Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Predicting the recurrence risk of NMIBC after TURBT is crucial for individualized clinical treatment.

Objective

The objective of this study is to evaluate the ability of radiomic feature analysis of intratumoral and peritumoral regions based on computed tomography (CT) imaging to predict recurrence in non-muscle-invasive bladder cancer (NMIBC) patients who underwent transurethral resection of bladder tumor (TURBT).

Methods

A total of 233 patients with NMIBC who underwent TURBT were retrospectively analyzed. Within the intratumoral and peritumoral regions of the venous phase images, 1316 radiomics features were extracted. Feature selection was used to identify a set of top recurrence-associated features within the training cohort. Three models were constructed to predict recurrence for a given patient using Random Forest (RF): Model 1 was based on the radiomics features set from the intratumoral region, Model 2 was based on a combination of intratumoral and peritumoral regions, and Model 3 combined the radiomics features from Model 2 and clinical factors. The three models were then independently tested on internal and external cohorts, and their performance was evaluated. We also employed the bootstrap method on the internal cohort to further validate the performance of the model.

Results

Combining intratumoral and peritumoral regions, Model 2 yielded a higher area under the receiver operator characteristic curves (AUC) than Model 1, with 0.826 AUCs of the training cohort. After adding clinical factors, the predictive performance of Model 3 for postoperative recurrence of NMIBC was further improved, and the AUCs of the training, internal, and external validation cohorts of Model 3 were 0.860 (95% CI: 0.829-0.954), 0.829 (0.812-0.863), and 0.805 (0.652-0.840), respectively (all p>0.05). The bootstrap value of Model 3 on the internal cohort was 0.852. Model 3 stratified patients into high- and low-risk groups with significantly different recurrence-free survival (RFS) (p<0.001).

