Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aimed to investigate the correlation between magnetic resonance imaging (MRI) characteristics and molecular subtypes of breast carcinoma.

Methods

A retrospective analysis was carried out on 194 breast cancer patients who underwent preoperative MRI. Pathological confirmation and molecular subtyping were performed on postoperative specimens. Preoperative MRI features of the lesions were evaluated. Univariate and multivariate logistic regression analyses were employed to identify MRI features associated with each molecular subtype.

Results

A total of 194 breast cancer patients who underwent preoperative MRI and surgical treatment were included, with a mean age of 52.31 ± 12.08 years. Invasive ductal carcinoma was the predominant diagnosis (94.84%), and the expression rates of ER, PR, and HER2 were 58.76%, 55.67%, and 35.05%, respectively. The Ki-67 index was >20% in 70.62% of patients. Luminal B (HER2−) was the most common molecular subtype (33.51%). Significant differences were observed in lesion morphology, T2-weighted signal intensity, enhancement pattern, and type across the five molecular subtypes, though delayed-phase enhancement kinetics showed no significant variation. Logistic regression indicated that low T2WI signal and restricted diffusion were associated with Luminal A, while mass-like morphology and delayed-phase washout were predictors of Luminal B. Non-Mass Enhancement (NME) and rapid early enhancement were linked to HER2-enriched tumors, and unifocal, high T2WI signal, delayed-phase washout, and irregular margins were characteristic of triple-negative breast cancer.

Conclusion

Distinct MRI features were found to be associated with specific molecular subtypes of breast cancer, providing valuable insights for subtype-specific diagnosis and therapeutic strategy formulation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056411259251028093038
2025-11-28
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056411259.html?itemId=/content/journals/cmir/10.2174/0115734056411259251028093038&mimeType=html&fmt=ahah

