Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

Intracranial hemorrhage (IH) causes dementia and Alzheimer’s disease in the later stages. Until now, the accurate, early detection of IH, its prognosis, and therapeutic interventions have been a challenging task. Objective: A Multimodal Joint Fusion Sentiment Analysis (MJFSA) framework is proposed for the early detection and classification of IH, as well as sentiment analysis to support prognosis and therapeutic report generation.

Methodology

MJFSA integrates radiological images and the radiological clinical narrative reports (RCNRs). In the proposed MJFSA model, MRI brain images are enhanced using the modified Contrast Limited Adaptive Histogram Equalization (M-CLAHE) algorithm. Enhanced images are processed with the proposed Tuned Temporal-GAN (Tuned-T-GAN) algorithm to generate temporal images. RCNRs are generated for temporal images using the Microsoft-Phi2 language model. Temporal images are processed with the Tuned-Vision Image Transformer (T-ViT) model to extract image features. On the other hand, the Bio-Bidirectional Encoder Representation Transformer (Bio-BERT) processes the RCNR texts for text feature extraction. Temporal image and RCNR text features are used for IH classification, such as intracerebral hemorrhage (ICH), epidural hemorrhage (EDH), subdural hemorrhage (SDH), and intraventricular hemorrhage (IVH), resulting in sentiment analysis for prognosis and therapeutic reports.

Results

The MJFSA model has achieved an accuracy of 96.5% in prognosis sentiment analysis and 94.5% in therapeutic sentiment analysis.

Discussion

The Multimodal Joint Fusion Sentiment Analysis (MJFSA) framework detects IH and classifies it using sentiment analysis for prognosis and therapeutic report generation.

Conclusion

The MJFSA model’s prognosis and therapeutic sentiment analysis report aims to support the early identification and management of risk factors associated with dementia and Alzheimer’s disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056420799250902080814
2025-01-01
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056420799.html?itemId=/content/journals/cmir/10.2174/0115734056420799250902080814&mimeType=html&fmt=ahah

