Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Ultrasound is routinely used for thyroid nodule diagnosis, yet distinguishing benign from malignant TI-RADS category 4 nodules remains challenging. This study has integrated two-dimensional ultrasound, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) features via machine learning to improve diagnostic accuracy for these nodules.

Methods

A total of 117 TI-RADS 4 thyroid nodules from 108 patients were included and classified as benign or malignant based on pathological results. Two-dimensional ultrasound, CEUS, and SWE were compared. Predictive features were selected using LASSO regression. Feature importance was further validated using Random Forest, SVM, and XGBoost algorithms. A logistic regression model was constructed and visualized as a nomogram. Model performance was assessed using receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis (DCA).

Results

Malignant nodules exhibited significantly elevated serum FT3, FT4, FT3/FT4, TSH, and TI-RADS scores compared to benign lesions. Key imaging discriminators included unclear boundaries, aspect ratio ≥1, low internal echo, microcalcifications on ultrasound; enhancement degree, circumferential enhancement, and excretion on CEUS; and elevated SWE values (Emax, Emean, Esd, etc.) and altered CEUS quantitative parameters (PE, WiR, WoR, etc.) (all < 0.05). A nomogram integrating four optimal predictors, including Emax, FT4, TI-RADS, and ∆PE, demonstrated robust predictive performance upon validation by ROC, calibration, and DCA curve analysis.

Discussion

The nomogram incorporating Emax, FT4, TI-RADS, and ∆PE showed high predictive accuracy, particularly for papillary carcinoma in TI-RADS 4 nodules. Its applicability may, however, be constrained by the single-center retrospective design and limited pathological coverage.

Conclusion

The multimodal ultrasound-based machine learning model effectively predicted malignancy in TI-RADS category 4 thyroid nodules.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056404285251006113649
2025-01-01
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056404285.html?itemId=/content/journals/cmir/10.2174/0115734056404285251006113649&mimeType=html&fmt=ahah