Conclusion

Radiomic features derived from intratumoral regions can predict the 2-year recurrence risk following TURBT in patients with NMIBC. The predictive performance is further enhanced when combined with radiomic features from peritumoral regions and clinical risk factors.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056350444250418075406
2025-05-26
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056350444.html?itemId=/content/journals/cmir/10.2174/0115734056350444250418075406&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  2. BabjukM. BurgerM. CapounO. CohenD. CompératE.M. EscrigD.J.L. GonteroP. LiedbergF. Masson-LecomteA. MostafidA.H. PalouJ. RhijnV.B.W.G. RouprêtM. ShariatS.F. SeisenT. SoukupV. SylvesterR.J. European association of urology guidelines on non–muscle-invasive bladder cancer (Ta, T1, and carcinoma in Situ).Eur. Urol.2022811759410.1016/j.eururo.2021.08.01034511303
    [Google Scholar]
  3. ChengL. MontironiR. DavidsonD.D. Lopez-BeltranA. Staging and reporting of urothelial carcinoma of the urinary bladder.Mod. Pathol.200922Suppl. 2S70S9510.1038/modpathol.2009.119494855
    [Google Scholar]
  4. FlaigT.W. SpiessP.E. AgarwalN. BangsR. BoorjianS.A. BuyyounouskiM.K. ChangS. DownsT.M. EfstathiouJ.A. FriedlanderT. GreenbergR.E. GuruK.A. GuzzoT. HerrH.W. Hoffman-CensitsJ. HoimesC. InmanB.A. JimboM. KaderA.K. LeleS.M. MichalskiJ. MontgomeryJ.S. NandagopalL. PagliaroL.C. PalS.K. PattersonA. PlimackE.R. PoharK.S. PrestonM.A. SextonW.J. Siefker-RadtkeA.O. TwardJ. WrightJ.L. GurskiL.A. Johnson-ChillaA. Bladder cancer, version 3.2020, NCCN clinical practice guidelines in oncology.J. Natl. Compr. Canc. Netw.202018332935410.6004/jnccn.2020.001132135513
    [Google Scholar]
  5. SylvesterR.J. MeijdenD.V.A.P.M. OosterlinckW. WitjesJ.A. BouffiouxC. DenisL. NewlingD.W.W. KurthK. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: A combined analysis of 2596 patients from seven EORTC trials.Eur. Urol.200649346647710.1016/j.eururo.2005.12.03116442208
    [Google Scholar]
  6. KimH.S. JeongC.W. KwakC. KimH.H. KuJ.H. Novel nomograms to predict recurrence and progression in primary non-muscle-invasive bladder cancer: Validation of predictive efficacy in comparison with European Organization of Research and Treatment of Cancer scoring system.World J. Urol.20193791867187710.1007/s00345‑018‑2581‑330535715
    [Google Scholar]
  7. JobczykM. StawiskiK. KaszkowiakM. RajwaP. RóżańskiW. SoriaF. ShariatS.F. FendlerW. Deep learning-based recalibration of the CUETO and EORTC prediction tools for recurrence and progression of non–muscle-invasive bladder cancer.Eur. Urol. Oncol.20225110911210.1016/j.euo.2021.05.00634092528
    [Google Scholar]
  8. SylvesterR.J. RodríguezO. HernándezV. TurturicaD. BauerováL. BruinsH.M. BründlJ. KwastD.V.T.H. BrisudaA. Rubio-BrionesJ. SelesM. HentschelA.E. KusumaV.R.M. HuebnerN. CotteJ. MertensL.S. VolanisD. CussenotO. HenríquezS.J.D. PeñaL.D.E. PisanoF. PešlM. HeijdenD.V.A.G. HerdegenS. ZlottaA.R. HacekJ. CalatravaA. MannweilerS. BosschieterJ. AshabereD. HaitelA. CôtéJ.F. SheikhE.S. LunelliL. AlgabaF. AlemanyI. SoriaF. RunneboomW. BreyerJ. NieuwenhuijzenJ.A. LlorenteC. MolinaroL. Hulsbergen-van de KaaC.A. EvertM. KiemeneyL.A.L.M. N’DowJ. PlassK. ČapounO. SoukupV. Dominguez-EscrigJ.L. CohenD. PalouJ. GonteroP. BurgerM. ZigeunerR. MostafidA.H. ShariatS.F. RouprêtM. CompératE.M. BabjukM. RhijnV.B.W.G. European association of urology (EAU) prognostic factor risk groups for non–muscle-invasive bladder cancer (NMIBC) incorporating the WHO 2004/2016 and WHO 1973 classification systems for grade: An update from the EAU NMIBC Guidelines Panel.Eur. Urol.202179448048810.1016/j.eururo.2020.12.03333419683
    [Google Scholar]
  9. AertsH.J.W.L. VelazquezE.R. LeijenaarR.T.H. ParmarC. GrossmannP. CarvalhoS. BussinkJ. MonshouwerR. Haibe-KainsB. RietveldD. HoebersF. RietbergenM.M. LeemansC.R. DekkerA. QuackenbushJ. GilliesR.J. LambinP. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.Nat. Commun.201451400610.1038/ncomms500624892406
    [Google Scholar]
  10. HuangW. JiangY. XiongW. SunZ. ChenC. YuanQ. ZhouK. HanZ. FengH. ChenH. LiangX. YuS. HuY. YuJ. ChenY. ZhaoL. LiuH. ZhouZ. WangW. WangW. XuY. LiG. Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer.Nat. Commun.2022131509510.1038/s41467‑022‑32816‑w36042205
