Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Artificial intelligence has significantly enhanced disease diagnosis in healthcare, particularly through Deep Learning (DL) and Federated Learning (FL) approaches. These technologies have shown promise in detecting ocular diseases using medical imaging while addressing challenges related to data privacy and security. FL enables collaborative learning without sharing sensitive medical data, making it an attractive solution for healthcare applications. This systematic review aims to analyze the advancements in AI-driven ocular disease detection, with a particular focus on FL-based approaches. The article evaluates the evolution, methodologies, challenges, and effectiveness of FL in enhancing diagnostic accuracy while ensuring data confidentiality.

Methods

The systematic review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework to ensure transparency and reliability. Research articles published between 2017 and 2024 were identified using academic databases, including Web of Science, Scopus, IEEE Xplore, and PubMed. Studies focusing on DL and FL models for detecting ocular diseases were selected based on predefined inclusion and exclusion criteria. A comparative analysis of the methodologies, architectures, datasets, and performance metrics of different FL models has been presented.

Results and Discussion

The findings indicated that FL preserves data privacy while achieving diagnostic performance comparable to traditional centralized AI models. Various FL models, including FedAvg and FedProx, have been implemented for ocular disease detection, with high accuracy and efficiency. However, challenges, such as data heterogeneity, communication efficiency, and model convergence, persist.

 Conclusion 

FL represents a promising approach for ocular disease detection, balancing diagnostic accuracy with data privacy. Future research may focus on optimizing FL frameworks for improving scalability, communication efficiency, and integrating advanced privacy-preserving techniques.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056400866250923175325
2025-10-02
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056400866.html?itemId=/content/journals/cmir/10.2174/0115734056400866250923175325&mimeType=html&fmt=ahah

References

  1. JimmaB.L. Artificial intelligence in healthcare: A bibliometric analysis.Telemat. Inf. Rep.2023910004110.1016/j.teler.2023.100041
    [Google Scholar]
  2. DograA. GoyalB. AgrawalS. Osseous and digital subtraction angiography image fusion via various enhancement schemes and Laplacian pyramid transformations.Future Gener. Comput. Syst.20188214915710.1016/j.future.2017.12.052
    [Google Scholar]
  3. QummarS. KhanF.G. ShahS. KhanA. DinA. GaoJ. Deep learning techniques for diabetic retinopathy detection.Curr. Med. Imaging202116101201121310.2174/157340561666620021311402632107999
    [Google Scholar]
  4. SharmaS. GuleriaK. DograA. FedPneu: Federated learning for pneumonia detection across multiclient cross-silo healthcare datasets.Curr. Med. Imaging2025211573405633397010.2174/011573405633397024121213215039757652
    [Google Scholar]
  5. ThotadP.N. BharamagoudarG.R. AnamiB.S. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.Diabetes Metab. Syndr.202317110269010.1016/j.dsx.2022.10269036527769
    [Google Scholar]
  6. SuiL. ChangS. XueL. WangJ. ZhangY. YangK. GaoB.L. YinX. Deep learning based on enhanced MRI T1 imaging to differentiate small-cell and non-small-cell primary lung cancers in patients with brain metastases.Curr. Med. Imaging2023191330012321325610.2174/157340561966623013012440836717988
    [Google Scholar]
