Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study aimed to assess the long-term volumetric and radiological effects of COVID-19 on lung anatomy. The severity of the disease was evaluated using radiological scoring, and lung volume measurements were performed 3D Slicer software.

Methods

A retrospective analysis was conducted on a total of 127 patients diagnosed with COVID-19 between April 2020 and December 2023. Initial and follow-up chest CT scans were reviewed to analyze lung volumes and radiological findings. Lung lobes were segmented using 3D Slicer software to measure volumes. Severity scores were assigned based on the Chung system, and statistical methods, including logistic regression and Wilcoxon signed-rank tests, were used to analyze outcomes.

Results

Follow-up CT scans showed significant improvements in lung volumes and severity scores. The left lung total volume increased significantly (p = 0.038), while right lung total volume and COVID-19-affected lung volumes demonstrated non-significant improvements. Severity scores and the number of affected lobes decreased significantly (p 0.05). Correlation analyses revealed that age negatively influenced lung volume recovery (r = -0.177, p = 0.047). Persistent pathological findings, such as interstitial thickening and fibrotic bands, were observed.

Conclusion

COVID-19 induces lasting changes in lung structure, particularly in elderly and severely affected patients. Long-term follow-up and the consideration of antifibrotic therapies are essential to manage post-COVID-19 complications effectively. A multidisciplinary approach is recommended to support patient recovery and minimize healthcare burdens.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056372497250716235052
2025-07-24
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056372497.html?itemId=/content/journals/cmir/10.2174/0115734056372497250716235052&mimeType=html&fmt=ahah

