Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Background

The BraTS Generalizability Across Tumors (BraTS-GoAT) initiative addresses the critical need for robust and generalizable models in brain tumor segmentation. Despite advancements in automated segmentation techniques, the variability in tumor characteristics and imaging modalities across clinical settings presents a significant challenge.

Objective

This study aims to develop an advanced CNN-based model for brain tumor segmentation that enhances consistency and utility across diverse clinical environments. The objective is to improve the generalizability of CNN models by applying them to large-scale datasets and integrating robust preprocessing techniques.

Methods

The proposed approach involves the application of advanced CNN models to the BraTS 2024 challenge dataset, incorporating preprocessing techniques such as standardization, feature extraction, and segmentation. The model's performance was evaluated based on accuracy, mean Intersection over Union (IOU), average Dice coefficient, Hausdorff 95 score, precision, sensitivity, and specificity.

Results

The model achieved an accuracy of 98.47%, a mean IOU of 0.8185, an average Dice coefficient of 0.7, an average Hausdorff 95 score of 1.66, a precision of 98.55%, a sensitivity of 98.40%, and a specificity of 99.52%. These results demonstrate a significant improvement over the current gold standard in brain tumor segmentation.

Conclusion

The findings of this study contribute to establishing benchmarks for generalizability in medical imaging, promoting the adoption of CNN-based brain tumor segmentation models in diverse clinical environments. This work has the potential to improve outcomes for patients with brain tumors by enhancing the reliability and effectiveness of automated segmentation techniques.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056344235241217155930
2025-01-02
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056344235.html?itemId=/content/journals/cmir/10.2174/0115734056344235241217155930&mimeType=html&fmt=ahah