References

  1. Brain hemorrhage - Symptoms, types, causes, complications, treatment.Available from: https://www.pacehospital.com/brain-hemorrhage-causes-symptoms-types-treatment
  2. Brain bleed, hemorrhage (intracranial hemorrhage).Available from: https://my.clevelandclinic.org/health/diseases/14480-brain-bleed-hemorrhage-intracranial-hemorrhage
  3. HartungM.P. BickleI.C. GaillardF. KanneJ.P. How to create a great radiology report.Radiographics20204061658167010.1148/rg.202020002033001790
    [Google Scholar]
  4. BruceS.S. PawarA. LiaoV. MerklerA.E. LibermanA.L. NaviB.B. IadecolaC. KamelH. ZhangC. MurthyS.B. Nontraumatic intracranial hemorrhage and risk of incident dementia in US medicare beneficiaries.Stroke202556490891410.1161/STROKEAHA.124.05035939882627
    [Google Scholar]
  5. KieferJ. KoppM. RuettingerT. HeissR. WuestW. AmarteifioP. StroebelA. UderM. MayM.S. Diagnostic accuracy and performance analysis of a scanner-integrated artificial intelligence model for the detection of intracranial hemorrhages in a traumatology emergency department.Bioengineering20231012136210.3390/bioengineering1012136238135956
    [Google Scholar]
  6. SenguptaJ. AlzbutasR. Falkowski-GilskiP. Falkowska-GilskaB. Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm.Front. Neurosci.202317120063010.3389/fnins.2023.120063037469843
    [Google Scholar]
  7. DeneckeK. ReichenpfaderD. Sentiment analysis of clinical narratives: A scoping review.J. Biomed. Inform.202314010433610.1016/j.jbi.2023.10433636958461
    [Google Scholar]
  8. RajputA. Natural language processing, sentiment analysis, and clinical analytics.Innovation in Health InformaticsAcademic Press2020799710.1016/B978‑0‑12‑819043‑2.00003‑4
    [Google Scholar]
  9. Mohamad BeigiO. MoattarM.H. Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification.Knowl. Base. Syst.202121310642310.1016/j.knosys.2020.106423
    [Google Scholar]
  10. UnnithanA.K.A. DasJ.M. MehtaP. Hemorrhagic stroke.StatPearlsTreasure Island (FL)StatPearls Publishing2023
    [Google Scholar]
  11. Magid-BernsteinJ. GirardR. PolsterS. SrinathA. RomanosS. AwadI.A. SansingL.H. Cerebral hemorrhage: Pathophysiology, treatment, and future directions.Circ. Res.202213081204122910.1161/CIRCRESAHA.121.31994935420918
    [Google Scholar]
  12. Hemorrhagic stroke: Intracerebral hemorrhage.Available from: https://www.physio-pedia.com/Hemorrhagic_Stroke:_Intracerebral_Hemorrhage
  13. RaposoN. Zanon ZotinM.C. SeiffgeD.J. LiQ. GoeldlinM.B. CharidimouA. ShoamaneshA. JägerH.R. CordonnierC. KlijnC.J.M. SmithE.E. GreenbergS.M. WerringD.J. ViswanathanA. A causal classification system for intracerebral hemorrhage subtypes.Ann. Neurol.2023931162810.1002/ana.2651936197294
    [Google Scholar]
  14. Sentiment analysis in healthcare: Transforming patient feedback into actionable insights.2024Available from: https://www.repugen.com/blog/sentiment-analysis-in-healthcare
  15. EberleT.S. Rebitzke EberleV. Finding self, sense, and sense making after a cerebral hemorrhage.J. Appl. Soc. Sci.201913216517910.1177/1936724419867111
    [Google Scholar]
  16. BarkD. BasuJ. ToumpanakisD. Burwick NybergJ. BjernerT. RostamiE. FällmarD. Clinical impact of an AI decision support system for detection of intracranial hemorrhage in CT scans.Neurotrauma Rep.2024511009101510.1089/neur.2024.001739440151
    [Google Scholar]
  17. BabiM.A. MayberryW. KorieshA. NouhA. Editorial: Neuro-imaging in intracerebral hemorrhage: updates and knowledge gaps.Front. Neurosci.202519159322510.3389/fnins.2025.159322540242458
    [Google Scholar]
  18. Del GaizoA.J. OsborneT.F. ShahoumianT. SherrierR. Deep learning to detect intracranial hemorrhage in a national teleradiology program and the impact on interpretation time.Radiol. Artif. Intell.202465e24006710.1148/ryai.24006739017032
    [Google Scholar]
  19. FlandersA.E. PrevedelloL.M. ShihG. HalabiS.S. Kalpathy-CramerJ. BallR. MonganJ.T. SteinA. KitamuraF.C. LungrenM.P. ChoudharyG. CalaL. CoelhoL. MogensenM. MorónF. MillerE. IkutaI. ZohrabianV. McDonnellO. LincolnC. ShahL. JoynerD. AgarwalA. LeeR.K. NathJ. RSNA-ASNR 2019 intracranial hemorrhage CT Annotators. Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge.Radiol. Artif. Intell.202023e19021110.1148/ryai.202019021133937827
    [Google Scholar]