  7. GulatiS. GuleriaK. GoyalN. Detection and multiclass classification of ocular diseases using deep learning-based ensemble model.Inter. J. Intell. Sys. Appl. Eng.20241219s1829
    [Google Scholar]
  8. GaleM.J. ScruggsB.A. FlaxelC.J. Diabetic eye disease: A review of screening and management recommendations.Clin. Exp. Ophthalmol.202149212814510.1111/ceo.1389433438363
    [Google Scholar]
  9. LiaoS. LuZ. LiuP. LiangX. Pattern classification for ovarian tumors by integration of radiomics and deep learning features.Curr. Med. Imaging202218141486150210.2174/157340561866622051612214535578861
    [Google Scholar]
  10. JiangF. JiangY. ZhiH. DongY. LiH. MaS. WangY. DongQ. ShenH. WangY. Artificial intelligence in healthcare: Past, present and future.Stroke Vasc. Neurol.20172423024310.1136/svn‑2017‑00010129507784
    [Google Scholar]
  11. GulatiS. GuleriaK. GoyalN. Classification and detection of diabetic eye diseases using deep learning: A review and comparative analysis.AIP Conf. Proc.20232916102000510.1063/5.0177682
    [Google Scholar]
  12. Sabah AfrozeA.A. TamilselviR. Parisa BehamM.G. Machine learning based osteoarthritis detection methods in different imaging modalities: A review.Curr. Med. Imaging2023191430012321326310.2174/157340561966623013014302036715001
    [Google Scholar]
  13. NamD.J. Distributed glaucoma detection method using privacy-preserving federated learning.Inter. J. High Sch. Res.20246110.36838/v5i1.19
    [Google Scholar]
  14. KhanY. SánchezD. Domingo-FerrerJ. Federated learning-based natural language processing: A systematic literature review.Artif. Intell. Rev.2024571232010.1007/s10462‑024‑10970‑5
    [Google Scholar]
  15. TruongN. SunK. WangS. GuittonF. GuoY. Privacy preservation in federated learning: An insightful survey from the GDPR perspective.Comput. Secur.202111010240210.1016/j.cose.2021.102402
    [Google Scholar]
  16. ZhouW. JiaZ. FengC. LuH. LyuF. LiL. Towards driver distraction detection: A privacy-preserving federated learning approach.Peer-to-Peer Netw. Appl.202417289691010.1007/s12083‑024‑01639‑5
    [Google Scholar]
  17. VardiM.Y. Are we having an ethical crisis in computing?Commun. ACM2018621710.1145/3292822
    [Google Scholar]
  18. YangQ. LiuY. ChenT. TongY. Federated machine learning: Concept and applications.ACM Trans. Intell. Syst. Technol.201910211910.1145/3298981
    [Google Scholar]
  19. LiuB. LvN. GuoY. LiY. Recent advances on federated learning: A systematic survey.Neurocomputing202459712801910.1016/j.neucom.2024.128019
    [Google Scholar]
  20. GulatiS. GuleriaK. GoyalN. Collaborative, privacy-preserving federated learning framework for the detection of diabetic eye diseases.SN Comput. Sci.202458110010.1007/s42979‑024‑03462‑4
    [Google Scholar]
  21. SharmaS. GuleriaK. A comprehensive review on federated learning based models for healthcare applications.Artif. Intell. Med.202314610269110.1016/j.artmed.2023.10269138042608
    [Google Scholar]
  22. HaoJ. ZhangL. ZhaoY. Grouped federated learning for time-sensitive tasks in industrial IoTs.Peer-to-Peer Netw. Appl.202417281983310.1007/s12083‑023‑01616‑4
    [Google Scholar]
  23. GulatiS. GuleriaK. GoyalN. AlZubiA.A. CastillaÁ.K. A privacy-preserving collaborative federated learning framework for detecting retinal diseases.IEEE Access20241217017617020310.1109/ACCESS.2024.3493946
    [Google Scholar]
  24. LiuJ. HuangJ. ZhouY. LiX. JiS. XiongH. DouD. From distributed machine learning to federated learning: A survey.Knowl. Inf. Syst.202264488591710.1007/s10115‑022‑01664‑x
    [Google Scholar]
  25. LiuY. LiH. HaoM. SVFGNN: A privacy-preserving vertical federated graph neural network model training framework based on split learning.Peer-to-Peer Netw. Appl.202310.1007/s12083‑023‑01584‑9
    [Google Scholar]
