Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

The use of magnetic resonance imaging (MRI), which has greater soft tissue contrast than other imaging modalities, has increased over the last 30 years. Studies have shown that MRI is frequently used for diagnosing neurodegenerative diseases. The incidence of Alzheimer's disease, a neurodegenerative condition, is increasing due to population aging and has a detrimental impact on quality of life. Volumetric changes in many important anatomical structures have been detected in magnetic resonance (MR) images of Alzheimer's disease patients. Various software programs, such as OsiriX, Horos, and VolBrain, are currently used to perform area and volume measurements in various brain structures. In this study, we compared the VolBrain and Horos applications for volume measurements of the cerebellum, whose relationship with Alzheimer's disease is not yet fully understood. We aimed to assess the consistency between the applications using various statistical methods and to highlight their respective advantages and disadvantages for researchers.

Methods

This was a retrospective study. The patient group comprised 50 individuals with Alzheimer's disease aged 30–65 years. T1 MR images of 50 Alzheimer's disease patients were first acquired the VolBrain program and then the Horos program.

Results

The applications used yielded almost identical measurement results, and no significant differences were observed.

Discussion

Both applications have been found to produce consistent results. This indicates that the methods are reliable and that either application can be effectively used for the intended purpose.

Conclusion

In conclusion, the choice between the two applications depends largely on the user’s data requirements, software preferences, and hardware capabilities. These factors play a decisive role in the selection process.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056394839250912054625
2025-09-19
2026-01-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056394839.html?itemId=/content/journals/cmir/10.2174/0115734056394839250912054625&mimeType=html&fmt=ahah

