Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

Multiple sclerosis (MS) is one of the most common disabling central nervous system diseases affecting young adults. Magnetic resonance imaging (MRI) is an essential tool for diagnosing and following up multiple sclerosis. Over the years, many MRI techniques have been developed to improve the sensitivity of MS disease detection. In recent years synthetic MRI (sMRI) and quantitative MRI (qMRI) have gained traction in neuroimaging applications, providing more detailed information than traditional acquisition methods. These techniques enable the detection of microstructural changes in the brain with high sensitivity and robustness to inter-scanner and inter-observer variability. This study aims to evaluate the feasibility of using these techniques to avoid administering intravenous gadolinium-based contrast agents (GBCAs) for assessing MS disease activity and monitoring.

Materials and Methods

Forty-two known MS patients, aged 20 to 45, were scanned as part of their routine follow-up. MAGnetic resonance image Compilation (MAGiC) sequence, an implementation of synthetic MRI, was added to our institute's routine MS protocol to automatically generate quantitative maps of T1, T2, and PD. T1, T2, PD, and apparent diffusion coefficient (ADC) data were collected from regions of interest (ROIs) representing normal-appearing white matter (NAWM), enhancing, and non-enhancing MS lesions. The extracted information was compared, and statistically analyzed, and the sensitivity and specificity were calculated.

Results

The mean R1 (the reciprocal of T1) value of the non-enhancing MS lesions was 0.694 s-1 (T1=1440 ms), for enhancing lesions 1.015 s-1 (T1=985ms), and for NAWM 1.514 s-1 (T1=660ms). For R2 (the reciprocal of T2) values, the mean value was 6.816 s-1 (T2=146ms) for non-enhancing lesions, 8.944 s−1 (T2=112 ms) for enhancing lesions, and 1.916 s−1 (T2=522 ms) for NAWM. PD values averaged 93.069% for non-enhancing lesions, 82.260% for enhancing lesions, and 67.191% for NAWM. For ADC, the mean value for non-enhancing lesions was 1216.60×10−6 mm2/s, for enhancing lesions 1016.66×10−6 mm2/s, and for NAWM 770.51×10−6 mm2/s.

Discussion

Our results indicate that enhancing and non-enhancing MS lesions significantly decrease R1 and R2 values. Non-enhancing lesions have significantly lower R1 and R2 values compared to enhancing lesions.

Conclusion

Conversely, PD values are significantly higher in non-enhancing lesions than in enhancing lesions. For ADC, while NAWM has lower values, there was minimal difference between the mean ADC values of enhancing and non-enhancing lesions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056343086250103020830
2025-01-09
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056343086.html?itemId=/content/journals/cmir/10.2174/0115734056343086250103020830&mimeType=html&fmt=ahah