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. XiongX. ZhengL.W. DingY. ChenY.F. CaiY.W. WangL.P. HuangL. LiuC.C. ShaoZ.M. YuK.D. Breast cancer: pathogenesis and treatments.Signal Transduct. Target. Ther.20251014910.1038/s41392‑024‑02108‑439966355
    [Google Scholar]
  3. BrittK.L. CuzickJ. PhillipsK.A. Key steps for effective breast cancer prevention.Nat. Rev. Cancer202020841743610.1038/s41568‑020‑0266‑x32528185
    [Google Scholar]
  4. ZhangA. WangX. FanC. MaoX. The Role of Ki67 in Evaluating Neoadjuvant Endocrine Therapy of Hormone Receptor-Positive Breast Cancer.Front. Endocrinol. (Lausanne)20211268724410.3389/fendo.2021.68724434803903
    [Google Scholar]
  5. TurnerK.M. YeoS.K. HolmT.M. ShaughnessyE. GuanJ.L. Heterogeneity within molecular subtypes of breast cancer.Am. J. Physiol. Cell Physiol.20213212C343C35410.1152/ajpcell.00109.202134191627
    [Google Scholar]
  6. SchettiniF. PratA. Dissecting the biological heterogeneity of HER2-positive breast cancer.Breast20215933935010.1016/j.breast.2021.07.01934392185
    [Google Scholar]
  7. WolfD.M. YauC. WulfkuhleJ. Brown-SwigartL. GallagherR.I. LeeP.R.E. ZhuZ. MagbanuaM.J. SayamanR. O’GradyN. BasuA. DelsonA. CoppéJ.P. LuR. BraunJ. AsareS.M. SitL. MatthewsJ.B. PerlmutterJ. HyltonN. LiuM.C. PohlmannP. SymmansW.F. RugoH.S. IsaacsC. DeMicheleA.M. YeeD. BerryD.A. PusztaiL. PetricoinE.F. HirstG.L. EssermanL.J. van ’t VeerL.J. I-SPY2 Investigators Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies.Cancer Cell2022406609623.e610.1016/j.ccell.2022.05.00535623341
    [Google Scholar]
  8. JokarN. VelikyanI. AhmadzadehfarH. RekabpourS.J. JafariE. TingH.H. BiersackH.J. AssadiM. Theranostic Approach in Breast Cancer.Clin. Nucl. Med.2021468e410e42010.1097/RLU.000000000000367834152118
    [Google Scholar]
  9. QinW. LiJ. GaoN. KongX. GuoL. ChenY. HuangL. ChenX. QiF. Multiomics-based molecular subtyping based on the commensal microbiome predicts molecular characteristics and the therapeutic response in breast cancer.Mol. Cancer20242319910.1186/s12943‑024‑02017‑838730464
    [Google Scholar]
  10. GaoZ.J. FangH. SunS. LiuS.Q. FangZ. LiuZ. LiB. WangP. SunS.R. MengX.Y. WuQ. ChenC.S. Single-cell analyses reveal evolution mimicry during the specification of breast cancer subtype.Theranostics20241483104312610.7150/thno.9616338855191
    [Google Scholar]
  11. HungS.K. YangH.J. LeeM.S. LiuD.W. ChenL.C. ChewC.H. LinC.H. LeeC.H. LiS.C. HongC.L. YuC.C. YuB.H. HsuF.C. ChiouW.Y. LinH.Y. Molecular subtypes of breast cancer predicting clinical benefits of radiotherapy after breast-conserving surgery: A propensity-score-matched cohort study.Breast Cancer Res.202325114910.1186/s13058‑023‑01747‑938066611
    [Google Scholar]
  12. QiY.J. SuG.H. YouC. ZhangX. XiaoY. JiangY.Z. ShaoZ.M. Radiomics in breast cancer: Current advances and future directions.Cell Rep. Med.20245910171910.1016/j.xcrm.2024.10171939293402
    [Google Scholar]
  13. FengZ. LiH. LiuQ. DuanJ. ZhouW. YuX. ChenQ. LiuZ. WangW. RongP. CT radiomics to predict macrotrabecular-massive subtype and immune status in hepatocellular carcinoma.Radiology20233071e22129110.1148/radiol.22129136511807
    [Google Scholar]
  14. ZhangY. XiaK. LiC. WeiB. ZhangB. Review of breast cancer pathologigcal image processing.BioMed Res. Int.202120211199476410.1155/2021/199476434595234
    [Google Scholar]
  15. ContiA. DuggentoA. IndovinaI. GuerrisiM. ToschiN. Radiomics in breast cancer classification and prediction.Semin. Cancer Biol.20217223825010.1016/j.semcancer.2020.04.00232371013
    [Google Scholar]
  16. YuY. HeZ. OuyangJ. TanY. ChenY. GuY. MaoL. RenW. WangJ. LinL. WuZ. LiuJ. OuQ. HuQ. LiA. ChenK. LiC. LuN. LiX. SuF. LiuQ. XieC. YaoH. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.EBioMedicine20216910346010.1016/j.ebiom.2021.10346034233259
    [Google Scholar]
  17. WitowskiJ. HeacockL. ReigB. KangS.K. LewinA. PysarenkoK. PatelS. SamreenN. RudnickiW. ŁuczyńskaE. PopielaT. MoyL. GerasK.J. Improving breast cancer diagnostics with deep learning for MRI.Sci. Transl. Med.202214664eabo480210.1126/scitranslmed.abo480236170446
    [Google Scholar]
  18. FowlerA.M. StrigelR.M. Clinical advances in PET–MRI for breast cancer.Lancet Oncol.2022231e32e4310.1016/S1470‑2045(21)00577‑534973230
    [Google Scholar]