References

  1. CoronavirusW.H.O. COVID-19 Cases, World.2021Available from: https://covid19.who.int/
  2. LiQ. GuanX. WuP. WangX. ZhouL. TongY. RenR. LeungK.S.M. LauE.H.Y. WongJ.Y. XingX. XiangN. WuY. LiC. ChenQ. LiD. LiuT. ZhaoJ. LiuM. TuW. ChenC. JinL. YangR. WangQ. ZhouS. WangR. LiuH. LuoY. LiuY. ShaoG. LiH. TaoZ. YangY. DengZ. LiuB. MaZ. ZhangY. ShiG. LamT.T.Y. WuJ.T. GaoG.F. CowlingB.J. YangB. LeungG.M. FengZ. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia.N. Engl. J. Med.2020382131199120710.1056/NEJMoa200131631995857
    [Google Scholar]
  3. JiangS. XiaS. YingT. LuL. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome.Cell. Mol. Immunol.202017555410.1038/s41423‑020‑0372‑432024976
    [Google Scholar]
  4. KweeT.C. KweeR.M. Chest CT in COVID-19: What the Radiologist Needs to Know.Radiographics20204071848186510.1148/rg.202020015933095680
    [Google Scholar]
  5. LiX. ZhaoY. LuY. ZhengY. MeiN. HanQ. RuanZ. XiaoA. QiuX. WangD. YinB. Performances of clinical characteristics and radiological findings in identifying COVID-19 from suspected cases.BMC Med. Imaging20222215510.1186/s12880‑022‑00780‑y35346080
    [Google Scholar]
  6. PontoneG. ScafuriS. ManciniM.E. AgalbatoC. GuglielmoM. BaggianoA. MuscogiuriG. FusiniL. AndreiniD. MushtaqS. ConteE. AnnoniA. FormentiA. GennariA.G. GuaricciA.I. RabbatM.R. PompilioG. PepiM. RossiA. Role of computed tomography in COVID-19.J. Cardiovasc. Comput. Tomogr.2021151273610.1016/j.jcct.2020.08.01332952101
    [Google Scholar]
  7. StevensR. John MosleyR. Gray’s Anatomy for Students.Ann. R. Coll. Surg. Engl.200688551351410.1308/rcsann.2006.88.5.513b
    [Google Scholar]
  8. PanF. YeT. SunP. GuiS. LiangB. LiL. ZhengD. WangJ. HeskethR.L. YangL. ZhengC. Time course of lung changes at chest CT during recovery from Coronavirus disease 2019 (COVID-19).Radiology2020295371572110.1148/radiol.202020037032053470
    [Google Scholar]
  9. ÖzkanF. ÖztürkM. ÖdekÖ. SavaşM. Chronic Disease and Other Determinants in Deaths Due to COVID-19 From a Health Protection and Promotion Perspective: A Retrospective Analysis.Disaster Med. Public Health Prep.2023174e32510.1017/dmp.2022.30836600492
    [Google Scholar]
  10. YongS.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments.Infect. Dis. Lond.2021531073775410.1080/23744235.2021.192439734024217
    [Google Scholar]
  11. BlancoJ.R. Cobos-CeballosM.J. NavarroF. SanjoaquinI. Arnaiz de las RevillasF. BernalE. Buzon-MartinL. ViribayM. RomeroL. Espejo-PerezS. ValenciaB. IbañezD. Ferrer-PargadaD. MaliaD. Gutierrez-HerreroF.G. OlallaJ. Jurado-GamezB. UgedoJ. Pulmonary long-term consequences of COVID-19 infections after hospital discharge.Clin. Microbiol. Infect.202127689289610.1016/j.cmi.2021.02.01933662544
    [Google Scholar]
  12. BelliniD. CapodiferroP. ViciniS. RengoM. CarboneI. Long COVID in young patients: Impact on lung volume evaluated using multidetector CT.Tomography2023941276128510.3390/tomography904010137489469
    [Google Scholar]
  13. HuangY. TanC. WuJ. ChenM. WangZ. LuoL. ZhouX. LiuX. HuangX. YuanS. ChenC. GaoF. HuangJ. ShanH. LiuJ. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase.Respir. Res.202021116310.1186/s12931‑020‑01429‑632600344
    [Google Scholar]
  14. WangY. DongC. HuY. LiC. RenQ. ZhangX. ShiH. ZhouM. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study.Radiology20202962E55E6410.1148/radiol.202020084332191587
    [Google Scholar]
  15. AlrajhiN.N. Post-COVID-19 pulmonary fibrosis: An ongoing concern.Ann. Thorac. Med.202318417318110.4103/atm.atm_7_2338058790
    [Google Scholar]
  16. HofmanningerJ. PrayerF. PanJ. RöhrichS. ProschH. LangsG. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem.Eur. Radiol. Exp.2020415010.1186/s41747‑020‑00173‑232814998
    [Google Scholar]
  17. Fillion-RobinJ.C. PujolS. BauerC. JenningsD. FennessyF. SonkaM. BuattiJ. AylwardS. MillerJ.V. PieperS. KikinisR. 3D Slicer as an image computing platform for the quantitative imaging network.Magn. Reson. Imaging20123091323134110.1016/j.mri.2012.05.00122770690
    [Google Scholar]
  18. HofmanningerJ. PrayerF. PanJ. RöhrichS. ProschH. GLangs. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem.Eur. Radiol. Exp. 2025415010.1186/s41747‑020‑00173‑2
    [Google Scholar]
  19. ChungM. BernheimA. MeiX. ZhangN. HuangM. ZengX. CuiJ. XuW. YangY. FayadZ.A. JacobiA. LiK. LiS. ShanH. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV).Radiology2020295120220710.1148/radiol.202020023032017661
    [Google Scholar]
  20. Malpani DhootN. GoenkaU. GhoshS. JajodiaS. ChandR. MajumdarS. RamasubbanS. Assigning computed tomography involvement score in COVID-19 patients: prognosis prediction and impact on management.BJR Open2020212020002410.1259/bjro.2020002433178981
