Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aims to evaluate the potential of Dual-Energy Computed Tomography (DECT)-based radiomics in preoperative risk stratification for the prediction of initial recurrence in Papillary Thyroid Carcinoma (PTC).

Methods

The retrospective analysis included 236 PTC cases (165 in the training cohort, 71 in the validation cohort) collected between July 2020 and June 2021. Tumor segmentation was carried out in both intratumoral and peritumoral areas (1 mm inner and outer to the tumor boundary). Three region-specific rad-scores were developed (rad-score [VOIwhole], rad-score [VOIouter layer], and rad-score [VOIinner layer]), respectively. Three radiomics models incorporating these rad-scores and additional risk factors were compared to a clinical model alone. The optimal radiomics model was presented as a nomogram.

Results

Rad-scores from peritumoral regions (VOIouter layer and VOIinner layer) outperformed the intratumoral rad-score (VOIwhole). All radiomics models surpassed the clinical model, with peritumoral-based models (radiomics models 2 and 3) outperforming the intratumoral-based model (radiomics model 1). The top-performing nomogram, which included tumor size, tumor site, and rad-score (VOIinner layer), achieved an Area Under the Curve (AUC) of 0.877 in the training cohort and 0.876 in the validation cohort. The nomogram demonstrated good calibration, clinical utility, and stability.

Discussion

DECT-based intratumoral and peritumoral radiomics advance PTC initial recurrence risk prediction, providing clinical radiology with precise predictive tools. Further work is needed to refine the model and enhance its clinical application.

Conclusion

Radiomics analysis of DECT, particularly in peritumoral regions, offers valuable predictive information for assessing the risk of initial recurrence in PTC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056402179250813050300
2025-08-21
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056402179.html?itemId=/content/journals/cmir/10.2174/0115734056402179250813050300&mimeType=html&fmt=ahah