References

  1. NylanderA. HaflerD.A. Multiple sclerosis.J. Clin. Invest.201212241180118810.1172/JCI5864922466660
    [Google Scholar]
  2. BedellB.J. NarayanaP.A. Implementation and evaluation of a new pulse sequence for rapid acquisition of double inversion recovery images for simultaneous suppression of white matter and CSF.J. Magn. Reson. Imaging19988354454710.1002/jmri.18800803059626866
    [Google Scholar]
  3. NelsonF. PoonawallaA.H. HouP. HuangF. WolinskyJ.S. NarayanaP.A. Improved identification of intracortical lesions in multiple sclerosis with phase-sensitive inversion recovery in combination with fast double inversion recovery MR imaging.AJNR Am. J. Neuroradiol.20072891645164910.3174/ajnr.A064517885241
    [Google Scholar]
  4. FilippiM. IngleseM. Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis.J. Neurol. Sci.2001186Suppl. 1S37S4310.1016/S0022‑510X(01)00489‑011334988
    [Google Scholar]
  5. SchmiererK. ScaravilliF. AltmannD.R. BarkerG.J. MillerD.H. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain.Ann. Neurol.200456340741510.1002/ana.2020215349868
    [Google Scholar]
  6. BarkhofF. The clinico-radiological paradox in multiple sclerosis revisited.Curr. Opin. Neurol.200215323924510.1097/00019052‑200206000‑0000312045719
    [Google Scholar]
  7. MollisonD. SellarR. BastinM. MollisonD. ChandranS. WardlawJ. ConnickP. The clinico-radiological paradox of cognitive function and MRI burden of white matter lesions in people with multiple sclerosis: A systematic review and meta-analysis.PLoS One2017125e017772710.1371/journal.pone.017772728505177
    [Google Scholar]
  8. van WalderveenM.A.A. Lycklama à NijeholtG.J. AdèrH.J. JongenP.J.H. PolmanC.H. CastelijnsJ.A. BarkhofF. Hypointense lesions on T1-weighted spin-echo magnetic resonance imaging: Relation to clinical characteristics in subgroups of patients with multiple sclerosis.Arch. Neurol.2001581768110.1001/archneur.58.1.7611176939
    [Google Scholar]
  9. SahraianM.A. RadueE.W. HallerS. KapposL. Black holes in multiple sclerosis: Definition, evolution, and clinical correlations.Acta Neurol. Scand.201012211810.1111/j.1600‑0404.2009.01221.x20003089
    [Google Scholar]
  10. LauleC. VavasourI.M. MooreG.R.W. OgerJ. LiD.K.B. PatyD.W. MacKayA.L. Water content and myelin water fraction in multiple sclerosis.J. Neurol.2004251328429310.1007/s00415‑004‑0306‑615015007
    [Google Scholar]
  11. TozerD.J. DaviesG.R. AltmannD.R. MillerD.H. ToftsP.S. Correlation of apparent myelin measures obtained in multiple sclerosis patients and controls from magnetization transfer and multicompartmental T 2 analysis.Magn. Reson. Med.20055361415142210.1002/mrm.2047915906291
    [Google Scholar]
  12. LauleC. KozlowskiP. LeungE. LiD.K.B. MacKayA.L. MooreG.R.W. Myelin water imaging of multiple sclerosis at 7 T: Correlations with histopathology.Neuroimage20084041575158010.1016/j.neuroimage.2007.12.00818321730
    [Google Scholar]
  13. VrenkenH. GeurtsJ.J.G. KnolD.L. van DijkL.N. DattolaV. JasperseB. van SchijndelR.A. PolmanC.H. CastelijnsJ.A. BarkhofF. PouwelsP.J.W. Whole-brain T1 mapping in multiple sclerosis: Global changes of normal-appearing gray and white matter.Radiology2006240381182010.1148/radiol.240305056916868279
    [Google Scholar]
  14. RopeleS. EnzingerC. FazekasF. Iron mapping in multiple sclerosis.Neuroimaging Clin. N. Am.201727233534210.1016/j.nic.2016.12.00328391790
    [Google Scholar]
  15. NeebH. SchenkJ. Multivariate prediction of multiple sclerosis using robust quantitative MR-based image metrics.Z. Med. Phys.201929326227110.1016/j.zemedi.2018.10.00430442457
    [Google Scholar]
  16. SämannP.G. KnopM. GolgorE. MesslerS. CzischM. WeberF. Brain volume and diffusion markers as predictors of disability and short-term disease evolution in multiple sclerosis.AJNR Am. J. Neuroradiol.20123371356136210.3174/ajnr.A297222383242
    [Google Scholar]
  17. PolmanC.H. ReingoldS.C. EdanG. FilippiM. HartungH.P. KapposL. LublinF.D. MetzL.M. McFarlandH.F. O’ConnorP.W. Sandberg-WollheimM. ThompsonA.J. WeinshenkerB.G. WolinskyJ.S. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”.Ann. Neurol.200558684084610.1002/ana.2070316283615
