Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Early-stage Brain tumor detection is critical for timely diagnosis and effective treatment. We propose a hybrid deep learning method, Convolutional Neural Network (CNN) integrated with YOLO (You Only Look once) and SAM (Segment Anything Model) for diagnosing tumors.

Methods

A novel hybrid deep learning framework combining a CNN with YOLOv11 for real-time object detection and the SAM for precise segmentation. Enhancing the CNN backbone with deeper convolutional layers to enable robust feature extraction, while YOLOv11 localizes tumor regions, SAM is used to refine the tumor boundaries through detailed mask generation.

Results

A dataset of 896 MRI brain images is used for training, testing, and validating the model, including images of both tumors and healthy brains. Additionally, CNN-based YOLO+SAM methods were utilized successfully to segment and diagnose brain tumors.

Discussion

Our suggested model achieves good performance of Precision as 94.2%, Recall as 95.6% and mAP50(B) score as 96.5% demonstrating and highlighting the effectiveness of the proposed approach for early-stage brain tumor diagnosis

Conclusion

The validation is demonstrated through a comprehensive ablation study. The robustness of the system makes it more suitable for clinical deployment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056392711250718201911
2025-07-30
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056392711.html?itemId=/content/journals/cmir/10.2174/0115734056392711250718201911&mimeType=html&fmt=ahah

