Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Introduction

This study aimed to explore the relationship between radiomics features and anaplastic lymphoma kinase (ALK) gene mutation status in lung adenocarcinoma and to develop a radiomics nomogram for preoperative prediction of ALK mutations.

Methods

A retrospective analysis was conducted on 210 patients with histologically confirmed lung adenocarcinoma (50 ALK mutation-positive, 160 mutation-negative), divided into training (n=147) and validation (n=63) cohorts (7:3 ratio). Preoperative enhanced CT images were analyzed using ITK-SNAP for region-of-interest delineation, and radiomics features were extracted A.K. software. The least absolute shrinkage and selection operator algorithm selected features to generate a radiomics score. Multivariate logistic regression identified independent risk factors, and a radiomics nomogram combining clinical features and radiomics signatures was developed. Model performance was evaluated using AUC in both training and validation sets.

Results

Nineteen radiomics features were selected to construct the radiomics signature. The signature achieved an AUC of 0.89 (95% CI: 0.84–0.95) in the training set and 0.79 (95% CI: 0.63–0.95) in the validation set. The radiomics nomogram demonstrated superior performance (AUC=0.80, 95% CI: 0.63–0.97) compared to the clinical model alone (AUC=0.66, 95% CI: 0.47–0.85) in the validation set. While the nomogram showed no statistically significant improvement over the radiomics signature alone (>0.05), it outperformed the clinical model significantly (<0.001 in training; =0.0337 in validation).

Discussion

The radiomics nomogram integrating clinical and radiomics data demonstrated robust predictive capability for ALK mutations, highlighting the potential of non-invasive CT-based radiomics in guiding personalized treatment. However, the lack of significant difference between the nomogram and radiomics signature alone suggests limited incremental value from clinical variables in this cohort. Limitations include the retrospective design, single-center data, and class imbalance (fewer ALK-positive cases), which may affect generalizability. External validation is warranted to confirm clinical utility.

Conclusion

The CT-derived radiomics signature and nomogram show promise for preoperative ALK mutation prediction in lung adenocarcinoma. These tools could enhance clinical decision-making by identifying candidates for targeted therapies, though further validation is needed to optimize their application in diverse populations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056376470250718053430
2025-01-01
2025-09-19
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056376470.html?itemId=/content/journals/cmir/10.2174/0115734056376470250718053430&mimeType=html&fmt=ahah

