Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Image enhancement of the Hypoxic-Ischemic Encephalopathy (HIE) lesion region in neonatal brain MR images is a challenging task due to the diffuse (., multi-focal) nature, small size, and low contrast of the lesions. Classifying the stages of HIE is also difficult because of the unclear boundaries and edges of the lesions, which are dispersed throughout the brain. Moreover, unclear boundaries and edges are due to chemical shifts, partial volume artifacts, and motion artifacts. Further, voxels may reflect signals from adjacent tissues. Existing algorithms perform poorly in HIE lesion enhancement due to artifacts, voxels, and the diffuse nature of the lesion.

Methods

In this paper, we propose a Rough Neural Network and Anti-Homomorphic Filter (RNN-AHF) framework for the enhancement of the HIE lesion region.

Results

The RNN-AHF framework reduces the pixel dimensionality of the feature space, eliminates unnecessary pixels, and preserves essential pixels for lesion enhancement.

Discussion

The RNN efficiently learns and identifies pixel patterns and facilitates adaptive enhancement based on different weights in the neural network. The proposed RNN-AHF framework operates using optimized neural weights and an optimized training function. The hybridization of optimized weights and the training function enhances the lesion region with high contrast while preserving the boundaries and edges.

Conclusion

The proposed RNN-AHF framework achieves a lesion image enhancement and classification accuracy of approximately 93.5%, which is better than traditional algorithms.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056396299250506075133
2025-05-29
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056396299.html?itemId=/content/journals/cmir/10.2174/0115734056396299250506075133&mimeType=html&fmt=ahah