References

  1. FarajzadehN. SadeghzadehN. HashemzadehM. Brain tumor segmentation and classification on MRI via deep hybrid representation learning.Expert Syst. Appl.202322411996310.1016/j.eswa.2023.119963
    [Google Scholar]
  2. SabaT. Sameh MohamedA. El-AffendiM. AminJ. SharifM. Brain tumor detection using fusion of hand crafted and deep learning features.Cogn. Syst. Res.20205922123010.1016/j.cogsys.2019.09.007
    [Google Scholar]
  3. RajendranA. DhanasekaranR.J.P.E. Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach.Procedia Eng.20123032733310.1016/j.proeng.2012.01.868
    [Google Scholar]
  4. WalkerE.V. DavisF.G. ShawA. LouchiniR. ShackL. WoodsR. KruchkoC. SpinelliJ. GuiotM-C. PerryJ. MelinB. Barnholtz-SloanJ. TurnerD. KingM.J. HannahH. BryantH. CBTR founding affiliates Malignant primary brain and other central nervous system tumors diagnosed in Canada from 2009 to 2013.Neuro-oncol.201921336036910.1093/neuonc/noy19530649461
    [Google Scholar]
  5. YaqubM. FengJ. ZiaM. ArshidK. JiaK. RehmanZ. MehmoodA. State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images.Brain Sci.202010742710.3390/brainsci1007042732635409
    [Google Scholar]
  6. MenzeB.H. JakabA. BauerS. Kalpathy-CramerJ. FarahaniK. KirbyJ. BurrenY. PorzN. SlotboomJ. WiestR. LancziL. GerstnerE. WeberM.A. ArbelT. AvantsB.B. AyacheN. BuendiaP. CollinsD.L. CordierN. CorsoJ.J. CriminisiA. DasT. DelingetteH. DemiralpC. DurstC.R. DojatM. DoyleS. FestaJ. ForbesF. GeremiaE. GlockerB. GollandP. GuoX. HamamciA. IftekharuddinK.M. JenaR. JohnN.M. KonukogluE. LashkariD. MarizJ.A. MeierR. PereiraS. PrecupD. PriceS.J. RavivT.R. RezaS.M.S. RyanM. SarikayaD. SchwartzL. ShinH.C. ShottonJ. SilvaC.A. SousaN. SubbannaN.K. SzekelyG. TaylorT.J. ThomasO.M. TustisonN.J. UnalG. VasseurF. WintermarkM. YeD.H. ZhaoL. ZhaoB. ZikicD. PrastawaM. ReyesM. Van LeemputK. The multimodal brain tumor image segmentation benchmark (BRATS).IEEE Trans. Med. Imaging201534101993202410.1109/TMI.2014.237769425494501
    [Google Scholar]
  7. HavaeiM. DavyA. Warde-FarleyD. BiardA. CourvilleA. BengioY. PalC. JodoinP.M. LarochelleH. Brain tumor segmentation with deep neural networks.Med. Image Anal.201735183110.1016/j.media.2016.05.00427310171
    [Google Scholar]
  8. GuptaGaurav SinghVinay Brain Tumor segmentation and classification using FCM and support vector machine.IRJET201745792796
    [Google Scholar]
  9. CorsoJ.J. SharonE. DubeS. El-SadenS. SinhaU. YuilleA. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.IEEE Trans. Med. Imaging200827562964010.1109/TMI.2007.91281718450536
    [Google Scholar]
  10. GordilloN. MontsenyE. SobrevillaP. State of the art survey on MRI brain tumor segmentation.Magn. Reson. Imaging20133181426143810.1016/j.mri.2013.05.00223790354
    [Google Scholar]
  11. IşınA. DirekoğluC. ŞahM. Review of MRI-based brain tumor image segmentation using deep learning methods.Procedia Comput. Sci.201610231732410.1016/j.procs.2016.09.407
    [Google Scholar]
  12. LiJ. WuQ. WangY. ZhouS. ZhangL. WeiJ. ZhaoD. DiffCAS: diffusion based multi-attention network for segmentation of 3D coronary artery from CT angiography.Signal Image Video Process.202418107487749810.1007/s11760‑024‑03409‑5
    [Google Scholar]
  13. SunilS. RajeevR.S. ChatterjeeA. PilitsisJ.G. MukherjeeA. PaluhJ.L. SIENNA: Generalizable lightweight machine learning platform for brain tumor diagnostics.medRxiv202410.1101/2024.04.03.24305210
    [Google Scholar]
  14. KimDaniel D. ChandraRajat S. YangLi WuJing FengXue AtalayMichael BettegowdaChetan Active learning in brain tumor segmentation with uncertainty sampling and annotation redundancy restriction.J. Imaging Informat. Med.20241910.1007/s10278‑024‑01037‑6
    [Google Scholar]
  15. BerkleyA. SaueressigC. ShuklaU. ChowdhuryI. Munoz-GaunaA. ShehuO. SinghR. MunbodhR. Clinical capability of modern brain tumor segmentation models.Med. Phys.20235084943495910.1002/mp.1632136847185
    [Google Scholar]
  16. HuJ. GuX. WangZ. GuX. Mixture of calibrated networks for domain generalization in brain tumor segmentation.Knowl. Base. Syst.202327011052010.1016/j.knosys.2023.110520
    [Google Scholar]
  17. KoiralaC.P. MohapatraS. GosaiA. SchlaugG. Automated ensemble-based segmentation of adult brain tumors: A novel approach using the brats africa challenge data.arXiv preprint 2308.072142023
    [Google Scholar]
