G. GötzeO. GeierA. Molecular changes in hepatic metabolism and transport in cirrhosis and their functional importance.World J Gastroenterol2016221728810.3748/wjg.v22.i1.7226755861
    [Google Scholar]
  16. PanS. WangX.Q. GuoQ.Y. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging.World J Gastroenterol201824182024203510.3748/wjg.v24.i18.202429760545
    [Google Scholar]
  17. GhavamianA. LiuC. KangB. YuanX. WangX. GaoL. ZhaoX. Liver T1 relaxation time of the ‘normal liver’ in healthy Asians: Measurement with MOLLI and B 1 -corrected VFA methods at 3T.Br J Radiol20229511332021100810.1259/bjr.2021100835324344
    [Google Scholar]
  18. YoonJ.H. LeeJ.M. KimE. OkuakiT. HanJ.K. Quantitative Liver Function Analysis: Volumetric T1 Mapping with Fast Multisection B 1 Inhomogeneity Correction in Hepatocyte-specific Contrast-enhanced Liver MR Imaging.Radiology2017282240841710.1148/radiol.201615280027697007
    [Google Scholar]
  19. StarkelP. LeclercqI.A. Animal models for the study of hepatic fibrosis.Best Pract Res Clin Gastroenterol201125231933310.1016/j.bpg.2011.02.00421497748
    [Google Scholar]
  20. GoodmanZ.D. Grading and staging systems for inflammation and fibrosis in chronic liver diseases.J Hepatol200747459860710.1016/j.jhep.2007.07.00617692984
    [Google Scholar]
  21. MuksimovaS. UmirzakovaS. BaltayevJ. ChoY.I. Lightweight Deep Learning Model for Fire Classification in Tunnels.Fire (Basel)2025838510.3390/fire8030085
    [Google Scholar]
  22. WuJ. HuangJ. KuangS. ChenJ. LiX. ChenB. WangJ. ChengD. ShuaiX. Synergistic MicroRNA Therapy in Liver Fibrotic Rat Using MRI-Visible Nanocarrier Targeting Hepatic Stellate Cells.Adv Sci (Weinh)201965180180910.1002/advs.20180180930886803
    [Google Scholar]
  23. ShengR.F. WangH.Q. YangL. JinK.P. XieY.H. FuC.X. ZengM.S. Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance.Dig Liver Dis201749778979510.1016/j.dld.2017.02.00628237298
    [Google Scholar]
  24. KimJ.W. LeeY.S. ParkY.S. KimB.H. LeeS.Y. YeonJ.E. LeeC.H. Multiparametric MR Index for the Diagnosis of Non-Alcoholic Steatohepatitis in Patients with Non-Alcoholic Fatty Liver Disease.Sci Rep2020101267110.1038/s41598‑020‑59601‑332060386
    [Google Scholar]
  25. ChaiJ.W. LinY.C. ChenJ.H. WuC.C. LeeC.P. ChuW.C. LeeS.K. In vivo magnetic resonance (MR) study of fatty liver: Importance of intracellular ultrastructural alteration for MR tissue parameters change.J Magn Reson Imaging2001141354110.1002/jmri.114811436212
    [Google Scholar]
  26. LiJ. LiuH. ZhangC. YangS. WangY. ChenW. LiX. WangD. Native T1 mapping compared to ultrasound elastography for staging and monitoring liver fibrosis: An animal study of repeatability, reproducibility, and accuracy.Eur Radiol202030133734510.1007/s00330‑019‑06335‑031338650
    [Google Scholar]
  27. BesaC. BaneO. JajamovichG. MarchioneJ. TaouliB. 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function.Magn Reson Imaging20153391075108210.1016/j.mri.2015.06.01326119422
    [Google Scholar]
  28. LiX.M. ChenZ. XiaoE.H. ShangQ.L. MaC. Diagnostic value of gadobenate dimeglumine-enhanced hepatocyte-phase magnetic resonance imaging in evaluating hepatic fibrosis and hepatitis.World J Gastroenterol201723173133314110.3748/wjg.v23.i17.313328533670
    [Google Scholar]