  19. LiG. LiL. LiY. QianZ. WuF. HeY. JiangH. LiR. WangD. ZhaiY. WangZ. JiangT. ZhangJ. ZhangW. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas.Brain202214531151116110.1093/brain/awab34035136934
    [Google Scholar]
  20. MukhlifY.A. RamahaN.T.A. HameedA.A. SalmanM. YonD.K. FitriyaniN.L. SyafrudinM. LeeS.W. Ant colony and whale optimization algorithms aided by neural networks for optimum skin lesion diagnosis: A thorough review.Mathematics2024127104910.3390/math12071049
    [Google Scholar]
  21. LiL.L. SuQ.L. DengY.X. GuoW.W. LunH.M. HuQ. Contrast-enhanced ultrasound for the preoperative prediction of pathological characteristics in breast cancer.Front. Oncol.202414132071410.3389/fonc.2024.132071438487727
    [Google Scholar]
  22. UntchM. Banys-PaluchowskiM. BruckerS.Y. BudachW. DenkertC. DitschN. FaschingP.A. HaidingerR. HeilJ. JackischC. JanniW. KolbergH.C. KrugD. LoiblS. LüftnerD. van MackelenberghM. RadosaJ.C. ReimerT. WelslauM. WürstleinR. HarbeckN. HuoberJ. Treatment of early breast cancer.Geburtshilfe Frauenheilkd.20238391102111610.1055/a‑2121‑249537706057
    [Google Scholar]
  23. ZhangJ. ZhengY. LiL. WangR. JiangW. AiK. GanT. WangP. Combination of IVIM with DCE-MRI for diagnostic and prognostic evaluation of breast cancer.Magn. Reson. Imaging202411311020410.1016/j.mri.2024.07.00338971263
    [Google Scholar]
  24. BaiY. NiuL. SongL. DaiG. ZhangW. HeB. SanW. LiS. Uncovering the effect and mechanism of Jiawei Xiaoyao Wan in treating breast cancer complicated with depression based on network pharmacology and experimental analysis.Phytomedicine202412815542710.1016/j.phymed.2024.15542738513380
    [Google Scholar]
  25. CaiY. WangY. SuW. ZhouX. LuC. Angelica sinensis polysaccharide suppresses the Wnt/β-catenin-mediated malignant biological behaviors of breast cancer cells via the miR-3187-3p/PCDH10 axis.Biochem. Pharmacol.202422511629510.1016/j.bcp.2024.11629538762145
    [Google Scholar]
  26. HisM. GunterM.J. Keski-RahkonenP. RinaldiS. Application of metabolomics to epidemiologic studies of breast cancer: New perspectives for etiology and prevention.J. Clin. Oncol.202442110311510.1200/JCO.22.0275437944067
    [Google Scholar]
  27. TrapaniD. GinsburgO. FadeluT. LinN.U. HassettM. IlbawiA.M. AndersonB.O. CuriglianoG. Global challenges and policy solutions in breast cancer control.Cancer Treat. Rev.202210410233910.1016/j.ctrv.2022.10233935074727
    [Google Scholar]
  28. DercleL. LuL. SchwartzL.H. QianM. TejparS. EggletonP. ZhaoB. PiessevauxH. Radiomics response signature for identification of metastatic colorectal cancer sensitive to therapies targeting EGFR pathway.J. Natl. Cancer Inst.2020112990291210.1093/jnci/djaa01732016387
    [Google Scholar]
  29. KidoA. NishioM. MRI-based radiomics models for pretreatment risk stratification of endometrial cancer.Radiology2022305238738910.1148/radiol.22139835819329
    [Google Scholar]
  30. RamtohulT. DjerroudiL. LissavalidE. NhyC. RedonL. IkniL. DjelouahM. JournoG. MenetE. CabelL. MalhaireC. TardivonA. Multiparametric MRI and radiomics for the prediction of HER2-Zero, -Low, and -positive breast cancers.Radiology20233082e22264610.1148/radiol.22264637526540
    [Google Scholar]
  31. KudelaE. SamecM. KoklesovaL. LiskovaA. KubatkaP. KozubikE. RokosT. PribulovaT. GabonovaE. SmolarM. BiringerK. miRNA expression profiles in luminal A breast cancer—implications in biology, prognosis, and prediction of response to hormonal treatment.Int. J. Mol. Sci.20202120769110.3390/ijms2120769133080858
    [Google Scholar]
  32. GuoY. LiS. LiaoJ. GuoY. ShangY. WangY. WuQ. WuY. WangM. TanH. Clinical-radiomics nomogram based on the fat-suppressed T2 sequence for differentiating luminal and non-luminal breast cancer.Front. Oncol.202414145141410.3389/fonc.2024.145141439525617
    [Google Scholar]
  33. ZhengS. YangZ. DuG. ZhangY. JiangC. XuT. LiB. WangD. QiuY. LinD. ZhangX. ShenJ. Discrimination between HER2-overexpressing, -low-expressing, and -zero-expressing statuses in breast cancer using multiparametric MRI-based radiomics.Eur. Radiol.20243496132614410.1007/s00330‑024‑10641‑738363315
    [Google Scholar]
  34. SzepM. PinticanR. BocaB. PerjaA. DumaM. FeierD. FeticaB. EniuD. DudeaS.M. ChioreanA. Multiparametric MRI features of breast cancer molecular subtypes.Medicina (Kaunas)20225812171610.3390/medicina5812171636556918