References

  1. MulitaF AnjumF Thyroid Adenoma.In: StatPearls [Internet]Treasure Island (FL)StatPearls Publishing202532965923
    [Google Scholar]
  2. AlexanderE.K. CibasE.S. Diagnosis of thyroid nodules.Lancet Diabetes Endocrinol.202210753353910.1016/S2213‑8587(22)00101‑235752200
    [Google Scholar]
  3. Miranda-FilhoA. Lortet-TieulentJ. BrayF. CaoB. FranceschiS. VaccarellaS. Dal MasoL. Thyroid cancer incidence trends by histology in 25 countries: a population-based study.Lancet Diabetes Endocrinol.20219422523410.1016/S2213‑8587(21)00027‑933662333
    [Google Scholar]
  4. DuranteC. GraniG. LamartinaL. FilettiS. MandelS.J. CooperD.S. The diagnosis and management of thyroid nodules.JAMA2018319991492410.1001/jama.2018.089829509871
    [Google Scholar]
  5. TesslerF.N. MiddletonW.D. GrantE.G. HoangJ.K. BerlandL.L. TeefeyS.A. CronanJ.J. BelandM.D. DesserT.S. FratesM.C. HammersL.W. HamperU.M. LangerJ.E. ReadingC.C. ScouttL.M. StavrosA.T. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee.J. Am. Coll. Radiol.201714558759510.1016/j.jacr.2017.01.04628372962
    [Google Scholar]
  6. ChenZ. DuY. ChengL. ZhangY. ZhengS. LiR. ZhangW. ZhangW. HeW. Diagnostic performance of simplified TI-RADS for malignant thyroid nodules: comparison with 2017 ACR-TI-RADS and 2020 C-TI-RADS.Cancer Imaging20222214110.1186/s40644‑022‑00478‑y35978376
    [Google Scholar]
  7. AjmalS. Contrast-Enhanced ultrasonography: review and applications.Cureus2021139e1824334712527
    [Google Scholar]
  8. CuiQ. DaiL. LiJ. XueJ. Accuracy of CEUS-guided sentinel lymph node biopsy in early-stage breast cancer: a study review and meta-analysis.World J. Surg. Oncol.202018111210.1186/s12957‑020‑01890‑z32471428
    [Google Scholar]
  9. DietrichC.F. NolsøeC.P. BarrR.G. BerzigottiA. BurnsP.N. CantisaniV. ChammasM.C. ChaubalN. ChoiB.I. ClevertD.A. CuiX. DongY. D’OnofrioM. FowlkesJ.B. GiljaO.H. HuangP. IgneeA. JenssenC. KonoY. KudoM. LassauN. LeeW.J. LeeJ.Y. LiangP. LimA. LyshchikA. MeloniM.F. CorreasJ.M. MinamiY. MoriyasuF. NicolauC. PiscagliaF. SaftoiuA. SidhuP.S. SporeaI. TorzilliG. XieX. ZhengR. Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the Liver–Update 2020 WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS.Ultrasound Med. Biol.202046102579260410.1016/j.ultrasmedbio.2020.04.03032713788
    [Google Scholar]
  10. SorrentiS. DolcettiV. FresilliD. Del GaudioG. PaciniP. HuangP. CamponovoC. LeonciniA. D’AndreaV. PironiD. FrattaroliF. TrimboliP. RadzinaM. CantisaniV. The role of ceus in the evaluation of thyroid cancer: from diagnosis to local staging.J. Clin. Med.20211019455910.3390/jcm1019455934640574
    [Google Scholar]
  11. QiW.H. JinK. CaoL.L. PengM. HeN.A. ZhanX.L. YangY. GuoY.Y. CuiX.W. JiangF. Diagnostic performance of a new two-dimensional shear wave elastography expression using siemens ultrasound system combined with ACR TI-RADS for classification of benign and malignant thyroid nodules: A prospective multi-center study.Heliyon2023910e2047210.1016/j.heliyon.2023.e2047237790965
    [Google Scholar]
  12. GaoX.Q. MaY. PengX.S. WangL.L. LiH.X. ZhengX.L. LiuY. Diagnostic performance of C-TIRADS combined with SWE for the diagnosis of thyroid nodules.Front. Endocrinol.20221393930310.3389/fendo.2022.93930336147579
    [Google Scholar]
  13. Theodore ArmandT.P. NforK.A. KimJ.I. KimH.C. Applications of artificial intelligence, machine learning, and deep learning in nutrition: a systematic review.Nutrients2024167107310.3390/nu1607107338613106
    [Google Scholar]
  14. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑529777175
    [Google Scholar]
  15. ChanH.P. SamalaR.K. HadjiiskiL.M. ZhouC. Deep learning in medical image analysis.Adv. Exp. Med. Biol.2020121332110.1007/978‑3‑030‑33128‑3_132030660
    [Google Scholar]
  16. ChiJ. WaliaE. BabynP. WangJ. GrootG. EramianM. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network.J. Digit. Imaging201730447748610.1007/s10278‑017‑9997‑y28695342
    [Google Scholar]
  17. WenQ. WangZ. TraversoA. LiuY. XuR. FengY. QianL. A radiomics nomogram for the ultrasound-based evaluation of central cervical lymph node metastasis in papillary thyroid carcinoma.Front. Endocrinol.202213106443410.3389/fendo.2022.106443436531493
    [Google Scholar]
  18. WangJ. JiangJ. ZhangD. ZhangY. GuoL. JiangY. DuS. ZhouQ. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules.Eur. Radiol.20223232120212910.1007/s00330‑021‑08298‑734657970
    [Google Scholar]
  19. GuanQ. WangY. DuJ. QinY. LuH. XiangJ. WangF. Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study.Ann. Transl. Med.20197713710.21037/atm.2019.04.3431157258
    [Google Scholar]
  20. WanP. ChenF. LiuC. KongW. ZhangD. Hierarchical temporal attention network for thyroid nodule recognition using dynamic CEUS Imaging.IEEE Trans. Med. Imaging20214061646166010.1109/TMI.2021.306342133651687