  26. EissaM.E. MohamedM.A. AtaM.M. A robust supervised machine learning-based approach for offline-online traffic classification of software-defined networking.Peer-to-Peer Netw. Appl.202310.1007/s12083‑023‑01605‑7
    [Google Scholar]
  27. LiL. FanY. TseM. LinK.Y. A review of applications in federated learning.Comput. Ind. Eng.202014910685410.1016/j.cie.2020.106854
    [Google Scholar]
  28. CrowsonM.G. MoukheiberD. ArévaloA.R. LamB.D. MantenaS. RanaA. GossD. BatesD.W. CeliL.A. A systematic review of federated learning applications for biomedical data.PLOS Digit. Health202215000003310.1371/journal.pdig.000003336812504
    [Google Scholar]
  29. YinX. ZhuY. HuJ. A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions.ACM Comput. Surv.202254613610.1145/3460427
    [Google Scholar]
  30. BanabilahS. AloqailyM. AlsayedE. MalikN. JararwehY. Federated learning review: Fundamentals, enabling technologies, and future applications.Inf. Process. Manage.202259610306110.1016/j.ipm.2022.103061
    [Google Scholar]
  31. PfitznerB. SteckhanN. ArnrichB. Federated learning in a medical context: A systematic literature review.ACM Trans. Internet Technol.202121213110.1145/3412357
    [Google Scholar]
  32. LiQ. WenZ. WuZ. HuS. WangN. LiY. LiuX. HeB. A survey on federated learning systems: Vision, hype, and reality for data privacy and protection.IEEE Trans. Knowl. Data Eng.20233543347336610.1109/TKDE.2021.3124599
    [Google Scholar]
  33. KurupathiS. R. MaassW. Survey on federated learning towards privacy preserving AI.7th International Conference on Computer Science, Engineering and Information Technology (CSEIT 2020)September 2020.10.5121/csit.2020.101120
    [Google Scholar]
  34. ZhaoZ. MaoY. LiuY. SongL. OuyangY. ChenX. DingW. Towards efficient communications in federated learning: A contemporary survey.J. Franklin Inst.2023360128669870310.1016/j.jfranklin.2022.12.053
    [Google Scholar]
  35. VucinichS. ZhuQ. The current state and challenges of fairness in federated learning.IEEE Access202311809038091410.1109/ACCESS.2023.3295412
    [Google Scholar]
  36. HuangW. YeM. ShiZ. WanG. LiH. DuB. YangQ. Federated learning for generalization, robustness, fairness: A survey and benchmark.IEEE Trans. Pattern Anal. Mach. Intell.202446129387940610.1109/TPAMI.2024.341886238917282
    [Google Scholar]
  37. PeiJ. LiuW. LiJ. WangL. LiuC. A review of federated learning methods in heterogeneous scenarios.IEEE Trans. Consum. Electron.20247035983599910.1109/TCE.2024.3385440
    [Google Scholar]
  38. ChaiD. WangL. YangL. ZhangJ. ChenK. YangQ. A survey for federated learning evaluations: Goals and measures.IEEE Trans. Knowl. Data Eng.202436105007502410.1109/TKDE.2024.3382002
    [Google Scholar]
  39. YuanL. WangZ. SunL. YuP.S. BrintonC.G. Decentralized federated learning: A survey and perspective.IEEE Internet Things J.20241121346173463810.1109/JIOT.2024.3407584
    [Google Scholar]
  40. LuZ. PanH. DaiY. SiX. ZhangY. Federated learning with non-IID data: A survey.IEEE Internet Things J.20241111191881920910.1109/JIOT.2024.3376548
    [Google Scholar]
  41. TeoZ.L. TingD.S.W. Federated learning in ophthalmology: Retinopathy of prematurity.Ophthalmol. Retina20226864764910.1016/j.oret.2022.03.01935933119
    [Google Scholar]
  42. GafniT. ShlezingerN. CohenK. EldarY.C. PoorH.V. Federated learning: A signal processing perspective.IEEE Signal Process. Mag.2022393144110.1109/MSP.2021.3125282
    [Google Scholar]
  43. LiuL. FanK. YangM. Federated learning: A deep learning model based on resnet18 dual path for lung nodule detection.Multimedia Tools Appl.20238211174371745010.1007/s11042‑022‑14107‑0
    [Google Scholar]
  44. KhoKharF.A. ShahJ.H. KhanM.A. SharifM. TariqU. KadryS. A review on federated learning towards image processing.Comput. Electr. Eng.20229910781810.1016/j.compeleceng.2022.107818