References

  1. What is an MRI scan and what can it do?Drug Ther Bull2011491214114410.1136/dtb.2011.02.007322170411
    [Google Scholar]
  2. MarquesJ.P. SimonisF.F.J. WebbA.G. Low-field MRI: An MR physics perspective.J. Magn. Reson. Imaging20194961528154210.1002/jmri.2663730637943
    [Google Scholar]
  3. SammetS. Magnetic resonance safety.Abdom. Radiol. (N.Y.)201641344445110.1007/s00261‑016‑0680‑426940331
    [Google Scholar]
  4. LehéricyS. RozeE. GoizetC. MochelF. MRI of neurodegeneration with brain iron accumulation.Curr. Opin. Neurol.202033446247310.1097/WCO.000000000000084432657887
    [Google Scholar]
  5. GrahamN.S.N. ColeJ.H. BourkeN.J. SchottJ.M. SharpD.J. Distinct patterns of neurodegeneration after TBI and in Alzheimer’s disease.Alzheimers Dement.20231973065307710.1002/alz.1293436696255
    [Google Scholar]
  6. ChandraA. DervenoulasG. PolitisM. Alzheimer’s Disease Neuroimaging Initiative Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment.J. Neurol.201926661293130210.1007/s00415‑018‑9016‑330120563
    [Google Scholar]
  7. YaoZ. WangH. YanW. WangZ. ZhangW. WangZ. ZhangG. Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images.Eur. J. Radiol.202316511093410.1016/j.ejrad.2023.11093437354773
    [Google Scholar]
  8. ShahidiR. BaradaranM. AsgarzadehA. BagheriehS. TajabadiZ. FarhadiA. KoraniS.S. KhalafiM. ShobeiriP. SadeghsalehiH. ShafieiounA. YazdanifarM.A. SinghalA. SotoudehH. Diagnostic performance of MRI radiomics for classification of Alzheimer’s disease, mild cognitive impairment, and normal subjects: A systematic review and meta-analysis.Aging Clin. Exp. Res.202335112333234810.1007/s40520‑023‑02565‑x37801265
    [Google Scholar]
  9. AcarM. UğurS. Morphometric analysis of corpus callosum in individuals with Alzheimer’s Disease: Magnetic Resonance Imaging (MRI) study.Curr. Alzheimer Res.202421428929410.2174/011567205033574424082006595239177137
    [Google Scholar]
  10. ScheltensP. BlennowK. BretelerM.M.B. de StrooperB. FrisoniG.B. SallowayS. Van der FlierW.M. Alzheimer’s disease.Lancet20163881004350551710.1016/S0140‑6736(15)01124‑126921134
    [Google Scholar]
  11. KocahanS DoğanZ. Mechanisms of Alzheimer's disease pathogenesis and prevention: The brain, neural pathology, N-methyl-D-aspartate receptors, tau protein and other risk factors.Clin Psychopharmacol Neurosci20171511810.9758/cpn.2017.15.1.1
    [Google Scholar]
  12. SouzaL.C. BertouxM. FunkiewiezA. SamriD. AzuarC. HabertM.O. KasA. LamariF. SarazinM. DuboisB. Frontal presentation of Alzheimer’s disease: A series of patients with biological evidence by CSF biomarkers.Dement. Neuropsychol.201371667410.1590/S1980‑57642013DN7010001129213822
    [Google Scholar]
  13. ReitzC. Genetic diagnosis and prognosis of Alzheimer’s disease: Challenges and opportunities.Expert Rev. Mol. Diagn.201515333934810.1586/14737159.2015.100246925634383
    [Google Scholar]
  14. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.1343928872215
    [Google Scholar]
  15. HeemelsM.T. Neurodegenerative diseases.Nature2016539762817910.1038/539179a27830810
    [Google Scholar]
  16. TaylorJ.P. HardyJ. FischbeckK.H. Toxic proteins in neurodegenerative disease.Science200229655751991199510.1126/science.106712212065827
    [Google Scholar]
  17. CaselliR.J. Current issues in the diagnosis and management of dementia.Semin. Neurol.200323323124010.1055/s‑2003‑81474314722819
    [Google Scholar]
  18. KnopmanD.S. BoeveB.F. PetersenR.C. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia.Mayo Clin. Proc.200378101290130810.4065/78.10.129014531488
    [Google Scholar]
  19. AlimI. TevesL. LiR. MoriY. TymianskiM. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death.J. Neurosci.20133344172641727710.1523/JNEUROSCI.1729‑13.201324174660
    [Google Scholar]
  20. TwarowskiB. HerbetM. Inflammatory processes in Alzheimer’s Disease—Pathomechanism, diagnosis and treatment: A review.Int. J. Mol. Sci.2023247651810.3390/ijms2407651837047492
    [Google Scholar]
  21. ChuLW Alzheimer's disease: Early diagnosis and treatment.Hong Kong Medical J.2012183228
    [Google Scholar]
  22. PorsteinssonA.P. IsaacsonR.S. KnoxS. SabbaghM.N. RubinoI. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021.J. Prev. Alzheimers Dis.20218337138610.14283/jpad.2021.2334101796
    [Google Scholar]
  23. Spires-JonesT.L. HymanB.T. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease.Neuron201482475677110.1016/j.neuron.2014.05.00424853936
    [Google Scholar]