References

  1. HaugenB.R. AlexanderE.K. BibleK.C. DohertyG.M. MandelS.J. NikiforovY.E. PaciniF. RandolphG.W. SawkaA.M. SchlumbergerM. SchuffK.G. ShermanS.I. SosaJ.A. StewardD.L. TuttleR.M. WartofskyL. 2015 american thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.Thyroid2016261113310.1089/thy.2015.002026462967
    [Google Scholar]
  2. TuttleR.M. AlzahraniA.S. Risk stratification in differentiated thyroid cancer: From detection to final follow-up.J. Clin. Endocrinol. Metab.201910494087410010.1210/jc.2019‑0017730874735
    [Google Scholar]
  3. XuS. HuangH. QianJ. LiuY. HuangY. WangX. LiuS. XuZ. LiuJ. Prevalence of hashimoto thyroiditis in adults with papillary thyroid cancer and its association with cancer recurrence and outcomes.JAMA Netw. Open202147211852610.1001/jamanetworkopen.2021.1852634313737
    [Google Scholar]
  4. GajowiecA. ChromikA. FurgaK. SkuzaA. Gąsior-PerczakD. WalczykA. PałygaI. TrybekT. MikinaE. SzymonekM. Gadawska-JuszczykK. KuchareczkoA. SuligowskaA. JaskulskiJ. OrłowskiP. ChrapekM. GóźdźS. KowalskaA. Is male sex a prognostic factor in papillary thyroid cancer?J. Clin. Med.20211011243810.3390/jcm1011243834072690
    [Google Scholar]
  5. ChatchomchuanW. ThewjitcharoenY. KarndumriK. PorramatikulS. KrittiyawongS. WanothayarojE. VongterapakS. ButadejS. VeerasomboonsinV. KanchanapitakA. RajatanavinR. HimathongkamT. Recurrence factors and characteristic trends of papillary thyroid cancer over three decades.Int. J. Endocrinol.202120211710.1155/2021/998975734054949
    [Google Scholar]
  6. KuoC.Y. YangP.S. ChienM.N. ChengS.P. Preoperative factors associated with extrathyroidal extension in papillary thyroid cancer.Eur. Thyroid J.20209525626210.1159/00050647433088794
    [Google Scholar]
  7. KimS.Y. KwakJ.Y. KimE.K. YoonJ.H. MoonH.J. Association of preoperative us features and recurrence in patients with classic papillary thyroid carcinoma.Radiology2015277257458310.1148/radiol.201514247025955580
    [Google Scholar]
  8. NamS.Y. ShinJ.H. HanB.K. KoE.Y. KoE.S. HahnS.Y. ChungJ.H. Preoperative ultrasonographic features of papillary thyroid carcinoma predict biological behavior.J. Clin. Endocrinol. Metab.20139841476148210.1210/jc.2012‑407223463652
    [Google Scholar]
  9. MayerhoeferM.E. MaterkaA. LangsG. HäggströmI. SzczypińskiP. GibbsP. CookG. Introduction to radiomics.J. Nucl. Med.202061448849510.2967/jnumed.118.22289332060219
    [Google Scholar]
  10. TepeM. SevinE. InanI. AktanA. AyazM. Ibrahim AliH. SenturkS. Utilizing CT and MRI in assessing peritumoral neovascularization in renal cell carcinoma: A comprehensive analysis of histological subtypes and tumor characteristics by imaging.Curr. Med. Imaging2024201573405630342310.2174/011573405630342324111807451939757608
    [Google Scholar]
  11. O’ConnorJ.P.B. RoseC.J. WatertonJ.C. CaranoR.A.D. ParkerG.J.M. JacksonA. Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome.Clin. Cancer Res.201521224925710.1158/1078‑0432.CCR‑14‑099025421725
    [Google Scholar]
  12. AlabousiM. AlabousiA. AdhamS. PozdnyakovA. RamadanS. ChaudhariH. YoungJ.E.M. GuptaM. HarishS. Diagnostic test accuracy of ultrasonography vs computed tomography for papillary thyroid cancer cervical lymph node metastasis.JAMA Otolaryngol. Head Neck Surg.2022148210711810.1001/jamaoto.2021.338734817554
    [Google Scholar]
  13. LeeJ.H. HaE.J. KimD. JungY.J. HeoS. JangY. AnS.H. LeeK. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: External validation and clinical utility for resident training.Eur. Radiol.20203063066307210.1007/s00330‑019‑06652‑432065285
    [Google Scholar]
  14. YuJ. DengY. LiuT. ZhouJ. JiaX. XiaoT. ZhouS. LiJ. GuoY. WangY. ZhouJ. ChangC. Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics.Nat. Commun.2020111480710.1038/s41467‑020‑18497‑332968067
    [Google Scholar]
  15. YuP. WuX. LiJ. MaoN. ZhangH. ZhengG. HanX. DongL. CheK. WangQ. LiG. MouY. SongX. Extrathyroidal extension prediction of papillary thyroid cancer with computed tomography based radiomics nomogram: A multicenter study.Front. Endocrinol.20221387439610.3389/fendo.2022.87439635721715
    [Google Scholar]
  16. MengXW PiYW WangGL QiSN ZhangGH ChengYX The relationship between quantitative parameters of dual-energy CT and HIF-1α expression in non-small cell lung cancer.Curr. Med. Imaging20242010.2174/0115734056271811231129105859