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. DetterbeckF.C. NicholsonA.G. FranklinW.A. The IASLC lung cancer staging project: Summary of proposals for revisions of the classification of lung cancers with multiple pulmonary sites of involvement in the forthcoming eighth edition of the TNM classification.J Thorac Oncol2016115639650
    [Google Scholar]
  3. WuF.Z. ChenP.A. WuC.C. KuoP.L. TsaoS.P. ChienC.C. TangE.K. WuM.T. Semiquantative visual assessment of sub-solid pulmonary nodules ≦3 cm in differentiation of lung adenocarcinoma spectrum.Sci. Rep.2017711579010.1038/s41598‑017‑16042‑929150624
    [Google Scholar]
  4. NishioM. KimD.W. WuY.L. NakagawaK. SolomonB.J. ShawA.T. HashigakiS. OhkiE. UsariT. PaoliniJ. PolliA. WilnerK.D. MokT. Crizotinib versus chemotherapy in asian patients with alk-positive advanced non-small cell lung cancer.Cancer Res. Treat.201850369170010.4143/crt.2017.28028701030
    [Google Scholar]
  5. ShawA.T. SolomonB.J. BesseB. BauerT.M. LinC.C. SooR.A. RielyG.J. OuS.H.I. ClancyJ.S. LiS. AbbattistaA. ThurmH. SatouchiM. CamidgeD.R. KaoS. ChiariR. GadgeelS.M. FelipE. MartiniJ.F. ALK resistance mutations and efficacy of lorlatinib in advanced anaplastic lymphoma kinase-positive non–small-cell lung cancer.J. Clin. Oncol.201937161370137910.1200/JCO.18.0223630892989
    [Google Scholar]
  6. BarlesiF. MazieresJ. MerlioJ.P. DebieuvreD. MosserJ. LenaH. OuafikL.H. BesseB. RouquetteI. WesteelV. EscandeF. MonnetI. LemoineA. VeillonR. BlonsH. Audigier-ValetteC. BringuierP.P. LamyR. Beau-FallerM. PujolJ.L. SabourinJ.C. Penault-LlorcaF. DenisM.G. LantuejoulS. MorinF. TranQ. MissyP. LanglaisA. MilleronB. CadranelJ. SoriaJ.C. ZalcmanG. Biomarkers France contributors Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the french cooperative thoracic intergroup (IFCT).Lancet2016387100261415142610.1016/S0140‑6736(16)00004‑026777916
    [Google Scholar]
  7. RizzoS. PetrellaF. BuscarinoV. De MariaF. RaimondiS. BarberisM. FumagalliC. SpitaleriG. RampinelliC. De MarinisF. SpaggiariL. BellomiM. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer.Eur. Radiol.2016261324210.1007/s00330‑015‑3814‑025956936
    [Google Scholar]
  8. MendozaD.P. StowellJ. MuzikanskyA. ShepardJ.A.O. ShawA.T. DigumarthyS.R. Computed tomography imaging characteristics of non–small-cell lung cancer with anaplastic lymphoma kinase rearrangements: A systematic review and meta-analysis.Clin. Lung Cancer201920533934910.1016/j.cllc.2019.05.00631164317
    [Google Scholar]
  9. KimT.H. WooS. YoonS.H. HalpennyD.F. HanS. SuhC.H. CT characteristics of non–small cell lung cancer with anaplastic lymphoma kinase rearrangement: A systematic review and meta-analysis.AJR Am. J. Roentgenol.201921351059107210.2214/AJR.19.2148531414902
    [Google Scholar]
  10. YamamotoS. KornR.L. OkluR. MigdalC. GotwayM.B. WeissG.J. IafrateA.J. KimD.W. KuoM.D. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization.Radiology2014272256857610.1148/radiol.1414078924885982
    [Google Scholar]
  11. HattM. TixierF. PierceL. KinahanP.E. Le RestC.C. VisvikisD. Characterization of PET/CT images using texture analysis: The past, the present… any future?Eur. J. Nucl. Med. Mol. Imaging201744115116510.1007/s00259‑016‑3427‑027271051
    [Google Scholar]
  12. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  13. UthoffJ. NagpalP. SanchezR. GrossT.J. LeeC. SierenJ.C. Differentiation of non-small cell lung cancer and histoplasmosis pulmonary nodules: Insights from radiomics model performance compared with clinician observers.Transl. Lung Cancer Res.20198697998810.21037/tlcr.2019.12.1932010576
    [Google Scholar]
  14. KirienkoM. SolliniM. CorbettaM. VoulazE. GozziN. InterlenghiM. GallivanoneF. CastiglioniI. AsseltaR. DugaS. SoldàG. ChitiA. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer.Eur. J. Nucl. Med. Mol. Imaging202148113643365510.1007/s00259‑021‑05371‑733959797
    [Google Scholar]
  15. YangB. ZhouL. ZhongJ. LvT. LiA. MaL. ZhongJ. YinS. HuangL. ZhouC. LiX. GeY.Q. TaoX. ZhangL. SonY. LuG. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer.Respir. Res.202122118910.1186/s12931‑021‑01780‑234183009
    [Google Scholar]
  16. YangL. YangJ. ZhouX. HuangL. ZhaoW. WangT. ZhuangJ. TianJ. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients.Eur. Radiol.20192952196220610.1007/s00330‑018‑5770‑y30523451