References

  1. LapointeS. PerryA. ButowskiN.A. Primary brain tumours in adults.Lancet20183921014543244610.1016/S0140‑6736(18)30990‑530060998
    [Google Scholar]
  2. ZacharakiE.I. WangS. ChawlaS. Soo YooD. WolfR. MelhemE.R. DavatzikosC. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme.Magn Reson Med20096261609161810.1002/mrm.2214719859947
    [Google Scholar]
  3. Jin Liu Min Li Jianxin Wang Fangxiang Wu Tianming Liu Yi Pan A survey of MRI-based brain tumor segmentation methods.Tsinghua Sci Technol201419657859510.1109/TST.2014.6961028
    [Google Scholar]
  4. AsadR. RehmanS. ImranA. LiJ. AlmuhaimeedA. AlzahraniA. Computer-aided early melanoma brain-tumor detection using Deep-Learning approach.Biomedicines202311118410.3390/biomedicines1101018436672693
    [Google Scholar]
  5. AminJ. SharifM. HaldoraiA. YasminM. NayakR.S. Brain tumor detection and classification using machine learning: A comprehensive survey.2022843161318310.1007/s40747‑021‑00563‑y
    [Google Scholar]
  6. SwatiZ.N.K. ZhaoQ. KabirM. AliF. AliZ. AhmedS. LuJ. Brain tumor classification for MR images using transfer learning and fine-tuning.Comput Med Imaging Graph201975344610.1016/j.compmedimag.2019.05.00131150950
    [Google Scholar]
  7. WattsJ. BoxG. GalvinA. BrotchieP. TrostN. SutherlandT. Magnetic resonance imaging of meningiomas: A pictorial review.Insights Imaging20145111312210.1007/s13244‑013‑0302‑424399610
    [Google Scholar]
  8. CaiX. LiX. RazmjooyN. GhadimiN. Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimization algorithm.Comput Math Methods Med2021202111310.1155/2021/559518034790252
    [Google Scholar]
  9. LundervoldA.S. LundervoldA. An overview of deep learning in medical imaging focusing on MRI.Z Med Phys201929210212710.1016/j.zemedi.2018.11.00230553609
    [Google Scholar]
  10. AlwakidG. GoudaW. HumayunM. JhanjhiN.Z. Diagnosing melanomas in dermoscopy images using deep learning.Diagnostics20231310181510.3390/diagnostics1310181537238299
    [Google Scholar]
  11. AlmufarehM.F. TehsinS. HumayunM. KausarS. A transfer learning approach for clinical detection support of monkeypox skin lesions.Diagnostics2023138150310.3390/diagnostics1308150337189603
    [Google Scholar]
  12. HumayunM. KhalilM.I. AlmuayqilS.N. JhanjhiN.Z. Frame work for detecting breast cancer risk presence using deep learning.Electronics202312240310.3390/electronics12020403
    [Google Scholar]
  13. KhanA. BukhariJ. BangashJ.I. KhanA. ImranM. AsimM. IshaqM. KhanA. Optimizing connection weights of functional link neural network using APSO algorithm for medical data classification.J King Saud Univ - Comput Inf Sci20223462551256110.1016/j.jksuci.2020.10.018
    [Google Scholar]
  14. ZhaoZ.Q. ZhengP. XuS.T. WuX. Object detection with deep learning: A review.IEEE Trans Neural Netw Learn Syst201930113212323210.1109/TNNLS.2018.287686530703038
    [Google Scholar]
  15. ImranM. AnwarH. TufailM. KhanA. KhanM. Athiar RamliD. Image-based automatic energy meter reading using deep learning.Comput Mater Continua202374120321610.32604/cmc.2023.029834
    [Google Scholar]
  16. AlwakidG. GoudaW. HumayunM. Deep learning-based prediction of diabetic retinopathy using CLAHE and ESRGAN for enhancement.Proc MDPI202386310.3390/healthcare11060863
    [Google Scholar]
  17. LiuW. AnguelovD. ErhanD. SzegedyC. ReedS. FuC.Y. BergA.C. SSD: Single shot MultiBox detector.Springer, Cham, 2016, vol. 9905, pp. 21-37.Computer Vision—ECCV 2016
    [Google Scholar]
  18. GirshickR. DonahueJ. DarrellT. MalikJ. Rich feature hierarchies for accurate object detection and semantic segmentation.Columbus, OH, USA, 23-28 June 2014, pp. 580-5872014 IEEE Conference on Computer Vision and Pattern Recognition10.1109/CVPR.2014.81
    [Google Scholar]
  19. RenS. HeK. GirshickR. SunJ. Faster R-CNN: Towards real-time object detection with region proposal networks.IEEE Trans Pattern Anal Mach Intell20173961137114910.1109/TPAMI.2016.257703127295650
    [Google Scholar]
  20. ZhaoW. LiC. ZhangW. YangL. ZhuangP. LiL. FanK. YangH. Embedding global contrastive and local location in self-supervised learning.IEEE Trans Circ Syst Video Tech20233352275228910.1109/TCSVT.2022.3221611
    [Google Scholar]
  21. ZhaoW. YangL. ZhangW. TianY. JiaW. LiW. YangM. PanX. YangH. Learning what and where to learn: A new perspective on self-supervised learning.IEEE Trans Circuits Syst Video Technol20243486620663310.1109/TCSVT.2023.3298937
    [Google Scholar]
  22. RedmonJ. DivvalaS. GirshickR. FarhadiA. You only look once: Unified, real-time object detection.Las Vegas, NV, USA, 27-30 June 2016, pp. 779-788.2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR.2016.91
    [Google Scholar]
  23. SajidS. HussainS. SarwarA. Brain tumor detection and segmen tation in MR images using deep learning.Arab J Sci Eng201944119249926110.1007/s13369‑019‑03967‑8
    [Google Scholar]
  24. Razi KazemiH. Ahmadi BaniM. PazhoomanH. The effects of conservative treatments on pain, function and grip strength among patients with tennis elbow syndrome: A systematic review.J Rafsanjan Univ Med Sci2020181112871300
    [Google Scholar]
  25. SafariK. Rodriguez VilaB. PierceD.M. Automated detection of microcracks within second harmonic generation images of cartilage using Deep Learning.J Orthop Res20254361101111210.1002/jor.2607140113341
    [Google Scholar]
  26. AlmufarehM.F. ImranM. KhanA. HumayunM. AsimM. Automated brain tumor segmentation and classification in MRI using YOLO-based deep Learning.IEEE Access202412161891620710.1109/ACCESS.2024.3359418
    [Google Scholar]
  27. KhanikiM.A.L Brain tumor classification using vision transformer with selective cross-attention mechanism and feature calibration.arXiv2024arXiv:2406.17670
    [Google Scholar]
  28. AvazzadehZ. HassaniH. EbadiM.J. AgarwalP. PoursadeghfardM. NaraghiradE. Optimal approximation of fractional order brain tumor model using generalized laguerre polynomials.Indian J Sci202347250151310.1007/s40995‑022‑01388‑1
    [Google Scholar]
  29. HossainA. IslamM.T. AlmutairiA.F. A deep learning model to classify and detect brain abnormalities in portable microwave based imaging system.Sci Rep202212, 631910309610.1038/s41598‑022‑10309‑6
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056392711250718201911
Loading
/content/journals/cmir/10.2174/0115734056392711250718201911
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Brain tumor dataset; CNN; Image segmentation; MRI; SAM; YOLO v11
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test