    [Google Scholar]
  35. HamiltonE. ShastryM. ShillerS.M. RenR. Targeting HER2 heterogeneity in breast cancer.Cancer Treat. Rev.202110010228610.1016/j.ctrv.2021.10228634534820
    [Google Scholar]
  36. MarchiòC. AnnaratoneL. MarquesA. CasorzoL. BerrinoE. SapinoA. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond.Semin. Cancer Biol.20217212313510.1016/j.semcancer.2020.02.01632112814
    [Google Scholar]
  37. RenS. TanX. FuM.Z. RenS. WuX. ChenT. LathamP.S. LinP. ManY. FuS.W. Downregulation of miR-375 contributes to ERBB2-mediated VEGFA overexpression in esophageal cancer.J. Cancer202112237138714610.7150/jca.6383634729115
    [Google Scholar]
  38. PinkerK. BickelH. HelbichT.H. GruberS. DubskyP. PluschnigU. RudasM. Bago-HorvathZ. WeberM. TrattnigS. BognerW. Combined contrast-enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the “Breast Imaging Reporting and Data System” for multiparametric 3-T imaging of breast lesions.Eur. Radiol.20132371791180210.1007/s00330‑013‑2771‑823504036
    [Google Scholar]
  39. Boscolo BieloL. TrapaniD. NicolòE. ValenzaC. GuidiL. BelliC. KotteasE. MarraA. PratA. FuscoN. CriscitielloC. BursteinH.J. CuriglianoG. The evolving landscape of metastatic HER2-positive, hormone receptor-positive Breast Cancer.Cancer Treat. Rev.202412810276110.1016/j.ctrv.2024.10276138772169
    [Google Scholar]
  40. KunteS. AbrahamJ. MonteroA.J. Novel HER2–targeted therapies for HER2–positive metastatic breast cancer.Cancer2020126194278428810.1002/cncr.3310232721042
    [Google Scholar]
  41. LoiselleC.R. EbyP.R. DeMartiniW.B. PeacockS. BittnerN. LehmanC.D. KimJ.N. Dynamic contrast-enhanced MRI kinetics of invasive breast cancer: a potential prognostic marker for radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.20107651314131910.1016/j.ijrobp.2009.03.05319604652
    [Google Scholar]
  42. PratA. PinedaE. AdamoB. GalvánP. FernándezA. GabaL. DíezM. ViladotM. AranceA. MuñozM. Clinical implications of the intrinsic molecular subtypes of breast cancer.Breast201524Suppl. 2S26S3510.1016/j.breast.2015.07.00826253814
    [Google Scholar]
  43. ZhaoL GuC GanY ShaoL ChenH ZhuH Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J. Contr. Release.2020318115
    [Google Scholar]
  44. VermaA. SinghA. SinghM.P. NengrooM.A. SainiK.K. SatrusalS.R. KhanM.A. ChaturvediP. SinhaA. MeenaS. SinghA.K. DattaD. EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis.Nat. Commun.2022131734410.1038/s41467‑022‑35059‑x36446780
    [Google Scholar]
  45. AdradaB.E. MoseleyT.W. KapoorM.M. ScogginsM.E. PatelM.M. PerezF. NiaE.S. KhazaiL. ArribasE. RauchG.M. GuirguisM.S. Triple-negative breast cancer: Histopathologic features, genomics, and treatment.Radiographics20234310e23003410.1148/rg.23003437792593
    [Google Scholar]
  46. HuangY. WangX. CaoY. LiM. LiL. ChenH. TangS. LanX. JiangF. ZhangJ. Multiparametric MRI model to predict molecular subtypes of breast cancer using Shapley additive explanations interpretability analysis.Diagn. Interv. Imaging2024105519120510.1016/j.diii.2024.01.00438272773
    [Google Scholar]
  47. LiuY. YuT. Clinicopathological characteristics and prognosis of triple-negative breast cancer invasive ductal carcinoma with ductal carcinoma in situ.J. Cancer Res. Clin. Oncol.202314913111811119110.1007/s00432‑023‑04895‑937354223
    [Google Scholar]
  48. QinY. TangC. HuQ. YiJ. YinT. AiT. Assessment of prognostic factors and molecular subtypes of breast Cancer With a Continuous-Time Random-Walk MR diffusion model: Using whole tumor histogram analysis.J. Magn. Reson. Imaging20235819310510.1002/jmri.2847436251468
    [Google Scholar]
  49. AbidinZ.U. NaqviR.A. HaiderA. KimH.S. JeongD. LeeS.W. Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: A prospective survey.Front. Bioeng. Biotechnol.202412139280710.3389/fbioe.2024.139280739104626
    [Google Scholar]
  50. NaqviR.A. HaiderA. KimH.S. JeongD. LeeS.W. Transformative noise reduction: Leveraging a transformer-based deep network for medical image denoising.Mathematics20241215231310.3390/math12152313
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056411259251028093038
Loading
/content/journals/cmir/10.2174/0115734056411259251028093038
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test