References

  1. GaminiS. KumarS.S. Homomorphic filtering for the image enhancement based on fractional-order derivative and genetic algorithm.Comput. Electr. Eng.202310610856610.1016/j.compeleceng.2022.108566
    [Google Scholar]
  2. Al SobbahiR. TekliJ. Low-Light Homomorphic Filtering Network for integrating image enhancement and classification.Signal Process. Image Commun.202210011652710.1016/j.image.2021.116527
    [Google Scholar]
  3. YinT.W. SubaramaniamK.A.P. ShibghatullahA.S.B. MansorN.F. Enhancement of low-light image enhancement using homomorphic filtering, unsharp masking and gamma correction.Int. J. Adv. Comput. Sci. Appl.202213855256010.14569/IJACSA.2022.0130864
    [Google Scholar]
  4. HuY. XuC. LiZ. LeiF. FengB. ChuL. NieC. WangD. Detail enhancement multi-exposure image fusion based on homomorphic filtering.Electronics2022118121110.3390/electronics11081211
    [Google Scholar]
  5. Yi-Ting HanY-T.H. Yi-Ting HanG-J.L. Guo-Jun LinL-J.Z. Liang-Jun ZhaoX-L.T. Xiao-Lin TangY.H. Ye HuangH.J. An improved homomorphic filtering algorithm for face image preprocessing.J. Comput.202132606608210.53106/199115992021123206006
    [Google Scholar]
  6. YuganderP. TejaswiniC.H. MeenakshiJ. MR Image enhancement using Adapted weighted mean filtering and homomorphic filtering.Elsevier-International Conference on Computational Intelligence and Data Science167202067768510.1016/j.procs.2020.03.334
    [Google Scholar]
  7. WanA.M. WanK. HanizaY. IbrahimZ. ShahrimanA.B. RazlanZ.M. Image correction based on homomorphic filtering approaches: A study.2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA)Kuching, Malaysia, 15-17 August 2018, pp. 1-5.10.1109/ICASSDA.2018.8477634
    [Google Scholar]
  8. TaoL. ZhuC. XiangG. LiY. JiaH. XieX. LLCNN: A conventional neural network for low-light image enhancement.2017 IEEE Visual Communications and Image Processing (VCIP)St. Petersburg, FL, USA, 10-13 December 2017, pp. 1-4.10.1109/VCIP.2017.8305143
    [Google Scholar]
  9. AgarwalT.K. TiwariM. LambaS.S. Modified histogram based contrast enhancement using homomorphic filtering for medical images.2014 IEEE International Advance Computing Conference (IACC)Gurgaon, India, 21-22 February 2014, pp. 964-968.10.1109/IAdCC.2014.6779453
    [Google Scholar]
  10. OhJ. HwangH. Feature enhancement of medical images using morphology-based homomorphic filter and differential evolution algorithm.Int. J. Control. Autom. Syst.20108485786110.1007/s12555‑010‑0418‑y
    [Google Scholar]
  11. NnolimU. LeeP. Homomorphic Filtering of colour images using a spatial filter kernel in the HSI colour space.IEEE International Instrumentation and Measurement Technology ConferenceVictoria, BC, Canada, 12-15 May 2008, pp. 1738-1743.10.1109/IMTC.2008.4547325
    [Google Scholar]
  12. ZaheeruddinS. SuganthiK. Image contrast enhancement by homomorphic filtering based parametric fuzzy transform.Procedia Comput. Sci.201916516617210.1016/j.procs.2020.01.095
    [Google Scholar]
  13. ZhangX DaiL Image enhancement based on rough set and fractional order differentiator.Fractal Fract.20226421410.3390/fractalfract6040214
    [Google Scholar]
  14. ZhangX LiuR RenJ GuiQ Adaptive fractional image enhancement algorithm based on rough set and particle swarm optimization.Fractal Fract.20226210010.3390/fractalfract6020100
    [Google Scholar]
  15. ZhuS. YuS. TuerxunyimingM. Intelligent evaluation of therapeutic effect of electroacupuncture moxibustion on cerebral ischemia reperfusion injury based on multimodal information fusion and neural network.Pattern Recognit. Lett.202518816417010.1016/j.patrec.2024.12.001
    [Google Scholar]
  16. AbrahamT. ToddA. OrringerD.A. LevensonR. Applications of artificial intelligence for image enhancement in pathology.Artificial Intelligence in Pathology.Elsevier202518321010.1016/B978‑0‑323‑95359‑7.00010‑8
    [Google Scholar]
  17. VelpulaV.K. VadlamudiJ.S. JanapatiM. KasaraneniP.P. KumarY.V.P. ChallaP.R. MallipeddiR. Enhanced brain tumor classification using convolutional neural networks and ensemble voting classifier for improved diagnostic accuracy.Comput. Electr. Eng.202512311012410.1016/j.compeleceng.2025.110124
    [Google Scholar]
  18. GV. RaniV.V. PonnadaS. SJ. A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.Comput. Biol. Chem.202511510827910.1016/j.compbiolchem.2024.10827939631224
    [Google Scholar]
  19. NurtayM. KissinaM. TauA. AkhmetovA. AlinaG. MutovinaN. Brain tumor classification using deep convolutional neural networks.Computer2025492
    [Google Scholar]
  20. SheikhoushaghiA. GharaeiN.Y. NikoofardA. Application of Rough Neural Network to forecast oil production rate of an oil field in a comparative study.J. Petrol. Sci. Eng.202220910993510.1016/j.petrol.2021.109935
    [Google Scholar]
  21. PawlakZ. Rough sets.Int. J. Comput. Inf. Sci.198211534135610.1007/BF01001956
    [Google Scholar]
  22. XiaS. ZhangH. LiW. WangG. GiemE. ChenZ. A novel rough set algorithm for fast adaptive attribute reduction in classification.IEEE Trans. Knowl. Data Eng.20203431231124210.1109/TKDE.2020.2997039
    [Google Scholar]
  23. DaiJ. HuH. WuW.Z. QianY. HuangD. Maximal-Discernibility-pair-based approach to attribute reduction in fuzzy rough sets.IEEE Trans. Fuzzy Syst.20182642174218710.1109/TFUZZ.2017.2768044
    [Google Scholar]