    [Google Scholar]
  11. QianJ. YangL. HuS. GuS. YeJ. LiZ. DuH. ShenH. Feasibility study on predicting recurrence risk of bladder cancer based on radiomics features of multiphase CT images.Front. Oncol.20221289989710.3389/fonc.2022.89989735719972
    [Google Scholar]
  12. GandiC. VaccarellaL. BientinesiR. RacioppiM. PiercontiF. SaccoE. Bladder cancer in the time of machine learning: Intelligent tools for diagnosis and management.Urologia20218829410210.1177/039156032098716933402061
    [Google Scholar]
  13. ShalataA.T. ShehataM. BogaertV.E. AliK.M. AlksasA. MahmoudA. El-GendyE.M. MohamedM.A. GiridharanG.A. ContractorS. El-BazA. Predicting recurrence of non-muscle-invasive bladder cancer: Current techniques and future trends.Cancers20221420501910.3390/cancers1420501936291803
    [Google Scholar]
  14. BramanN.M. EtesamiM. PrasannaP. DubchukC. GilmoreH. TiwariP. PlechaD. MadabhushiA. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.Breast Cancer Res.20171915710.1186/s13058‑017‑0846‑128521821
    [Google Scholar]
  15. ChenM. CaoJ. HuJ. TopatanaW. LiS. JuengpanichS. LinJ. TongC. ShenJ. ZhangB. WuJ. PochaC. KudoM. AmedeiA. TrevisaniF. SungP.S. ZaydfudimV.M. KandaT. CaiX. Clinical-radiomic analysis for pretreatment prediction of objective response to first transarterial chemoembolization in hepatocellular carcinoma.Liver Cancer2021101385110.1159/00051202833708638
    [Google Scholar]
  16. WoźnickiP. LaquaF.C. MessmerK. KunzW.G. StiefC. NörenbergD. SchreierA. WójcikJ. RuebenthalerJ. IngrischM. RickeJ. BuchnerA. SchulzG.B. GresserE. Radiomics for the prediction of overall survival in patients with bladder cancer prior to radical cystectomy.Cancers20221418444910.3390/cancers1418444936139609
    [Google Scholar]
  17. GretenF.R. GrivennikovS.I. Inflammation and cancer: Triggers, mechanisms, and consequences.Immunity2019511274110.1016/j.immuni.2019.06.02531315034
    [Google Scholar]
  18. DielemanJ. CampbellM. ChapinA. EldrenkampE. FanV.Y. HaakenstadA. KatesJ. LiuY. MatyaszT. MicahA. ReynoldsA. SadatN. SchneiderM.T. SorensenR. EvansT. EvansD. KurowskiC. TandonA. AbbasK.M. AberaS.F. KiadaliriA.A. AhmedK.Y. AhmedM.B. AlamK. Alizadeh-NavaeiR. AlkerwiA. AminiE. AmmarW. AmrockS.M. AntonioC.A.T. AteyT.M. Avila-BurgosL. AwasthiA. BaracA. BernalO.A. BeyeneA.S. BeyeneT.J. BirungiC. BizuayehuH.M. BreitbordeN.J.K. Cahuana-HurtadoL. CastroR.E. Catalia-LopezF. DalalK. DandonaL. DandonaR. JagerD.P. DharmaratneS.D. DubeyM. FarinhaC.S.S. FaroA. FeiglA.B. FischerF. FitchettJ.R.A. FoigtN. GirefA.Z. GuptaR. HamidiS. HarbH.L. HayS.I. HendrieD. HorinoM. JürissonM. JakovljevicM.B. JavanbakhtM. JohnD. JonasJ.B. KarimiS.M. KhangY-H. KhubchandaniJ. KimY.J. KingeJ.M. KrohnK.J. KumarG.A. RazekE.H.M.A. RazekE.M.M.A. MajeedA. MalekzadehR. MasiyeF. MeierT. MeretojaA. MillerT.R. MirrakhimovE.M. MohammedS. NangiaV. OlgiatiS. OsmanA.S. OwolabiM.O. PatelT. CaicedoA.J.P. PereiraD.M. PerelmanJ. PolinderS. RafayA. Rahimi-MovagharV. RaiR.K. RamU. RanabhatC.L. RobaH.S. SalamaJ. SavicM. SepanlouS.G. ShrimeM.G. TalongwaR.T. AoB.J.T. TediosiF. TesemaA.G. ThomsonA.J. Tobe-GaiR. Topor-MadryR. UndurragaE.A. VasankariT. ViolanteF.S. WerdeckerA. WijeratneT. XuG. YonemotoN. YounisM.Z. YuC. ZaidiZ. El Sayed ZakiM. MurrayC.J.L. Evolution and patterns of global health financing 1995–2014: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries.Lancet2017389100831981200410.1016/S0140‑6736(17)30874‑728433256
    [Google Scholar]
  19. RichtersA. AbenK.K.H. KiemeneyL.A.L.M. The global burden of urinary bladder cancer: An update.World J. Urol.20203881895190410.1007/s00345‑019‑02984‑431676912
    [Google Scholar]
  20. SvatekR.S. HollenbeckB.K. HolmängS. LeeR. KimS.P. StenzlA. LotanY. The economics of bladder cancer: Costs and considerations of caring for this disease.Eur. Urol.201466225326210.1016/j.eururo.2014.01.00624472711
    [Google Scholar]
  21. CambierS. SylvesterR.J. ColletteL. GonteroP. BrausiM.A. AndelV.G. KirkelsW.J. SilvaF.C.D. OosterlinckW. PrescottS. KirkaliZ. PowellP.H. ReijkeD.T.M. TurkeriL. ColletteS. OddensJ. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non–muscle-invasive stage Ta–T1 urothelial bladder cancer patients treated with 1–3 years of maintenance bacillus calmette-guérin.Eur. Urol.2016691606910.1016/j.eururo.2015.06.04526210894