    [Google Scholar]
  18. CampbellZ. SahmD. DonohueK. JamisonJ. DavisM. PellicanoC. AuhS. OhayonJ. FrankJ.A. RichertN. BagnatoF. Characterizing contrast-enhancing and re-enhancing lesions in multiple sclerosis.Neurology201278191493149910.1212/WNL.0b013e3182553bd222539575
    [Google Scholar]
  19. FrohmanE.M. RackeM.K. RaineC.S. Multiple sclerosis--the plaque and its pathogenesis.N. Engl. J. Med.2006354994295510.1056/NEJMra05213016510748
    [Google Scholar]
  20. AgarwalR. BrunelliS.M. WilliamsK. MitchellM.D. FeldmanH.I. UmscheidC.A. Gadolinium-based contrast agents and nephrogenic systemic fibrosis: A systematic review and meta-analysis.Nephrol. Dial. Transplant.200824385686310.1093/ndt/gfn59318952698
    [Google Scholar]
  21. StojanovD.A. Aracki-TrenkicA. VojinovicS. Benedeto-StojanovD. LjubisavljevicS. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast agent, gadobutrol.Eur. Radiol.201626380781510.1007/s00330‑015‑3879‑926105022
    [Google Scholar]
  22. SchlemmL. ChienC. Bellmann-StroblJ. DörrJ. WuerfelJ. BrandtA.U. PaulF. ScheelM. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients.Mult. Scler.201723796397210.1177/135245851667073827679460
    [Google Scholar]
  23. KandaT. ObaH. ToyodaK. KitajimaK. FuruiS. Brain gadolinium deposition after administration of gadolinium-based contrast agents.Jpn. J. Radiol.20163413910.1007/s11604‑015‑0503‑526608061
    [Google Scholar]
  24. LenkinskiR.E. Gadolinium deposition and retention in the brain: Should we be concerned?Radiol. Cardiothorac. Imaging201913e19010410.1148/ryct.201919010433778513
    [Google Scholar]
  25. TanenbaumL.N. TsiourisA.J. JohnsonA.N. NaidichT.P. DeLanoM.C. MelhemE.R. QuartermanP. ParameswaranS.X. ShankaranarayananA. GoyenM. FieldA.S. Synthetic MRI for clinical neuroimaging: Results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial.AJNR Am. J. Neuroradiol.20173861103111010.3174/ajnr.A522728450439
    [Google Scholar]
  26. BlystadI. WarntjesJ.B.M. SmedbyÖ. LundbergP. LarssonE.M. TisellA. Quantitative MRI for analysis of peritumoral edema in malignant gliomas.PLoS One2017125e017713510.1371/journal.pone.017713528542553
    [Google Scholar]
  27. KraussW. GunnarssonM. AnderssonT. ThunbergP. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density.Magn. Reson. Imaging201533558459110.1016/j.mri.2015.02.01325708264
    [Google Scholar]
  28. WeiskopfN. EdwardsL.J. HelmsG. MohammadiS. KirilinaE. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology.Nat. Rev. Phys.20213857058810.1038/s42254‑021‑00326‑1
    [Google Scholar]
  29. WisnieffC. RamananS. OlesikJ. GauthierS. WangY. PittD. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron.Magn. Reson. Med.201574256457010.1002/mrm.2542025137340
    [Google Scholar]
  30. AlmollaR.M. HassanH.A. RayaY.M. HusseinR.A. Correlation of apparent diffusion coefficient to cognitive impairment in relapsing remittent multiple sclerosis (plaque, peri-plaque and normal appearing white matter).Egypt. J. Radiol. Nucl. Med.20164731009101810.1016/j.ejrnm.2016.04.018
    [Google Scholar]
  31. YurtseverI. HakyemezB. TaskapiliogluO. ErdoganC. TuranO.F. ParlakM. The contribution of diffusion-weighted MR imaging in multiple sclerosis during acute attack.Eur. J. Radiol.200865342142610.1016/j.ejrad.2007.05.00217587524
    [Google Scholar]
  32. KhanA.A. D2PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism.CAAI Trans. Intell. Technol.20238375576910.1049/cit2.12261
    [Google Scholar]
  33. MushtaqN. Brain tumor segmentation using multi-view attention based ensemble network.Comput. Mater. Continua20227235793580610.32604/cmc.2022.024316
    [Google Scholar]
  34. AlqarafiA. Multi-scale GC-T2: Automated region of interest assisted skin cancer detection using multi-scale graph convolution and tri-movement based attention mechanism.Biom. Signal Process. Control202495A106313
    [Google Scholar]
  35. NdengeraM. DelattreB.M.A. SchefflerM. LövbladK.O. MelingT.R. VargasM.I. Relaxation time of brain tissue in the elderly assessed by synthetic MRI.Brain Behav.2022121e244910.1002/brb3.244934862855