    [Google Scholar]
  21. HanX. ChenL. GuoL. WuL. AlwalidO. LiuJ. ZhengY. ChenL. WuW. LiH. LuoQ. ZhaoH. ZhangL. BaiY. SunB. SunT. GuiY. NieT. ChenL. YangF. FanY. ShiH. ZhengC. Long-term radiological and pulmonary function abnormalities at 3 years after COVID-19 hospitalisation: a longitudinal cohort study.Eur. Respir. J.2024641230161210.1183/13993003.01612‑202338387969
    [Google Scholar]
  22. ZhangP LiJ LiuH Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study.Bone Research202081810.1038/s41413‑020‑0084‑5
    [Google Scholar]
  23. KimJ. ChaeG. KimW.Y. ChungC.R. ChoY.J. LeeJ. JegalY. JohJ.S. ParkT.Y. HwangJ.H. NamB.D. YoonH.Y. SongJ.W. Pulmonary fibrosis followed by severe pneumonia in patients with COVID-19 infection requiring mechanical ventilation: a prospective multicentre study.BMJ Open Respir. Res.2024111e00253810.1136/bmjresp‑2024‑00253839366721
    [Google Scholar]
  24. HanX. FanY. AlwalidO. ZhangX. JiaX. ZhengY. ShiH. Fibrotic Interstitial Lung Abnormalities at 1-year Follow-up CT after Severe COVID-19.Radiology20213013E438E44010.1148/radiol.202121097234313470
    [Google Scholar]
  25. FotiG LongoC FaccioliN GuerrieroM StefaniniF BuonfrateD. Quantitative assessment of lung volumes and enhancement in patients with COVID-19: Role of dual-energy CT.Diagnostics2023136120110.3390/diagnostics13061201
    [Google Scholar]
  26. ChengC.P. TaurA.S. LeeG.S. GorisM.L. FeinsteinJ.A. Relative lung perfusion distribution in normal lung scans: observations and clinical implications.Congenit. Heart Dis.20061521021610.1111/j.1747‑0803.2006.00037.x18377528
    [Google Scholar]
  27. LiJ. YuX. HuS. LinZ. XiongN. GaoY. COVID-19 targets the right lung.Crit. Care202024133910.1186/s13054‑020‑03033‑y32539769
    [Google Scholar]
  28. FahrniG. RochaA.C. GudmundssonL. PozzessereC. QanadliS.D. RotzingerD.C. Impact of COVID-19 pneumonia on pulmonary vascular volume.Front. Med. (Lausanne)202310111715110.3389/fmed.2023.111715137035332
    [Google Scholar]
  29. OtakeS. ShiraishiY. ChubachiS. TanabeN. MaetaniT. AsakuraT. NamkoongH. ShimadaT. AzekawaS. NakagawaraK. TanakaH. FukushimaT. WataseM. TeraiH. SasakiM. UedaS. KatoY. HaradaN. SuzukiS. YoshidaS. TatenoH. YamadaY. JinzakiM. HiraiT. OkadaY. KoikeR. IshiiM. HasegawaN. KimuraA. ImotoS. MiyanoS. OgawaS. KanaiT. FukunagaK. Lung volume measurement using chest CT in COVID-19 patients: a cohort study in Japan.BMJ Open Respir. Res.2024111e00223410.1136/bmjresp‑2023‑00223438663888
    [Google Scholar]
  30. WuJ. LiuJ. ZhaoX. LiuC. WangW. WangD. XuW. ZhangC. YuJ. JiangB. CaoH. LiL. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study.Clin. Infect. Dis.2020711570671210.1093/cid/ciaa19932109279
    [Google Scholar]
  31. WuQ. ZhongL. LiH. GuoJ. LiY. HouX. YangF. XieY. LiL. XingZ. A follow-up study of lung function and chest computed tomography at 6 months after discharge in patients with Coronavirus Disease 2019.Can. Respir. J.2021202111710.1155/2021/669240933628349
    [Google Scholar]
  32. ZhouM. DongC. LiC. WangY. LiaoH. ShiH. LinA.P. WangJ. HuY. ZhengC. Longitudinal changes in COVID-19 clinical measures and correlation with the extent of CT lung abnormalities.Int. J. Med. Sci.20211851277128410.7150/ijms.5127933526989
    [Google Scholar]
  33. Al-kuraishyH.M. BatihaG.E.S. FaidahH. Al-GareebA.I. SaadH.M. Simal-GandaraJ. Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals.Inflammopharmacology20223062017202610.1007/s10787‑022‑01027‑636044102
    [Google Scholar]
  34. SaiphoklangN. PatanayindeeP. RuchiwitP. The Effect of Nintedanib in Post-COVID-19 Lung Fibrosis: An Observational Study.Crit. Care Res. Pract.2022202211710.1155/2022/997284636199668
    [Google Scholar]
  35. ShuY. HeL. LiuC. Impact of anti-fibrotic medications on post-COVID-19 pulmonary fibrosis: A systematic review and meta-analysis.Int. J. Infect. Dis.202414710719310.1016/j.ijid.2024.10719339094763
    [Google Scholar]
  36. KergetB. ÇilG. ArazÖ. AlperF. AkgünM. Comparison of two antifibrotic treatments for lung fibrosis in post-COVID-19 syndrome: A randomized, prospective study.Med. Clín. Engl. Ed.20231601252553010.1016/j.medcle.2022.12.01937337553
    [Google Scholar]
  37. NaqviRA HaiderA KimHS JeongD LeeSW Transformative Noise Reduction: Leveraging a transformer-based deep network for medical image denoising.Mathematics20241215231310.3390/math12152313
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056372497250716235052
Loading
/content/journals/cmir/10.2174/0115734056372497250716235052
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): 3D Slicer; COVID-19; Lung volume; Pulmonary fibrosis; Radiological scoring; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test