    [Google Scholar]
  22. DalkilicA. BayarG. KilincM.F. A comparison of EORTC And CUETO risk tables in terms of the prediction of recurrence and progression in all non-muscle-invasive bladder cancer patients.Urol. J.2019161374330120763
    [Google Scholar]
  23. LimkinE.J. SunR. DercleL. ZacharakiE.I. RobertC. ReuzéS. SchernbergA. ParagiosN. DeutschE. FertéC. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology.Ann. Oncol.20172861191120610.1093/annonc/mdx03428168275
    [Google Scholar]
  24. McLaughlinM. PatinE.C. PedersenM. WilkinsA. DillonM.T. MelcherA.A. HarringtonK.J. Inflammatory microenvironment remodelling by tumour cells after radiotherapy.Nat. Rev. Cancer202020420321710.1038/s41568‑020‑0246‑132161398
    [Google Scholar]
  25. JiangY. LiangX. HanZ. WangW. XiS. LiT. ChenC. YuanQ. LiN. YuJ. XieY. XuY. ZhouZ. PoultsidesG.A. LiG. LiR. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: A retrospective, multicohort study.Lancet Digit. Health202136e371e38210.1016/S2589‑7500(21)00065‑034045003
    [Google Scholar]
  26. PrasannaP. PatelJ. PartoviS. MadabhushiA. TiwariP. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings.Eur. Radiol.201727104188419710.1007/s00330‑016‑4637‑327778090
    [Google Scholar]
  27. Pérez-MoralesJ. TunaliI. StringfieldO. EschrichS.A. BalagurunathanY. GilliesR.J. SchabathM.B. Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening.Sci. Rep.20201011052810.1038/s41598‑020‑67378‑832601340
    [Google Scholar]
  28. XueR. ZhangQ. CaoQ. KongR. XiangX. LiuH. FengM. WangF. ChengJ. LiZ. ZhanQ. DengM. ZhuJ. ZhangZ. ZhangN. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity.Nature2022612793814114710.1038/s41586‑022‑05400‑x36352227
    [Google Scholar]
  29. FukuokayaW. KimuraT. MikiJ. KimuraS. WatanabeH. BoF. OkadaD. AikawaK. OchiA. SuzukiK. ShigaN. AbeH. EgawaS. Red cell distribution width predicts time to recurrence in patients with primary non–muscle-invasive bladder cancer and improves the accuracy of the EORTC scoring system.Urol. Oncol.2020387638.e15638.e2310.1016/j.urolonc.2020.01.01632184059
    [Google Scholar]
  30. ShirasawaM. YoshidaT. HorinouchiH. KitanoS. ArakawaS. MatsumotoY. ShinnoY. OkumaY. GotoY. KandaS. WatanabeR. YamamotoN. WatanabeS. OheY. MotoiN. Prognostic impact of peripheral blood neutrophil to lymphocyte ratio in advanced-stage pulmonary large cell neuroendocrine carcinoma and its association with the immune-related tumour microenvironment.Br. J. Cancer2021124592593210.1038/s41416‑020‑01188‑733250511
    [Google Scholar]
  31. LorenteD. MateoJ. TempletonA.J. ZafeiriouZ. BianchiniD. FerraldeschiR. BahlA. ShenL. SuZ. SartorO. BonoD.J.S. Baseline neutrophil–lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use.Ann. Oncol.201526475075510.1093/annonc/mdu58725538172
    [Google Scholar]
  32. MjaessG. ChebelR. KaramA. MoussaI. PretotD. TayehA.G. SarkisJ. SemaanA. PeltierA. AounF. AlbisinniS. RoumeguèreT. Prognostic role of neutrophil-to-lymphocyte ratio (NLR) in urological tumors: An umbrella review of evidence from systematic reviews and meta-analyses.Acta Oncol.202160670471310.1080/0284186X.2021.188632333586577
    [Google Scholar]
  33. GetzlerI. BahouthZ. NativO. RubinsteinJ. HalachmiS. Preoperative neutrophil to lymphocyte ratio improves recurrence prediction of non-muscle invasive bladder cancer.BMC Urol.20181819010.1186/s12894‑018‑0404‑x30348146
    [Google Scholar]
  34. AbouelkheirR.T. AbdelhamidA. Abou El-GharM. El-DiastyT. Imaging of bladder cancer: Standard applications and future trends.Medicina202157322010.3390/medicina5703022033804350
    [Google Scholar]
  35. MaX. HadjiiskiL.M. WeiJ. ChanH.P. ChaK.H. CohanR.H. CaoiliE.M. SamalaR. ZhouC. LuY. U‐Net based deep learning bladder segmentation in CT urography.Med. Phys.20194641752176510.1002/mp.1343830734932
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056350444250418075406
Loading
/content/journals/cmir/10.2174/0115734056350444250418075406
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test