Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction:

We developed and validated a novel CT-based radiomics nomogram aimed at improving the differentiation between checkpoint inhibitor-related pneumonitis (CIP) and COVID-19 pneumonia, addressing the persistent clinical uncertainty in pneumonia diagnosis.

Methods:

A total of 97 patients were enrolled. CT image segmentation was performed, extracting 1,688 radiomics features. Feature selection was conducted using variance thresholding, the least absolute shrinkage and selection operator (LASSO) regression, and the Select K Best methods, resulting in the identification of 33 optimal features. Several classification models (K-Nearest Neighbors [KNN], Support Vector Machine [SVM], and Stochastic Gradient Descent [SGD]) were trained and validated using a 70:30 split and fivefold cross-validation. A radiomics nomogram was subsequently developed, incorporating the radiomics signature (Rad-score) alongside clinical factors. It was assessed based on area under the curve (AUC), sensitivity, specificity, and decision curve analysis (DCA).

Results:

The SVM classifier exhibited the highest performance, achieving an AUC of 0.988 in the training cohort and 0.945 in the validation cohort. The constructed radiomics nomogram demonstrated a markedly improved predictive accuracy compared to the clinical model alone (AUC: 0.853 vs. 0.810 in training; 0.932 vs. 0.924 in validation). Calibration curves indicated a strong alignment of the model with observed outcomes, while DCA confirmed a greater net benefit across various threshold probabilities.

Discussion:

A radiomics nomogram integrated with radiomics signatures, demographics, and CT findings facilitates CIP differentiation from COVID-19, improving diagnostic efficacy.

Conclusion:

Radiomics acts as a potential modality to supplement conventional medical examinations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056399950251003114150
2025-10-21
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056399950.html?itemId=/content/journals/cmir/10.2174/0115734056399950251003114150&mimeType=html&fmt=ahah