  18. StemberJ.N. ShaluH. Reinforcement learning using Deep $$Q$$ networks and $$Q$$ learning accurately localizes brain tumors on MRI with very small training sets.BMC Med. Imaging202222122410.1186/s12880‑022‑00919‑x36564724
    [Google Scholar]
  19. RawatA. KumarR. Assessing layer normalization with brats mri data in a convolution neural net.International Conference on Computational Intelligence in Data ScienceCham: Springer International Publishing, 2022, pp. 124-135.10.1007/978‑3‑031‑16364‑7_10
    [Google Scholar]
  20. HenryT. CarréA. LerousseauM. EstienneT. RobertC. ParagiosN. DeutschE. Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: A BraTS 2020 challenge solution.Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: 6th international workshop, brainles 2020, held in conjunction with MICCAI 2020Lima, Peru, October 4, 2020, pp. 327-339.10.1007/978‑3‑030‑72084‑1_30
    [Google Scholar]
  21. DivyaB. Rajesh Parameshwaran NairK. A more generalizable DNN based Automatic Segmentation of Brain Tumors from Multimodal low-resolution 2D MRI.IEEE 18th India Council International Conference (INDICON)Guwahati, India, 2021, pp. 1-5.
    [Google Scholar]
  22. HuaR. HuoQ. GaoY. SuiH. ZhangB. SunY. MoZ. ShiF. Segmenting brain tumor using cascaded V-Nets in multimodal MR images.Front. Comput. Neurosci.202014910.3389/fncom.2020.0000932116623
    [Google Scholar]
  23. XueY. XieM. FarhatF.G. BoukrinaO. A multi-path decoder network for brain tumor segmentation.Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019Shenzhen, China, October 17, 2019, pp. 255-265.
    [Google Scholar]
  24. WangG. LiW. OurselinS. VercauterenT. Automatic brain tumor segmentation based on cascaded convolutional neural networks with uncertainty estimation.Front. Comput. Neurosci.2019135610.3389/fncom.2019.0005631456678
    [Google Scholar]
  25. ZhaoH. MorgenrothJ. PearseG. SchindlerJ. A systematic review of individual tree crown detection and delineation with convolutional neural networks (CNN).Curr. For. Rep.20239314917010.1007/s40725‑023‑00184‑3
    [Google Scholar]
  26. AkterA. NosheenN. AhmedS. HossainM. YousufM.A. AlmoyadM.A.A. HasanK.F. MoniM.A. Robust clinical applicable CNN and U-Net based algorithm for MRI classification and segmentation for brain tumor.Expert Syst. Appl.202423812234710.1016/j.eswa.2023.122347
    [Google Scholar]
  27. RonnebergerO. FischerP. BroxT. U-Net: Convolutional networks for biomedical image segmentation.Medical Image Computing and Computer-Assisted Intervention (MICCAI)Springer, Cham, 18 November 2015, pp 234–241.10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  28. ÇiçekÖ. AbdulkadirA. LienkampS.S. BroxT. RonnebergerO. 3D U-Net: Learning dense volumetric segmentation from sparse annotation.Medical Image Computing and Computer-Assisted Intervention (MICCAI)Springer, Cham, 02 October 2016, pp 424–432.10.1007/978‑3‑319‑46723‑8_49
    [Google Scholar]
  29. KamnitsasK. LedigC. NewcombeV.F.J. SimpsonJ.P. KaneA.D. MenonD.K. RueckertD. GlockerB. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.Med. Image Anal.201736617810.1016/j.media.2016.10.00427865153
    [Google Scholar]
  30. IsenseeF. PetersenJ. KohlS. JägerP. Maier-HeinK.H. No new-net.arXiv preprint :1809.104832018
    [Google Scholar]
  31. MilletariF. NavabN. AhmadiS-A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation.2016 Fourth International Conference on 3D Vision (3DV)2016, pp. 565-571.10.1109/3DV.2016.79
    [Google Scholar]
  32. MyronenkoA. 3D MRI brain tumor segmentation using autoencoder regularization.International MICCAI Brainlesion WorkshopSpringer, Cham, 26 January 2019, pp. 311-320.10.1007/978‑3‑030‑11726‑9_28
    [Google Scholar]
  33. WangG. LiW. OurselinS. VercauterenT. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks.2019 International MICCAI Brainlesion Workshop.2019, pp. 178-190.10.1007/978‑3‑030‑11723‑8_17
    [Google Scholar]
  34. AndermattS. PezoldS. CattinP.C. Multi-planar deep segmentation networks for 3D brain tumor segmentation.International MICCAI Brainlesion Workshop2018, pp. 203-21.10.1007/978‑3‑030‑11723‑8_20
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056344235241217155930
Loading
/content/journals/cmir/10.2174/0115734056344235241217155930
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AGI; Brain tumor; BraTS-GoAT; CNN; Generalizability; MRI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test