  20. SongC. ZhaoQ. LiJ. YueX. GaoR. WangZ. HemSeg-200: A Voxel-Annotated Dataset for Intracerebral Hemorrhages Segmentation in Brain CT Scans.Proceedings of the 2024 IEEE International Conference on Systems, Man, and Cybernetics (SMC)Kuching, Malaysia, 06-10 Oct. 2024, pp. 3376-3377.10.1109/SMC54092.2024.10830922
    [Google Scholar]
  21. DeneckeK. DengY. Sentiment analysis in medical settings: New opportunities and challenges.Artif. Intell. Med.2015641172710.1016/j.artmed.2015.03.00625982909
    [Google Scholar]
  22. MitraJ. QiuJ. MacDonaldM. VenugopalP. WallaceK. AbdouH. RichmondM. ElansaryN. EdwardsJ. PatelN. MorrisonJ. MarinelliL. Automatic hemorrhage detection from color doppler ultrasound using a generative adversarial network (GAN)-based anomaly detection method.IEEE J. Transl. Eng. Health Med.2022101910.1109/JTEHM.2022.319998736051823
    [Google Scholar]
  23. WangX. CaiW. ShenD. HuangH. Temporal correlation structure learning for MCI conversion prediction.Medical Image Computing and Computer Assisted Intervention – MICCAI 2018ChamSpringer201844645410.1007/978‑3‑030‑00931‑1_51
    [Google Scholar]
  24. SaitoM. MatsumotoE. SaitoS. Temporal generative adversarial nets with singular value clipping.Proceedings of the IEEE International Conference on Computer VisionVenice, Italy, 22-29 Oct. 2017, pp. 2849-2858.10.1109/ICCV.2017.308
    [Google Scholar]
  25. SanglerdsinlapachaiN. PlangprasopchokA. HoT.B. NantajeewarawatE. Improving sentiment analysis on clinical narratives by exploiting UMLS semantic types.Artif. Intell. Med.202111310203310.1016/j.artmed.2021.10203333685589
    [Google Scholar]
  26. AhmadI.S. DaiJ. XieY. LiangX. Deep learning models for CT image classification: a comprehensive literature review.Quant. Imaging Med. Surg.2025151962101110.21037/qims‑24‑140039838987
    [Google Scholar]
  27. RückertJ. BlochL. BrüngelR. Idrissi-YaghirA. SchäferH. SchmidtC.S. KoitkaS. PelkaO. AbachaA.B. G Seco de HerreraA. MüllerH. HornP.A. NensaF. FriedrichC.M. Rocov2: Radiology objects in context version 2, an updated multimodal image dataset.Sci. Data202411168810.1038/s41597‑024‑03496‑638926396
    [Google Scholar]
  28. SiniscalchiA. GrayC. MalferrariG. Ultrasound diagnostic method in vascular dementia: Current concepts.Curr. Med. Imaging202117450751210.2174/157340561699920100814510633032514
    [Google Scholar]
  29. ManouvelouS. KoutoulidisV. TsougosI. ToliaM. KyrgiasG. AnyfantakisG. MoulopoulosL.A. GouliamosA. PapageorgiouS. Differential diagnosis of behavioral variant and semantic variant of frontotemporal dementia using visual rating scales.Curr. Med. Imaging202016444445110.2174/157340561566619022515483432410545
    [Google Scholar]
  30. PrakashD. MadusankaN. BhattacharjeeS. KimC.H. ParkH.G. ChoiH.K. Diagnosing Alzheimer’s disease based on multiclass MRI scans using transfer learning techniques.Curr. Med. Imaging202117121460147210.2174/157340561766621012716181233504310
    [Google Scholar]
  31. CuiJ. BianW. WangJ. NiuJ. Advances in imaging techniques of the blood-brain barrier and clinical application.Curr. Med. Imaging Rev.202420216217210.2174/1573405619906201223095427
    [Google Scholar]
  32. PhanT.C. PhanA.C. Automatic detection and segmentation of intracranial hemorrhage based on improved U-Net model.Curr. Med. Imaging2024201e15092322116610.2174/1573405617999241214153757
    [Google Scholar]
  33. KumaravelP. MohanS. ArivudaiyanambiJ. ShajilN. VenkatakrishnanH.N. A simplified framework for the detection of intracranial hemorrhage in CT brain images using deep learning.Curr. Med. Imaging202117101226123610.2174/157340561766621021810064133602101
    [Google Scholar]
  34. KaliannanS. RengarajA. Differentiating the presence of brain stroke types in MR images using CNN architecture.Curr. Med. Imaging2024201e1573405627323810.2174/011573405627323823120310515738389379
    [Google Scholar]
  35. YinX. CirenD. GuojieC. ZhangG. WangJ. ZhangH. Intracranial structural malformations in children in tibet: CT and MRI findings in a single tertiary center.Curr. Med. Imaging202521e1573405632164210.2174/011573405632164224121310365839757663
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056420799250902080814
Loading
/content/journals/cmir/10.2174/0115734056420799250902080814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test