    [Google Scholar]
  36. KujurA. Data complexity based evaluation of the model dependence of brain MRI images for classification of brain tumor and Alzheimer’s disease.IEEE Access20221011211711213310.1109/ACCESS.2022.3216393
    [Google Scholar]
  37. VavasourI.M. LiD.K.B. LauleC. TraboulseeA.L. MooreG.R.W. MacKayA.L. Multi-parametric MR assessment of T1 black holes in multiple sclerosis.J. Neurol.2007254121653165910.1007/s00415‑007‑0604‑x17934875
    [Google Scholar]
  38. PapanikolaouN. ManiatisV. PappasJ. RoussakisA. EfthimiadouR. AndreouJ. Biexponential T2 relaxation time analysis of the brain: Correlation with magnetization transfer ratio.Invest. Radiol.200237736336710.1097/00004424‑200207000‑0000112068156
    [Google Scholar]
  39. NusbaumA.O. LuD. TangC.Y. AtlasS.W. Quantitative diffusion measurements in focal multiple sclerosis lesions: Correlations with appearance on TI-weighted MR images.AJR Am. J. Roentgenol.2000175382182510.2214/ajr.175.3.175082110954474
    [Google Scholar]
  40. CercignaniM. IngleseM. PaganiE. ComiG. FilippiM. Mean diffusivity and fractional anisotropy histograms of patients with multiple sclerosis.AJNR Am. J. Neuroradiol.200122595295811337342
    [Google Scholar]
  41. FaliniA. CalabreseG. FilippiM. OriggiD. LipariS. ColomboB. ComiG. ScottiG. Benign versus secondary-progressive multiple sclerosis: The potential role of proton MR spectroscopy in defining the nature of disability.AJNR Am. J. Neuroradiol.19981922232299504469
    [Google Scholar]
  42. GaitánM.I. SheaC.D. EvangelouI.E. StoneR.D. FentonK.M. BielekovaB. MassacesiL. ReichD.S. Evolution of the blood–brain barrier in newly forming multiple sclerosis lesions.Ann. Neurol.2011701222910.1002/ana.2247221710622
    [Google Scholar]
  43. TranfaM. PontilloG. PetraccaM. BrunettiA. TedeschiE. PalmaG. CocozzaS. Quantitative MRI in multiple sclerosis: From theory to application.AJNR Am. J. Neuroradiol.202243121688169510.3174/ajnr.A753635680161
    [Google Scholar]
  44. BlystadI. HåkanssonI. TisellA. ErnerudhJ. SmedbyÖ. LundbergP. LarssonE.M. Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent.AJNR Am. J. Neuroradiol.20163719410010.3174/ajnr.A450126471751
    [Google Scholar]
  45. SeewannA. VrenkenH. van der ValkP. BlezerE.L.A. KnolD.L. CastelijnsJ.A. PolmanC.H. PouwelsP.J.W. BarkhofF. GeurtsJ.J.G. Diffusely abnormal white matter in chronic multiple sclerosis: Imaging and histopathologic analysis.Arch. Neurol.200966560160910.1001/archneurol.2009.5719433660
    [Google Scholar]
  46. Van WalderveenM.A.A. BarkhofF. PouwelsP.J.W. Van SchijndelR.A. PolmanC.H. CastelijnsJ.A. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy.Ann. Neurol.1999461798710.1002/1531‑8249(199907)46:1<79::AID‑ANA12>3.0.CO;2‑910401783
    [Google Scholar]
  47. EiseleP. SzaboK. GriebeM. RoßmanithC. FörsterA. HennericiM. GassA. Reduced diffusion in a subset of acute MS lesions: A serial multiparametric MRI study.AJNR Am. J. Neuroradiol.20123371369137310.3174/ajnr.A297522576893
    [Google Scholar]
  48. BalashovK.E. LindzenE. Acute demyelinating lesions with restricted diffusion in multiple sclerosis.Mult. Scler.201218121745175310.1177/135245851244540722523157
    [Google Scholar]
  49. IannucciG. RovarisM. GiacomottiL. ComiG. FilippiM. Correlation of multiple sclerosis measures derived from T2-weighted, T1-weighted, magnetization transfer, and diffusion tensor MR imaging.AJNR Am. J. Neuroradiol.20012281462146711559491
    [Google Scholar]
  50. UnalS. ErdoganS. ErdenM.I. ErdenM.I. Is it possible to discriminate active MS lesions with diffusion weighted imaging?Eurasian J. Med.201951321922310.5152/eurasianjmed.2019.1847331692763
    [Google Scholar]
  51. WerringD.J. BrassatD. DrooganA.G. ClarkC.A. SymmsM.R. BarkerG.J. MacManusD.G. ThompsonA.J. MillerD.H. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: A serial diffusion MRI study.Brain200012381667167610.1093/brain/123.8.166710908196
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056343086250103020830
Loading
/content/journals/cmir/10.2174/0115734056343086250103020830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test