    [Google Scholar]
  45. AbdulrahmanS. ToutH. Ould-SlimaneH. MouradA. TalhiC. GuizaniM. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond.IEEE Internet Things J.2021875476549710.1109/JIOT.2020.3030072
    [Google Scholar]
  46. NgD. LanX. YaoM.M.S. ChanW.P. FengM. Federated learning: A collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets.Quant. Imaging Med. Surg.202111285285710.21037/qims‑20‑59533532283
    [Google Scholar]
  47. LiT. SahuA.K. TalwalkarA. SmithV. Federated learning: Challenges, methods, and future directions.IEEE Signal Process. Mag.2020373506010.1109/MSP.2020.2975749
    [Google Scholar]
  48. LiT. SahuA.K. ZaheerM. SanjabiM. TalwalkarA. SmithV. Federated optimization in heterogeneous networks.Proceed. Mach. Lear. Syst.2020429450
    [Google Scholar]
  49. TanimS.A. AurnobA.R. MridhaM.F. SafranM. AlfarhoodS. CheD. Secure federated learning for Parkinson’s disease: Non-IID data partitioning and homomorphic encryption strategies.IEEE Access20241212730912732710.1109/ACCESS.2024.3454690
    [Google Scholar]
  50. FerragM.A. FrihaO. MaglarasL. JanickeH. ShuL. Federated deep learning for cyber security in the internet of things: Concepts, applications, and experimental analysis.IEEE Access2021913850913854210.1109/ACCESS.2021.3118642
    [Google Scholar]
  51. Prayitno ShyuC-R. PutraK.T. ChenH-C. TsaiY-Y. HossainK.S.M.T. JiangW. ShaeZ-Y. A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications.Appl. Sci. (Basel)202111231119110.3390/app112311191
    [Google Scholar]
  52. RiekeN. HancoxJ. LiW. MilletarìF. RothH.R. AlbarqouniS. BakasS. GaltierM.N. LandmanB.A. Maier-HeinK. OurselinS. ShellerM. SummersR.M. TraskA. XuD. BaustM. CardosoM.J. The future of digital health with federated learning.NPJ Digit. Med.20203111910.1038/s41746‑020‑00323‑133015372
    [Google Scholar]
  53. HanifA. LuC. ChangK. SinghP. CoynerA.S. BrownJ.M. OstmoS. ChanR.V.P. RubinD. ChiangM.F. Kalpathy-CramerJ. CampbellJ.P. ChiangM.F. OstmoS. KimS.J. SonmezK. CampbellJ.P. SchelonkaR. CoynerA. ChanR.V.P. JonasK. KolliB. HorowitzJ. CokiO. EcclesC-A. SarnaL. OrlinA. BerrocalA. NegronC. DenserK. CummingK. OsentoskiT. CheckT. ZajechowskiM. LeeT. NagielA. KrugerE. McGovernK. ContractorD. HavunjianM. SimmonsC. MurthyR. GalvisS. RotterJ. ChenI. LiX. TaylorK. RollK. HartnettM.E. OwenL. MoshfeghiD. NunezM. Wennber-SmithZ. Kalpathy-CramerJ. ErdogmusD. IoannidisS. Martinez-CastellanosM.A. Salinas-LongoriaS. RomeroR. ArriolaA. Olguin-ManriquezF. Meraz-GutierrezM. Dulanto-ReinosoC.M. Montero-MendozaC. Federated learning for multicenter collaboration in ophthalmology: Implications for clinical diagnosis and disease epidemiology.Ophthalmol. Retina20226865065610.1016/j.oret.2022.03.00535304305
    [Google Scholar]
  54. LuC. HanifA. SinghP. ChangK. CoynerA.S. BrownJ.M. OstmoS. ChanR.V.P. RubinD. ChiangM.F. CampbellJ.P. Kalpathy-CramerJ. ChiangM.F. OstmoS. KimS.J. SonmezK. CampbellJ.P. SchelonkaR. CoynerA. ChanR.V.P. JonasK. KolliB. HorowitzJ. CokiO. EcclesC-A. SarnaL. OrlinA. BerrocalA. NegronC. DenserK. CummingK. OsentoskiT. CheckT. ZajechowskiM. LeeT. NagielA. KrugerE. McGovernK. ContractorD. HavunjianM. SimmonsC. MurthyR. GalvisS. RotterJ. ChenI. LiX. TaylorK. RollK. HartnettM.E. OwenL. MoshfeghiD. NunezM. Wennber-SmithZ. Kalpathy-CramerJ. ErdogmusD. IoannidisS. Martinez-CastellanosM.A. Salinas-LongoriaS. RomeroR. ArriolaA. Olguin-ManriquezF. Meraz-GutierrezM. Dulanto-ReinosoC.M. Montero-MendozaC. Federated learning for multicenter collaboration in ophthalmology: Improving classification performance in retinopathy of prematurity.Ophthalmol. Retina20226865766310.1016/j.oret.2022.02.01535296449