    [Google Scholar]
  17. HamidS. NasirM.U. SoA. AndrewsG. NicolaouS. QamarS.R. Clinical applications of dual-energy CT.Korean J. Radiol.202122697098210.3348/kjr.2020.099633856133
    [Google Scholar]
  18. AgrawalM.D. PinhoD.F. KulkarniN.M. HahnP.F. GuimaraesA.R. SahaniD.V. Oncologic applications of dual-energy CT in the abdomen.Radiographics201434358961210.1148/rg.34313504124819783
    [Google Scholar]
  19. ZhouY. SuG.Y. HuH. TaoX.W. GeY.Q. SiY. ShenM.P. XuX.Q. WuF.Y. Radiomics from primary tumor on dual-energy CT derived iodine maps can predict cervical lymph node metastasis in papillary thyroid cancer.Acad. Radiol.202229Suppl. 3S222S23110.1016/j.acra.2021.06.01434366279
    [Google Scholar]
  20. XuX.Q. ZhouY. SuG.Y. TaoX.W. GeY.Q. SiY. ShenM.P. WuF.Y. Iodine maps from dual-energy CT to predict extrathyroidal extension and recurrence in papillary thyroid cancer based on a radiomics approach.AJNR Am. J. Neuroradiol.202243574875510.3174/ajnr.A748435422420
    [Google Scholar]
  21. XuX. ZhangH.L. LiuQ.P. SunS.W. ZhangJ. ZhuF.P. YangG. YanX. ZhangY.D. LiuX.S. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma.J. Hepatol.20197061133114410.1016/j.jhep.2019.02.02330876945
    [Google Scholar]
  22. HuY. XieC. YangH. HoJ.W.K. WenJ. HanL. ChiuK.W.H. FuJ. VardhanabhutiV. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma.JAMA Netw. Open202039201592710.1001/jamanetworkopen.2020.1592732910196
    [Google Scholar]
  23. ZhouY. GuH.L. ZhangX.L. TianZ.F. XuX.Q. TangW.W. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer.Eur. Radiol.20223242540255110.1007/s00330‑021‑08326‑634642807
    [Google Scholar]
  24. DewaguetJ. CopinM.C. DuhamelA. FaivreJ.B. DekenV. SedlmairM. FlohrT. SchmidtB. CortotA. WasielewskiE. RemyJ. Remy-JardinM. Dual-energy CT perfusion of invasive tumor front in non–small cell lung cancers.Radiology2022302244845610.1148/radiol.202121060034783594
    [Google Scholar]
  25. WelsM.G. LadesF. MuehlbergA. SuehlingM. General purpose radiomics for multi-modal clinical research.Proc. SPIE201915010.1117/12.2511856
    [Google Scholar]
  26. MoltzJ.H. BornemannL. KuhnigkJ.M. DickenV. PeitgenE. MeierS. BolteH. FabelM. BauknechtH-C. HittingerM. KießlingA. PuskenM. PeitgenH-O. Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans.IEEE J. Sel. Top. Signal Process.20093112213410.1109/JSTSP.2008.2011107
    [Google Scholar]
  27. van GriethuysenJ.J.M. FedorovA. ParmarC. HosnyA. AucoinN. NarayanV. Beets-TanR.G.H. Fillion-RobinJ.C. PieperS. AertsH.J.W.L. Computational radiomics system to decode the radiographic phenotype.Cancer Res.20177721e104e10710.1158/0008‑5472.CAN‑17‑033929092951
    [Google Scholar]
  28. SongY. ZhangJ. ZhangY. HouY. YanX. WangY. ZhouM. YaoY. YangG. FeAture explorer (FAE): A tool for developing and comparing radiomics models.PLoS One2020158023758710.1371/journal.pone.023758732804986
    [Google Scholar]
  29. UmirzakovaS. MuksimovaS. BaltayevJ. ChoY.I. Force map-enhanced segmentation of a lightweight model for the early detection of cervical cancer.Diagnostics202515551310.3390/diagnostics1505051340075761
    [Google Scholar]
  30. ZhangZ. Variable selection with stepwise and best subset approaches.Ann. Transl. Med.20164713610.21037/atm.2016.03.3527162786
    [Google Scholar]
  31. O’brienR.M. A caution regarding rules of thumb for variance inflation factors.Qual. Quant.200741567369010.1007/s11135‑006‑9018‑6
    [Google Scholar]
  32. KramerA.A. ZimmermanJ.E. Assessing the calibration of mortality benchmarks in critical care: The Hosmer-Lemeshow test revisited.Crit. Care Med.20073592052205610.1097/01.CCM.0000275267.64078.B017568333
    [Google Scholar]
  33. FitzgeraldM. SavilleB.R. LewisR.J. Decision curve analysis.JAMA2015313440941010.1001/jama.2015.3725626037
    [Google Scholar]
  34. XuH. WuW. ZhaoY. LiuZ. BaoD. LiL. LinM. ZhangY. ZhaoX. LuoD. Analysis of preoperative computed tomography radiomics and clinical factors for predicting postsurgical recurrence of papillary thyroid carcinoma.Cancer Imaging202323111810.1186/s40644‑023‑00629‑938098119
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056402179250813050300
Loading
/content/journals/cmir/10.2174/0115734056402179250813050300
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test