    [Google Scholar]
  17. ZhaoW. WuY. XuY. SunY. GaoP. TanM. MaW. LiC. JinL. HuaY. LiuJ. LiM. The potential of radiomics nomogram in non-invasively prediction of epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma.Front. Oncol.20209148510.3389/fonc.2019.0148531993370
    [Google Scholar]
  18. ZhangG. CaoY. ZhangJ. RenJ. ZhaoZ. ZhangX. LiS. DengL. ZhouJ. Predicting EGFR mutation status in lung adenocarcinoma: Development and validation of a computed tomography-based radiomics signature.Am. J. Cancer Res.202111254656033575086
    [Google Scholar]
  19. YangX. LiuM. RenY. ChenH. YuP. WangS. ZhangR. DaiH. WangC. Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients—a radiomics nomogram analysis.Eur. Radiol.20223242693270310.1007/s00330‑021‑08366‑y34807270
    [Google Scholar]
  20. ChoeJ. LeeS.M. KimW. DoK.H. KimS. ChoiS. SeoJ.B. CT radiomics-based prediction of anaplastic lymphoma kinase and epidermal growth factor receptor mutations in lung adenocarcinoma.Eur. J. Radiol.202113910971010.1016/j.ejrad.2021.10971033862316
    [Google Scholar]
  21. SongL. ZhuZ. MaoL. LiX. HanW. DuH. WuH. SongW. JinZ. Clinical, conventional CT and radiomic feature-based machine learning models for predicting alk rearrangement status in lung adenocarcinoma patients.Front. Oncol.20201036910.3389/fonc.2020.0036932266148
    [Google Scholar]
  22. MaD.N. GaoX.Y. DanY.B. ZhangA.N. WangW.J. YangG. ZhuH.Z. Evaluating solid lung adenocarcinoma anaplastic lymphoma kinase gene rearrangement using noninvasive radiomics biomarkers.OncoTargets Ther.2020136927693510.2147/OTT.S25779832764984
    [Google Scholar]
  23. PanY. ZhangY. LiY. HuH. WangL. LiH. WangR. YeT. LuoX. ZhangY. LiB. CaiD. ShenL. SunY. ChenH. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: A comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features.Lung Cancer201484212112610.1016/j.lungcan.2014.02.00724629636
    [Google Scholar]
  24. ParkJ. KobayashiY. UrayamaK.Y. YamauraH. YatabeY. HidaT. Imaging characteristics of driver mutations in EGFR, KRAS, and ALK among treatment-naïve patients with advanced lung adenocarcinoma.PLoS One2016118e016108110.1371/journal.pone.016108127518729
    [Google Scholar]
  25. ChoiC.M. KimM.Y. HwangH.J. LeeJ.B. KimW.S. Advanced adenocarcinoma of the lung: Comparison of CT characteristics of patients with anaplastic lymphoma kinase gene rearrangement and those with epidermal growth factor receptor mutation.Radiology2015275127227910.1148/radiol.1414084825575117
    [Google Scholar]
  26. YoonH.J. SohnI. ChoJ.H. LeeH.Y. KimJ.H. ChoiY.L. KimH. LeeG. LeeK.S. KimJ. Decoding tumor phenotypes for ALK, ROS1, and RET fusions in lung adenocarcinoma using a radiomics approach.Medicine20159441e175310.1097/MD.000000000000175326469915
    [Google Scholar]
  27. AgazziG.M. RavanelliM. RocaE. MedicinaD. BalzariniP. PessinaC. VermiW. BerrutiA. MaroldiR. FarinaD. CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer.Radiol. Med.2021126678679410.1007/s11547‑020‑01323‑733512651
    [Google Scholar]
  28. PhillipsI. AjazM. EzhilV. PrakashV. AlobaidliS. McQuaidS.J. SouthC. ScuffhamJ. NisbetA. EvansP. Clinical applications of textural analysis in non-small cell lung cancer.Br. J. Radiol.20189110812017026710.1259/bjr.2017026728869399
    [Google Scholar]
  29. AgüloğluN. AksuA. AkyolM. KatgıN. DoksözT.Ç. Importance of pretreatment 18F-FDG PET/CT texture analysis in predicting EGFR and ALK mutation in patients with non-small cell lung cancer.Nucl. Med.202261643343910.1055/a‑1868‑491835977671
    [Google Scholar]
  30. ChenW. LinG. FengY. ChenY. LiY. LiJ. MaoW. JingY. KongC. HuY. ChenM. XiaS. LuC. TuJ. JiJ. Intratumoral and peritumoral CT radiomics in predicting anaplastic lymphoma kinase mutations and survival in patients with lung adenocarcinoma: A multicenter study.Cancer Imaging20252513510.1186/s40644‑025‑00856‑240083024
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056376470250718053430
Loading
/content/journals/cmir/10.2174/0115734056376470250718053430
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ALK mutations; Anaplastic lymphoma kinase; CT; Lung neoplasms; Radiomics; X-ray
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test