    [Google Scholar]
  55. ZhangC. XieY. BaiH. YuB. LiW. GaoY. A survey on federated learning.Knowl. Base. Syst.202121610677510.1016/j.knosys.2021.10677534909232
    [Google Scholar]
  56. Martínez BeltránE.T. PérezM.Q. SánchezP.M.S. BernalS.L. BovetG. PérezM.G. PérezG.M. CeldránA.H. Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges.IEEE Commun. Surv. Tutor.20232542983301310.1109/COMST.2023.3315746
    [Google Scholar]
  57. ur RehmanM. H. GaberM. M. Federated learning systems: Towards next-generation AI.Studies in Computational IntelligenceChamSpringer Nature20219651196
    [Google Scholar]
  58. KairouzP. Advances and open problems in federated learning.202110.1561/9781680837896
    [Google Scholar]
  59. RahmanK.M.J. AhmedF. AkhterN. HasanM. AminR. AzizK.E. IslamA.K.M.M. MuktaM.S.H. IslamA.K.M.N. Challenges, applications and design aspects of federated learning: A survey.IEEE Access2021912468212470010.1109/ACCESS.2021.3111118
    [Google Scholar]
  60. SarmaK.V. HarmonS. SanfordT. RothH.R. XuZ. TetreaultJ. XuD. FloresM.G. RamanA.G. KulkarniR. WoodB.J. ChoykeP.L. PriesterA.M. MarksL.S. RamanS.S. EnzmannD. TurkbeyB. SpeierW. ArnoldC.W. Federated learning improves site performance in multicenter deep learning without data sharing.J. Am. Med. Inform. Assoc.20212861259126410.1093/jamia/ocaa34133537772
    [Google Scholar]
  61. AntunesR.S. André da CostaC. KüderleA. YariI.A. EskofierB. Federated learning for healthcare: Systematic review and architecture proposal.ACM Trans. Intell. Syst. Technol.202213412310.1145/3501813
    [Google Scholar]
  62. LiuH. LuJ. WangX. WangC. JiaR. LiM. FedUP: Bridging fairness and efficiency in cross-silo federated learning.IEEE Trans. Serv. Comput.20241763672368410.1109/TSC.2024.3489437
    [Google Scholar]
  63. ZhangH. BoschJ. OlssonH.H. Federated learning systems: Architecture alternatives.2020 27th Asia-Pacific Software Engineering Conference (APSEC)Singapore, Singapore, 01-04 December 2020.
    [Google Scholar]
  64. HuangC. TangM. MaQ. HuangJ. LiuX. Promoting collaboration in cross-silo federated learning: Challenges and opportunities.IEEE Commun. Mag.2024624828810.1109/MCOM.005.2300467
    [Google Scholar]
  65. SriramD.S. RanjanA. GhugeV. RathoreN. AgarwalR. DiwanT. TembhurneJ.V. Personalized federated learning for the detection of COVID-19.Multimedia Tools Appl.20238310290672908410.1007/s11042‑023‑16810‑y
    [Google Scholar]
  66. FekiI. AmmarS. KessentiniY. MuhammadK. Federated learning for COVID-19 screening from Chest X-ray images.Appl. Soft Comput.202110610733010.1016/j.asoc.2021.10733033776607
    [Google Scholar]
  67. LiuY. KangY. ZouT. PuY. HeY. YeX. OuyangY. ZhangY-Q. YangQ. Vertical federated learning: Concepts, advances, and challenges.IEEE Trans. Knowl. Data Eng.20243673615363410.1109/TKDE.2024.3352628
    [Google Scholar]
  68. JinY. Secure federated learning.Federated Learning: Machine Learning: Foundations, Methodologies, and ApplicationsSingaporeSpringer2023116521210.1007/978‑981‑19‑7083‑2_4
    [Google Scholar]
  69. HartmannF. Federated learning.Berlin, GermanyFree University of Berlin2018
    [Google Scholar]
  70. LearningF. Introduction to federated learning: Methods and classifications.Handbook on Federated Learning: Advances, Applications and OpportunitiesBoca Raton, FLCRC Press20241131
    [Google Scholar]
  71. PillutlaK. KakadeS.M. HarchaouiZ. Robust aggregation for federated learning.IEEE Trans. Signal Process.2022701142115410.1109/TSP.2022.3153135
    [Google Scholar]
  72. ZhangH. WuT. ChengS. LiuJ. CC-FedAvg: Computationally customized federated averaging.IEEE Internet Things J.20241134826484110.1109/JIOT.2023.3300080
    [Google Scholar]