  29. ZhouZ.P. LongL.L. QiuW.J. ChengG. HuangL.J. YangT.F. HuangZ.K. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla.BMC Med Imaging20171712010.1186/s12880‑017‑0192‑x28249571
    [Google Scholar]
  30. Dahlqvist LeinhardO. DahlströmN. KihlbergJ. SandströmP. BrismarT.B. SmedbyÖ. LundbergP. Quantifying differences in hepatic uptake of the liver specific contrast agents Gd-EOB-DTPA and Gd-BOPTA: A pilot study.Eur Radiol201222364265310.1007/s00330‑011‑2302‑421984449
    [Google Scholar]
  31. LiuC. SunY. YangY. FengY. XieX. QiL. LiuK. WangX. ZhuQ. ZhaoX. Gadobenate dimeglumine–enhanced biliary imaging from the hepatobiliary phase can predict progression in patients with liver cirrhosis.Eur Radiol20213185840585010.1007/s00330‑021‑07702‑633533990
    [Google Scholar]
  32. PlanchampC. HadengueA. StiegerB. BourquinJ. VonlaufenA. FrossardJ.L. QuadriR. BeckerC.D. PastorC.M. Function of both sinusoidal and canalicular transporters controls the concentration of organic anions within hepatocytes.Mol Pharmacol20077141089109710.1124/mol.106.03075917234897
    [Google Scholar]
  33. LagadecM. DoblasS. GiraudeauC. RonotM. LambertS.A. FasseuM. ParadisV. MoreauR. PastorC.M. VilgrainV. DaireJ.L. Van BeersB.E. Advanced fibrosis: Correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver.Radiology2015274237938610.1148/radiol.1414031325289480
    [Google Scholar]
  34. ZhaoX. HuangM. ZhuQ. WangT. LiuQ. The relationship between liver function and liver parenchymal contrast enhancement on Gd-BOPTA-enhanced MR imaging in the hepatocyte phase.Magn Reson Imaging201533676877310.1016/j.mri.2015.03.00625842259
    [Google Scholar]
  35. MozesF.E. TunnicliffeE.M. MoollaA. MarjotT. LevickC.K. PavlidesM. RobsonM.D. Mapping tissue water T 1 in the liver using the MOLLI T 1 method in the presence of fat, iron and B 0 inhomogeneity.NMR Biomed2019322403010.1002/nbm.403030462873
    [Google Scholar]
  36. YoonJ.H. LeeJ.M. PaekM. HanJ.K. ChoiB.I. Quantitative assessment of hepatic function: Modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging.Eur Radiol20162661775178210.1007/s00330‑015‑3994‑726373756
    [Google Scholar]
  37. DingY. RaoS.X. ChenC. LiR. ZengM.S. Assessing liver function in patients with HBV-related HCC: A comparison of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging with DWI.Eur Radiol20152551392139810.1007/s00330‑014‑3542‑x25523455
    [Google Scholar]
  38. KimJ.E. KimH.O. BaeK. ChoiD.S. NickelD. T1 mapping for liver function evaluation in gadoxetic acid–enhanced MR imaging: Comparison of look-locker inversion recovery and 1B inhomogeneity–corrected variable flip angle method.Eur Radiol20192973584359410.1007/s00330‑018‑5947‑430903328
    [Google Scholar]
  39. NaqviR.A. HaiderA. KimH.S. JeongD. LeeS.W. Transformative Noise Reduction: Leveraging a Transformer-Based Deep Network for Medical Image Denoising.Mathematics20241215231310.3390/math12152313
    [Google Scholar]
  40. HaiderM. HashmiM.S.A. RazaA. IbrahimM. FitriyaniN.L. SyafrudinM. LeeS.W. Novel Ensemble Learning Algorithm for Early Detection of Lower Back Pain Using Spinal Anomalies.Mathematics20241213195510.3390/math12131955
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056393310250929071043
Loading
/content/journals/cmir/10.2174/0115734056393310250929071043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test