References

  1. von ItzsteinM.S. KhanS. GerberD.E. Investigational biomarkers for checkpoint inhibitor immune-related adverse event prediction and diagnosis.Clin. Chem.202066677979310.1093/clinchem/hvaa08132363387
    [Google Scholar]
  2. GranierC. De GuillebonE. BlancC. RousselH. BadoualC. ColinE. SaldmannA. GeyA. OudardS. TartourE. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer.ESMO Open201722e00021310.1136/esmoopen‑2017‑00021328761757
    [Google Scholar]
  3. NaidooJ. WangX. WooK.M. IyribozT. HalpennyD. CunninghamJ. ChaftJ.E. SegalN.H. CallahanM.K. LesokhinA.M. RosenbergJ. VossM.H. RudinC.M. RizviH. HouX. RodriguezK. AlbanoM. GordonR.A. LeducC. RekhtmanN. HarrisB. MenziesA.M. GuminskiA.D. CarlinoM.S. KongB.Y. WolchokJ.D. PostowM.A. LongG.V. HellmannM.D. Pneumonitis in patients treated with anti–programmed death-1/programmed death ligand 1 therapy.J. Clin. Oncol.201735770971710.1200/JCO.2016.68.200527646942
    [Google Scholar]
  4. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.2173135736631
    [Google Scholar]
  5. ZhaiX. ZhangJ. TianY. LiJ. JingW. GuoH. ZhuH. The mechanism and risk factors for immune checkpoint inhibitor pneumonitis in non-small cell lung cancer patients.Cancer Biol. Med.202017359961110.20892/j.issn.2095‑3941.2020.010232944393
    [Google Scholar]
  6. FauciA.S. LaneH.C. RedfieldR.R. Covid-19 - Navigating the uncharted.N. Engl. J. Med.2020382131268126910.1056/NEJMe200238732109011
    [Google Scholar]
  7. ChungM. BernheimA. MeiX. ZhangN. HuangM. ZengX. CuiJ. XuW. YangY. FayadZ.A. JacobiA. LiK. LiS. ShanH. CT imaging features of 2019 novel coronavirus (2019-nCoV).Radiology2020295120220710.1148/radiol.202020023032017661
    [Google Scholar]
  8. AlsharifW. QurashiA. Effectiveness of COVID-19 diagnosis and management tools: A review.Radiography202127268268710.1016/j.radi.2020.09.01033008761
    [Google Scholar]
  9. SalvatoreC. RobertaF. AngelaL. CesareP. AlfredoC. GiulianoG. GiulioL. GiulianaG. MariaR.G. PaolaB.M. FabrizioU. RobertaG. BeatriceF. VittorioM. Clinical and laboratory data, radiological structured report findings and quantitative evaluation of lung involvement on baseline chest CT in COVID-19 patients to predict prognosis.Radiol. Med.20211261293910.1007/s11547‑020‑01293‑w33047295
    [Google Scholar]
  10. BrahmerJ.R. LacchettiC. ThompsonJ.A. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice guideline summary.J. Oncol. Pract.201814424724910.1200/JOP.18.0000529517954
    [Google Scholar]
  11. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  12. BeigN. KhorramiM. AlilouM. PrasannaP. BramanN. OroojiM. RakshitS. BeraK. RajiahP. GinsbergJ. DonatelliC. ThawaniR. YangM. JaconoF. TiwariP. VelchetiV. GilkesonR. LindenP. MadabhushiA. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas.Radiology2019290378379210.1148/radiol.201818091030561278
    [Google Scholar]
  13. JiangY. JinC. YuH. WuJ. ChenC. YuanQ. HuangW. HuY. XuY. ZhouZ. FisherG.A. LiG. LiR. Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer.Ann. Surg.20212746e1153e116110.1097/SLA.000000000000377831913871
    [Google Scholar]
  14. KhorramiM. JainP. BeraK. AlilouM. ThawaniR. PatilP. AhmadU. MurthyS. StephansK. FuP. VelchetiV. MadabhushiA. Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features.Lung Cancer20191351910.1016/j.lungcan.2019.06.02031446979
    [Google Scholar]
  15. SunR. LimkinE.J. VakalopoulouM. DercleL. ChampiatS. HanS.R. VerlingueL. BrandaoD. LanciaA. AmmariS. HollebecqueA. ScoazecJ.Y. MarabelleA. MassardC. SoriaJ.C. RobertC. ParagiosN. DeutschE. FertéC. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study.Lancet Oncol.20181991180119110.1016/S1470‑2045(18)30413‑330120041
    [Google Scholar]
  16. QiuQ. XingL. WangY. FengA. WenQ. Development and validation of a radiomics nomogram using computed tomography for differentiating immune checkpoint inhibitor-related pneumonitis from radiation pneumonitis for patients with non-small cell lung cancer.Front. Immunol.20221387084210.3389/fimmu.2022.87084235558076
    [Google Scholar]
  17. DuanL. ZhangL. LuG. GuoL. DuanS. ZhouC. A CT-based radiomics model for prediction of prognosis in patients with novel coronavirus disease (COVID-19) pneumonia: A preliminary study.Diagnostics2023138147910.3390/diagnostics1308147937189580
    [Google Scholar]
  18. YangN. LiuF. LiC. XiaoW. XieS. YuanS. ZuoW. MaX. JiangG. Diagnostic classification of coronavirus disease 2019 (COVID-19) and other pneumonias using radiomics features in CT chest images.Sci. Rep.20211111788510.1038/s41598‑021‑97497‑934504246
    [Google Scholar]
  19. NobashiT.W. NishimotoY. KawataY. YutaniH. NakamuraM. TsujiY. YoshidaA. SugimotoA. YamamotoT. AlamI.S. NomaS. Clinical and radiological features of immune checkpoint inhibitor-related pneumonitis in lung cancer and non-lung cancers.Br. J. Radiol.20209311152020040910.1259/bjr.2020040932783627
    [Google Scholar]
  20. JeongY.J. WiY.M. ParkH. LeeJ.E. KimS.H. LeeK.S. Current and emerging knowledge in COVID-19.Radiology20233062e22246210.1148/radiol.22246236625747
    [Google Scholar]
  21. ChenC. GengQ. SongG. ZhangQ. WangY. SunD. ZengQ. DaiZ. WangG. A comprehensive nomogram combining CT-based radiomics with clinical features for differentiation of benign and malignant lung subcentimeter solid nodules.Front. Oncol.202313106636010.3389/fonc.2023.106636037007065