  73. QiP. ChiaroD. GuzzoA. IanniM. FortinoG. PiccialliF. Model aggregation techniques in federated learning: A comprehensive survey.Future Gener. Comput. Syst.202415027229310.1016/j.future.2023.09.008
    [Google Scholar]
  74. RekhiR.S. IssacA. DuttaM.K. Retinal image analysis for diabetes-based eye disease detection using deep learning.Proceedings of the 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON)Mathura, India, 26-28 October 2017, pp. 468-471.10.1109/UPCON.2017.8251096
    [Google Scholar]
  75. MarinD. Gegundez-AriasM.E. PonteB. AlvarezF. GarridoJ. OrtegaC. VasalloM.J. BravoJ.M. An exudate detection method for diagnosis risk of diabetic macular edema in retinal images using feature-based and supervised classification.Med. Biol. Eng. Comput.20185681379139010.1007/s11517‑017‑1771‑229318442
    [Google Scholar]
  76. QummarS. KhanF.G. ShahS. KhanA. ShamshirbandS. RehmanZ.U. Ahmed KhanI. JadoonW. A deep learning ensemble approach for diabetic retinopathy detection.IEEE Access2019715053015053910.1109/ACCESS.2019.2947484
    [Google Scholar]
  77. ZengX. ChenH. LuoY. YeW. Automated diabetic retinopathy detection based on binocular siamese-like convolutional neural network.IEEE Access20197307443075310.1109/ACCESS.2019.2903171
    [Google Scholar]
  78. AamirM. IrfanM. AliT. AliG. ShafA. SA.S. Al-BeshriA. AlasbaliT. MahnashiM.H. An adoptive threshold-based multi-level deep convolutional neural network for glaucoma eye disease detection and classification.Diagnostics202010860210.3390/diagnostics1008060232824682
    [Google Scholar]
  79. SelvathiD. SuganyaK. Support vector machine-based method for automatic detection of diabetic eye disease using thermal images.2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)Chennai, India, 25-26 April 2019.10.1109/ICIICT1.2019.8741450
    [Google Scholar]
  80. PanX. JinK. CaoJ. LiuZ. WuJ. YouK. LuY. XuY. SuZ. JiangJ. YaoK. YeJ. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning.Graefes Arch. Clin. Exp. Ophthalmol.2020258477978510.1007/s00417‑019‑04575‑w31932886
    [Google Scholar]
  81. JiangY. DuanL. ChengJ. GuZ. XiaH. FuH. LiC. LiuJ. JointRCNN: A region-based convolutional neural network for optic disc and cup segmentation.IEEE Trans. Biomed. Eng.202067233534310.1109/TBME.2019.291321131021760
    [Google Scholar]
  82. de la TorreJ. VallsA. PuigD. A deep learning interpretable classifier for diabetic retinopathy disease grading.Neurocomputing202039646547610.1016/j.neucom.2018.07.102
    [Google Scholar]
  83. SarkiR. AhmedK. WangH. ZhangY. Automated detection of mild and multi-class diabetic eye diseases using deep learning.Health Inf. Sci. Syst.2020813210.1007/s13755‑020‑00125‑533088488
    [Google Scholar]
  84. KarimiA. StanikA. KozitzaC. ChenA. Integrating deep learning with electronic health records for early glaucoma detection: A multi-dimensional machine learning approach.Bioengineering202411657710.3390/bioengineering1106057738927813
    [Google Scholar]
  85. GaoW. ShaoL. LiF. DongL. ZhangC. DengZ. QinP. WeiW. MaL. Fundus photograph-based cataract evaluation network using deep learning.Front. Phys.202411123585610.3389/fphy.2023.1235856
    [Google Scholar]
  86. ElkholyM. MarzoukM.A. Deep learning-based classification of eye diseases using Convolutional Neural Network for OCT images.Front. Comput. Sci.20245125229510.3389/fcomp.2023.1252295
    [Google Scholar]
  87. DeepakG.D. BhatS.K. Deep learning-based CNN for multiclassification of ocular diseases using transfer learning.Comput. Methods Biomech. Biomed. Eng. Imaging Vis.2024121233595910.1080/21681163.2024.2335959
    [Google Scholar]
  88. MattaS. Federated learning for diabetic retinopathy detection in a multi-center fundus screening network.2023 45th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC)Sydney, Australia, 24-27 July 2023.10.1109/EMBC40787.2023.10340772