    [Google Scholar]
  21. MuftiS.T. MolahR. The bethesda system for reporting thyroid cytopathology: a five-year retrospective review of one center experience.Int. J. Health Sci.20126215917310.12816/000599123579269
    [Google Scholar]
  22. MilevaM. StoilovskaB. JovanovskaA. UgrinskaA. PetrushevskaG. Kostadinova-KunovskaS. MiladinovaD. MajstorovV. Thyroid cancer detection rate and associated risk factors in patients with thyroid nodules classified as Bethesda category III.Radiol. Oncol.201852437037610.2478/raon‑2018‑003930265655
    [Google Scholar]
  23. ZhuH. YangY. WuS. ChenK. LuoH. HuangJ. Diagnostic performance of US-based FNAB criteria of the 2020 Chinese guideline for malignant thyroid nodules: comparison with the 2017 American College of Radiology guideline, the 2015 American Thyroid Association guideline, and the 2016 Korean Thyroid Association guideline.Quant. Imaging Med. Surg.20211183604361810.21037/qims‑20‑136534341735
    [Google Scholar]
  24. WangH.X. LuF. XuX.H. ZhouP. DuL.Y. ZhangY. DingS.S. ShiH. WangD. XuH.X. ZhangY.F. Diagnostic performance evaluation of practice guidelines, elastography and their combined results for thyroid nodules: a multicenter study.Ultrasound Med. Biol.20204681916192710.1016/j.ultrasmedbio.2020.03.03132451191
    [Google Scholar]
  25. WangB. OuX. YangJ. ZhangH. CuiX.W. DietrichC.F. YiA.J. Contrast-enhanced ultrasound and shear wave elastography in the diagnosis of ACR TI-RADS 4 and 5 category thyroid nodules coexisting with Hashimoto’s thyroiditis.Front. Oncol.202312102230510.3389/fonc.2022.102230536713579
    [Google Scholar]
  26. LiH.J. SuiG.Q. TengD.K. LinY.Q. WangH. Incorporation of CEUS and SWE parameters into a multivariate logistic regression model for the differential diagnosis of benign and malignant TI-RADS 4 thyroid nodules.Endocrine202383369169910.1007/s12020‑023‑03524‑237889469
    [Google Scholar]
  27. GuL.S. ZhangR. WangY. LiuX.M. MaF. WangJ.Y. SunX.Y. LiuM.J. WangB. ZouS.M. Characteristics of contrast-enhanced ultrasonography and strain elastography of locally advanced breast cancer.J. Thorac. Dis.201911125274528910.21037/jtd.2019.11.5232030245
    [Google Scholar]
  28. HorvathE. MajlisS. RossiR. FrancoC. NiedmannJ.P. CastroA. DominguezM. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management.J. Clin. Endocrinol. Metab.20099451748175110.1210/jc.2008‑172419276237
    [Google Scholar]
  29. HuM.J. ZhangC. LiangL. WangS.Y. ZhengX.C. ZhangQ. JiangC.X. ZhongQ. HuangF. Fasting serum glucose, thyroid‐stimulating hormone, and thyroid hormones and risk of papillary thyroid cancer: A case‐control study.Head Neck20194172277228410.1002/hed.2569130759328
    [Google Scholar]
  30. ZhouJ. CaoL. ChenZ. Differentiation of benign thyroid nodules from malignant thyroid nodules through miR-205-5p and thyroid-stimulating hormone receptor mRNA.Hormones202120357158010.1007/s42000‑021‑00286‑233788150
    [Google Scholar]
  31. DeurdulianC. GrantE.G. TchelepiH. LattermanP.T. PaluchJ.T. ChopraS. KazmierskiB. KahnJ.A. MalhiH. CenS.Y. Assessment of fibrosis in liver transplant recipients: diagnostic performance of shear wave elastography (SWE) and correlation of swe findings with biopsy results.AJR Am. J. Roentgenol.20192136W264W27110.2214/AJR.19.2116031573849
    [Google Scholar]
  32. YiL. QiongW. YanW. YoubenF. BingH. Correlation between ultrasound elastography and histologic characteristics of papillary thyroid carcinoma.Sci. Rep.2017714504210.1038/srep4504228327620
    [Google Scholar]
  33. ZhangW.B. DengW.F. MaoL. HeB.L. LiuH. ChenJ. LiuY. QiT.Y. Comparison of diagnostic value of SWE, FNA and BRAF gene detection in ACR TI-RADS 4 and 5 thyroid nodules.Clin. Hemorheol. Microcirc.2022811132110.3233/CH‑21128035068450
    [Google Scholar]
  34. PetersenM. SchenkeS.A. FirlaJ. CronerR.S. KreisslM.C. Shear wave elastography and thyroid imaging reporting and data system (TIRADS) for the risk stratification of thyroid nodules—results of a prospective study.Diagnostics202212110910.3390/diagnostics1201010935054275
    [Google Scholar]
  35. ZhangH.P. BaiM. GuJ.Y. HeY.Q. QiaoX.H. DuL.F. Value of contrast-enhanced ultrasound in the differential diagnosis of gallbladder lesion.World J. Gastroenterol.201824674475110.3748/wjg.v24.i6.74429456413
    [Google Scholar]
  36. JungE.M. WeberM.A. WiesingerI. Contrast-enhanced ultrasound perfusion imaging of organs.Radiologe202161S1Suppl. 1192810.1007/s00117‑021‑00891‑734378067
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056404285251006113649
Loading
/content/journals/cmir/10.2174/0115734056404285251006113649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test