    [Google Scholar]
  22. LambinP. Rios-VelazquezE. LeijenaarR. CarvalhoS. van StiphoutR.G.P.M. GrantonP. ZegersC.M.L. GilliesR. BoellardR. DekkerA. AertsH.J.W.L. Radiomics: Extracting more information from medical images using advanced feature analysis.Eur. J. Cancer201248444144610.1016/j.ejca.2011.11.03622257792
    [Google Scholar]
  23. BektasC.T. KocakB. YardimciA.H. TurkcanogluM.H. YucetasU. KocaS.B. ErdimC. KilickesmezO. Clear cell renal cell carcinoma: Machine learning-based quantitative computed tomography texture analysis for prediction of fuhrman nuclear grade.Eur. Radiol.20192931153116310.1007/s00330‑018‑5698‑230167812
    [Google Scholar]
  24. ShuJ. WenD. XiY. XiaY. CaiZ. XuW. MengX. LiuB. YinH. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.Eur. J. Radiol.201912110873810.1016/j.ejrad.2019.10873831756634
    [Google Scholar]
  25. BersanelliM. Controversies about COVID-19 and anticancer treatment with immune checkpoint inhibitors.Immunotherapy202012526927310.2217/imt‑2020‑006732212881
    [Google Scholar]
  26. O’ NeillS.B. ByrneD. MüllerN.L. JalalS. ParkerW. NicolaouS. BilawichA.M. Radiological Society of North America (RSNA) Expert consensus statement related to chest CT findings in COVID-19 versus CO-RADS: Comparison of reporting system performance among chest radiologists and end-user preference.Can. Assoc. Radiol. J.202172480681310.1177/084653712096891933138634
    [Google Scholar]
  27. ChenX. SheikhK. NakajimaE. LinC.T. LeeJ. HuC. HalesR.K. FordeP.M. NaidooJ. VoongK.R. Radiation versus immune checkpoint inhibitor associated pneumonitis: Distinct radiologic morphologies.Oncologist20212610e1822e183210.1002/onco.1390034251728
    [Google Scholar]
  28. WangY. DongC. HuY. LiC. RenQ. ZhangX. ShiH. ZhouM. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: A longitudinal study.Radiology20202962E55E6410.1148/radiol.202020084332191587
    [Google Scholar]
  29. NaidooJ. PageD.B. LiB.T. ConnellL.C. SchindlerK. LacoutureM.E. PostowM.A. WolchokJ.D. Corrections to “Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies”.Ann. Oncol.2016277136210.1093/annonc/mdw14127072927
    [Google Scholar]
  30. BelfioreM.P. UrraroF. GrassiR. GiacobbeG. PatelliG. CappabiancaS. ReginelliA. Artificial intelligence to codify lung CT in Covid-19 patients.Radiol. Med.2020125550050410.1007/s11547‑020‑01195‑x32367319
    [Google Scholar]
  31. WangH. WangL. LeeE.H. ZhengJ. ZhangW. HalabiS. LiuC. DengK. SongJ. YeomK.W. Decoding COVID-19 pneumonia: Comparison of deep learning and radiomics CT image signatures.Eur. J. Nucl. Med. Mol. Imaging20214851478148610.1007/s00259‑020‑05075‑433094432
    [Google Scholar]
  32. KolossváryM. KellermayerM. MerkelyB. Maurovich-HorvatP. Cardiac computed tomography radiomics.J. Thorac. Imaging2018331263410.1097/RTI.000000000000026828346329
    [Google Scholar]
  33. ChengZ. QinL. CaoQ. DaiJ. PanA. YangW. GaoY. ChenL. YanF. Quantitative computed tomography of the coronavirus disease 2019 (COVID-19) pneumonia.Radiol. Infect. Dis.202072556110.1016/j.jrid.2020.04.00432346594
    [Google Scholar]
  34. KermanyD.S. GoldbaumM. CaiW. ValentimC.C.S. LiangH. BaxterS.L. McKeownA. YangG. WuX. YanF. DongJ. PrasadhaM.K. PeiJ. TingM.Y.L. ZhuJ. LiC. HewettS. DongJ. ZiyarI. ShiA. ZhangR. ZhengL. HouR. ShiW. FuX. DuanY. HuuV.A.N. WenC. ZhangE.D. ZhangC.L. LiO. WangX. SingerM.A. SunX. XuJ. TafreshiA. LewisM.A. XiaH. ZhangK. Identifying medical diagnoses and treatable diseases by image-based deep learning.Cell2018172511221131.e910.1016/j.cell.2018.02.01029474911
    [Google Scholar]
  35. MallioC.A. NapolitanoA. CastielloG. GiordanoF.M. D’AlessioP. IozzinoM. SunY. AngelettiS. RussanoM. SantiniD. ToniniG. ZobelB.B. VincenziB. QuattrocchiC.C. Deep learning algorithm trained with COVID-19 pneumonia also identifies immune checkpoint inhibitor therapy-related pneumonitis.Cancers202113465210.3390/cancers1304065233562011
    [Google Scholar]
  36. KorotcovA. TkachenkoV. RussoD.P. EkinsS. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets.Mol. Pharm.201714124462447510.1021/acs.molpharmaceut.7b0057829096442
    [Google Scholar]
  37. ChengJ. PanY. HuangW. HuangK. CuiY. HongW. WangL. NiD. TanP. Differentiation between immune checkpoint inhibitor‐related and radiation pneumonitis in lung cancer by CT radiomics and machine learning.Med. Phys.20224931547155810.1002/mp.1545135026041
    [Google Scholar]
  38. ChenY. XuW. LiY.L. LiuW. SahB.K. WangL. XuZ. WelsM. ZhengY. YanM. ZhangH. MaQ. ZhuZ. LiC. CT-based radiomics showing generalization to predict tumor regression grade for advanced gastric cancer treated with neoadjuvant chemotherapy.Front. Oncol.20221275886310.3389/fonc.2022.75886335280802
    [Google Scholar]
  39. WuZ. ChenQ. QuL. LiM. WangL. MirM.C. CarbonaraU. PandolfoS.D. BlackP.C. PaulA.K. Di LorenzoG. PorpigliaF. MariA. NecchiA. RouprêtM. PsutkaS.P. AutorinoR. Adverse events of immune checkpoint inhibitors therapy for urologic cancer patients in clinical trials: A collaborative systematic review and meta-analysis.Eur. Urol.202281441442510.1016/j.eururo.2022.01.02835101302
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056399950251003114150
Loading
/content/journals/cmir/10.2174/0115734056399950251003114150
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test