  24. HuQ-H. Da-RenYu. Zong-XiaX.I.E. Numerical attribute reduction based on neighbourhood granulation and rough approximation.J. Softw.200819364064910.3724/SP.J.1001.2008.00640
    [Google Scholar]
  25. QianY. LiangJ. PedryczW. DangC. Positive approximation: An accelerator for attribute reduction in rough set theory.Artif. Intell.20101749-1059761810.1016/j.artint.2010.04.018
    [Google Scholar]
  26. BazanJ G HungS N NguyenS H SynakP JakubW Rough set algorithms in classification problem.Rough set Methods and applicationsPhysicaHeidelberg20005610.1007/978‑3‑7908‑1840‑6_3
    [Google Scholar]
  27. XiaS. BaiX. WangG. ChengY. MengD. GaoX. ZhaiY. GiemE. An efficient and accurate rough set for feature selection, classification and knowledge presentation.IEEE Trans. Knowl. Data Eng.20233587724773510.1109/TKDE.2022.3220200
    [Google Scholar]
  28. SuP. QinF. LiF. A Neighborhood Rough set attribute reduction based on attribute importance.Am. J. Comput. Math.202313457859310.4236/ajcm.2023.134031
    [Google Scholar]
  29. HiremathS. ChandraP. JoyA.M. TripathyB.K. Neighbourhood rough set model for knowledge acquisition using MapReduce.Int. J. Commun. Netw. Distrib. Syst.2015152/321223410.1504/IJCNDS.2015.070975
    [Google Scholar]
  30. StruskiŁ. JanuszS. TaborJ. MarkiewiczM. LewickiA. Multiple instance learning for medical image classification based on instance importance.Biomed. Signal Process. Control20249110587410.1016/j.bspc.2023.105874
    [Google Scholar]
  31. AtlanF. PenceI. The effect of noise removal filters on classifying different types of medical images.Digit. Signal Process.202415310461310.1016/j.dsp.2024.104613
    [Google Scholar]
  32. ThomasS. BehzadB. AntoineS. ThiranJ.P. ScoreNet: Learning non-uniform attention and augmentation for transformer based histopathological image classification.Proceedings of IEEE/CVF Winter Conference on Applications of Computer vision (WACV)Waikoloa, HI, USA, 02-07 January 2023, pp. 6159-6168.10.1109/WACV56688.2023.00611
    [Google Scholar]
  33. SunX. LiW. FuB. PengY. HeJ. WangL. YangT. MengX. LiJ. WangJ. HuangP. WangR. TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma.Comput. Methods Programs Biomed.202324210778910.1016/j.cmpb.2023.10778937722310
    [Google Scholar]
  34. ChoiJ.Y. RyuI.H. KimJ.K. LeeI.S. YooT.K. Development of a generative deep learning model to improve epiretinal membrane detection in fundus photography.BMC Med. Inform. Decis. Mak.20242412510.1186/s12911‑024‑02431‑438273286
    [Google Scholar]
  35. HazemY.A. HadeerE.S. MaryamA. MohammedF.T. Retinal fundus diseases detection and identification using CNN.2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS)Cairo, Egypt, 21-23 November 2023, pp. 375-380.10.1109/ICICIS58388.2023.10391171
    [Google Scholar]
  36. SengarN. JoshiR.C. DuttaM.K. BurgetR. EyeDeep-Net: A multi-class diagnosis of retinal diseases using deep neural network.Neural Comput. Appl.20233514105511057110.1007/s00521‑023‑08249‑x
    [Google Scholar]
  37. AnantharajanS. GunasekaranS. Automated brain tumor detection and classification using weighted fuzzy clustering algorithm, deep auto encoder with barnacle mating algorithm and random forest classifier techniques.Int. J. Imaging Syst. Technol.20213141970198810.1002/ima.22582
    [Google Scholar]
  38. KumarD.M. SatyanarayanaD. PrasadM.N.G. MRI brain tumor detection using optimal possibilistic fuzzy C-means clustering algorithm and adaptive k-nearest neighbor classifier.J. Ambient Intell. Humaniz. Comput.20211222867288010.1007/s12652‑020‑02444‑7
    [Google Scholar]
  39. AboeleneinN.M. SonghaoP. KoubaaA. NoorA. AfifiA. HTTU-Net: Hybrid Two Track U-Net for automatic brain tumor segmentation.IEEE Access2020810140610141510.1109/ACCESS.2020.2998601
    [Google Scholar]
  40. ZhangJ. ZengJ. QinP. ZhaoL. Brain tumor segmentation of multi-modality MR images via triple intersecting U-Nets.Neurocomputing202142119520910.1016/j.neucom.2020.09.016
    [Google Scholar]
  41. SharifM.I. LiJ.P. KhanM.A. SaleemM.A. Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images.Pattern Recognit. Lett.202012918118910.1016/j.patrec.2019.11.019
    [Google Scholar]
  42. SunJ. PengY. GuoY. LiD. Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN.Neurocomputing2021423344510.1016/j.neucom.2020.10.031
    [Google Scholar]
  43. HanC RundoL ArakiR FurukawaY MauriG NakayamaH HayashiH Infinite brain MR images: PGGAN-Based data augmentation for tumor detection.Neural Approaches to Dynamics of Signal ExchangesSpringerSingapore201915129130310.1007/978‑981‑13‑8950‑4_27
    [Google Scholar]
  44. KhanA.R. KhanS. HarouniM. AbbasiR. IqbalS. MehmoodZ. Brain tumor segmentation using K‐means clustering and deep learning with synthetic data augmentation for classification.Microsc. Res. Tech.20218471389139910.1002/jemt.2369433524220
    [Google Scholar]
  45. Siva RajaP.M. raniA.V. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach.Biocybern. Biomed. Eng.202040144045310.1016/j.bbe.2020.01.006
    [Google Scholar]
  46. PreethiS. AishwaryaP. An efficient wavelet-based image fusion for brain tumor detection and segmentation over PET and MRI image.Multimedia Tools Appl.20218010147891480610.1007/s11042‑021‑10538‑3
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056396299250506075133
Loading
/content/journals/cmir/10.2174/0115734056396299250506075133
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test