    [Google Scholar]
  89. TangZ. WongH-S. YuZ. Privacy-preserving federated learning with domain adaptation for multi-disease ocular disease recognition.IEEE J. Biomed. Health Inform.20231910.1109/JBHI.2023.323688837590112
    [Google Scholar]
  90. NasajpourM. KarakayaM. PouriyehS. PariziR.M. Federated transfer learning for diabetic retinopathy detection using CNN architectures.SoutheastCon 2022Mobile, AL, USAIEEE202265566010.1109/SoutheastCon48659.2022.9764031
    [Google Scholar]
  91. MohanN.J. MuruganR. GoelT. RoyP. DRFL: Federated learning in diabetic retinopathy grading using fundus images.IEEE Trans. Parallel Distrib. Syst.20233461789180110.1109/TPDS.2023.3264473
    [Google Scholar]
  92. LoJ. YuT.T. MaD. ZangP. OwenJ.P. ZhangQ. WangR.K. BegM.F. LeeA.Y. JiaY. SarunicM.V. Federated learning for microvasculature segmentation and diabetic retinopathy classification of OCT data.Ophthalmol. Sci.20211410006910.1016/j.xops.2021.10006936246944
    [Google Scholar]
  93. HossainI. PuppalaS. TalukderS. Collaborative differentially private federated learning framework for the prediction of diabetic retinopathy.2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC)Houston, TX, USA, 1998, pp. 157.10.1109/ICAIC57335.2023.10044122
    [Google Scholar]
  94. Ahmad KhanA. AlsubaiS. WechtaisongC. AlmadhorA. KryvinskaN. Al HejailiA. Ghulam MohammadU. CD-FL: Cataract images-based disease detection using federated learning.Comput. Syst. Sci. Eng.20234721733175010.32604/csse.2023.039296
    [Google Scholar]
  95. BhulakshmiD. RajputD.S. FedDL: Personalized federated deep learning for enhanced detection and classification of diabetic retinopathy.PeerJ Comput. Sci.202410250810.7717/peerj‑cs.250839896369
    [Google Scholar]
  96. JiangR. KumarY. KrugerD. Enhanced privacy-preserving architecture for fundus disease diagnosis with federated learning.Appl. Sci.2025156300410.3390/app15063004
    [Google Scholar]
  97. GulatiS. GuleriaK. GoyalN. Privacy-preserving and collaborative federated learning model for the detection of ocular diseases.Inter. J. Mathe. Eng. Manag. Sci.202510121824810.33889/IJMEMS.2025.10.1.013
    [Google Scholar]
  98. RothH.R. Federated learning for breast density classification: A real-world implementation.arXiv:2009.01871202010.48550/arXiv.2009.01871
    [Google Scholar]
  99. ZhangW. ZhouT. LuQ. WangX. ZhuC. SunH. WangZ. LoS.K. WangF.Y. Dynamic-fusion-based federated learning for COVID-19 detection.IEEE Internet Things J.2021821158841589110.1109/JIOT.2021.305618535663640
    [Google Scholar]
  100. YangD. XuZ. LiW. MyronenkoA. RothH.R. HarmonS. XuS. TurkbeyB. TurkbeyE. WangX. ZhuW. CarrafielloG. PatellaF. CariatiM. ObinataH. MoriH. TamuraK. AnP. WoodB.J. XuD. Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan.Med. Image Anal.20217010199210.1016/j.media.2021.10199233601166
    [Google Scholar]
  101. KhanS.H. AlamM.G.R. A federated learning approach to pneumonia detection.7th International Conference on Engineering and Emerging Technologies, ICEET 2021Istanbul, Turkey, 27-28 October 2021.10.1109/ICEET53442.2021.9659591
    [Google Scholar]
  102. BalajiN.N.A. NarayananN. ThellyK.J. BabuC. Investigating federated learning strategies for pneumonia image classification.2021 IEEE MIT Undergraduate Research Technology Conference (URTC)Cambridge, MA, USA, 08-10 October 2021, pp. 1-5.10.1109/URTC54388.2021.9701619
    [Google Scholar]
  103. KumarR. KhanA.A. KumarJ. Zakria GolilarzN.A. ZhangS. TingY. ZhengC. WangW. Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging.IEEE Sens. J.20212114163011631410.1109/JSEN.2021.307676735789224
    [Google Scholar]