  24. SánchezM.Á. CatasúsC.A.S. IbañezI.P. BringasM.L. SánchezA.P. Alzheimer's disease: The new actors of an old drama.Alzheimer's disease pathogenesis: Core concepts, shifting paradigms and therapeutic targetsRijeka (Croatia)IntechOpen201132010.5772/23190
    [Google Scholar]
  25. TrilloL. DasD. HsiehW. MedinaB. MoghadamS. LinB. DangV. SanchezM.M. De MiguelZ. AshfordJ.W. SalehiA. Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care.Neurosci. Biobehav. Rev.20133781363137910.1016/j.neubiorev.2013.05.00823707776
    [Google Scholar]
  26. ManjónJ.V. CoupéP. volBrain: An online MRI brain volumetry system.Front. Neuroinform.2016103010.3389/fninf.2016.0003027512372
    [Google Scholar]
  27. RuizM. JuliàA. BoadaI. Starviewer and its comparison with other open-source DICOM viewers using a novel hierarchical evaluation framework.Int. J. Med. Inform.202013710409810.1016/j.ijmedinf.2020.10409832066084
    [Google Scholar]
  28. GiavarinaD. Understanding Bland Altman analysis.Biochem. Med. (Zagreb)201525214115110.11613/BM.2015.01526110027
    [Google Scholar]
  29. McAlindenC KhadkaJ PesudovsK Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic. Physiol. Optics201131330
    [Google Scholar]
  30. TumaR.D.L Different patterns of β-amyloid pathology in the cerebellum of early-onset Alzheimer´ s disease individuals.2020 Alzheimer’s Association International Conference.2020
    [Google Scholar]
  31. KimS. AdamsJ.N. StithL. TaylorL.M. HarrisA.L. McMillanL. YassaM.A. Cerebellar-cortical functional connectivity is associated with Alzheimer’s disease pathology and cerebellar atrophy.Alzheimers Dement.202319S10e08186010.1002/alz.081860
    [Google Scholar]
  32. JacobsH.I.L. HopkinsD.A. MayrhoferH.C. BrunerE. van LeeuwenF.W. RaaijmakersW. SchmahmannJ.D. The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline.Brain20181411374710.1093/brain/awx19429053771
    [Google Scholar]
  33. LeeS. JoS. KimH.J. LeeJ.H. A case with early onset Alzheimer’s disease with amyloid uptake not only in cerebrum but also in cerebellum.Alzheimers Dement.202117S4e05332910.1002/alz.053329
    [Google Scholar]
  34. WellerJ. BudsonA. Current understanding of Alzheimer’s disease diagnosis and treatment.F1000 Res.20187116110.12688/f1000research.14506.130135715
    [Google Scholar]
  35. Se ThoeE. FauziA. TangY.Q. ChamyuangS. ChiaA.Y.Y. A review on advances of treatment modalities for Alzheimer’s disease.Life Sci.202127611912910.1016/j.lfs.2021.11912933515559
    [Google Scholar]
  36. WaliaN. EratneD. LoiS.M. FarrandS. LiQ.X. MalpasC.B. VargheseS. WalterfangM. EvansA.H. ParkerS. CollinsS.J. MastersC.L. VelakoulisD. Cerebrospinal fluid neurofilament light and cerebral atrophy in younger-onset dementia and primary psychiatric disorders.Intern. Med. J.20235391564156910.1111/imj.1595636314730
    [Google Scholar]
  37. TuramanlarO. KundakciY.E. SaritasA. BilirA. AtayE. GökaslanC.O. Automatic segmentation of the cerebellum using volBrain software in normal paediatric population.Int. J. Dev. Neurosci.202383432333210.1002/jdn.1025937078107
    [Google Scholar]
  38. BatinS PayasA BalE EkinciY KurtoğluE UçarI Evaluation of cerebellum volume and trunk oscillation velocity in cases with adolescent idiopathic scoliosis: A preliminary report.European spine J.202332401210.1007/s00586‑023‑07948‑2
    [Google Scholar]
  39. YücelN. ŞekerM. YilmazM.T. SakçıZ. BükteY. Morphometric analysis of hippocampus and intracranial formations based on their stages in patients diagnosed with major cognitive disorder.Turk. J. Med. Sci.202252361362410.55730/1300‑0144.535336326329
    [Google Scholar]
  40. ZamaniJ SadrA JavadiAH Comparison of cortical and subcortical structural segmentation methods in Alzheimer's disease: A statistical approach.J Clin Neurosci2022999910810.1016/j.jocn.2022.03.001
    [Google Scholar]
  41. KoussisP. ToulasP. GlotsosD. LamprouE. KehagiasD. LavdasE. Reliability of automated brain volumetric analysis: A test by comparing NeuroQuant and volBrain software.Brain Behav.20231312e332010.1002/brb3.332037997504
    [Google Scholar]
  42. ZeppaP. NeitzertL. MammiM. MonticelliM. AltieriR. CastaldoM. CofanoF. BorrèA. ZengaF. MelcarneA. GarbossaD. How reliable are volumetric techniques for high-grade gliomas? A comparison study of different available tools.Neurosurgery2020876E672E67910.1093/neuros/nyaa28232629469
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056394839250912054625
Loading
/content/journals/cmir/10.2174/0115734056394839250912054625
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test