  104. WuN. YuL. YangX. ChengK-T. YanZ. FedRare: Federated learning with intra-and inter-client contrast for effective rare disease classification.arXiv:2206.138032022
    [Google Scholar]
  105. ZhangM. QuL. SinghP. Kalpathy-CramerJ. RubinD.L. SplitAVG: A heterogeneity-aware federated deep learning method for medical imaging.IEEE J. Biomed. Health Inform.20222694635464410.1109/JBHI.2022.318595635749336
    [Google Scholar]
  106. LiZ. XuX. CaoX. LiuW. ZhangY. ChenD. DaiH. Integrated CNN and federated learning for COVID-19 detection on chest X-ray images.IEEE/ACM Transact. Comput. Biol. Bioinf.2022PP9911110.1109/TCBB.2022.3184319
    [Google Scholar]
  107. TanY.N. TinhV.P. LamP.D. NamN.H. KhoaT.A. A transfer learning approach to breast cancer classification in a federated learning framework.IEEE Access202311274622747610.1109/ACCESS.2023.3257562
    [Google Scholar]
  108. MitrovskaA. SafariP. RitterK. ShariatiB. FischerJ.K. Secure federated learning for Alzheimer’s disease detection.Front. Aging Neurosci.202416132403210.3389/fnagi.2024.132403238515517
    [Google Scholar]
  109. OtoumY. HuC. SaidE.H. NayakA. Enhancing heart disease prediction with federated learning and blockchain integration.Future Internet2024161037210.3390/fi16100372
    [Google Scholar]
  110. AdnanM. KalraS. CresswellJ.C. TaylorG.W. TizhooshH.R. Federated learning and differential privacy for medical image analysis.Sci. Rep.2022121195310.1038/s41598‑022‑05539‑735121774
    [Google Scholar]
  111. NiknamS. DhillonH.S. ReedJ.H. Federated learning for wireless communications: Motivation, opportunities, and challenges.IEEE Commun. Mag.2020586465110.1109/MCOM.001.1900461
    [Google Scholar]
  112. CetinkayaA.E. AkinM. SagirogluS. A communication-efficient federated learning approach to multi-chest diseases classification.2021 6th International Conference on Computer Science and Engineering (UBMK)Ankara, Turkey, 15-17 September 2021.10.1109/UBMK52708.2021.9558913
    [Google Scholar]
  113. McMahanH.B. MooreE. RamageD. HampsonS. ArcasB.A.y. Communication-efficient learning of deep networks from decentralized data.arXiv:1602.05629201710.48550/arXiv.1602.05629
    [Google Scholar]
  114. MillsJ. HuJ. MinG. Communication-efficient federated learning for wireless edge intelligence in IoT.IEEE Internet Things J.2020775986599410.1109/JIOT.2019.2956615
    [Google Scholar]
  115. QinZ. LiG.Y. YeH. Federated learning and wireless communications.IEEE Wirel. Commun.202128513414010.1109/MWC.011.2000501
    [Google Scholar]
  116. XieH. JiangW. LuoH. YuH. Model compression via pruning and knowledge distillation for person re-identification.J. Ambient Intell. Humaniz. Comput.20211222149216110.1007/s12652‑020‑02312‑4
    [Google Scholar]
  117. DantasP.V. Sabino da SilvaW.Jr CordeiroL.C. CarvalhoC.B. CarvalhoB. A comprehensive review of model compression techniques in machine learning.Appl. Intell.20245422118041184410.1007/s10489‑024‑05747‑w
    [Google Scholar]
  118. LiuZ. GuoJ. YangW. FanJ. LamK.Y. ZhaoJ. Privacy-preserving aggregation in federated learning: A survey.IEEE Trans. Big Data202412010.1109/TBDATA.2022.3190835
    [Google Scholar]
  119. XuH. SengK.P. SmithJ. AngL.M. Multi-level split federated learning for large-scale AIoT system based on smart cities.Future Internet20241638210.3390/fi16030082
    [Google Scholar]
  120. HosseinalipourS. AzamS.S. BrintonC.G. MichelusiN. AggarwalV. LoveD.J. DaiH. Multi-stage hybrid federated learning over large-scale D2D-enabled fog networks.IEEE/ACM Trans. Netw.20223041569158410.1109/TNET.2022.3143495
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056400866250923175325
Loading
/content/journals/cmir/10.2174/0115734056400866250923175325
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test