Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Purpose

This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.

Materials and Methods

A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups. Four machine learning models were employed to predict the occurrence of CR and/or MF.

Results

Most general 4D flow parameters related to VC were increased in athletes and positive athletes compared to controls ( < 0.05). Gradient Boosting Machine (GBM) was the most effective model in sheet 2 of SVC, with the area under the curve values of 0.891, accuracy of 85.2%, sensitivity of 84.6%, and specificity of 85.4%. The top five predictors in descending order were as follows: net positive volume, forward volume, waist circumference, body weight, and body surface area.

Conclusion

Physical activity can induce a high flow state in the vena cava. CR and/or MF may elevate the peak velocity and maximum pressure gradient of the IVC. This study successfully constructed a GBM model with high efficacy for predicting CR and/or MF. This model may provide guidance on the frequency of follow-up and the development of appropriate exercise plans for athletes.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056316396241227064057
2025-01-01
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056316396.html?itemId=/content/journals/cmir/10.2174/0115734056316396241227064057&mimeType=html&fmt=ahah

References

  1. SzaboL. BrunettiG. CiprianiA. JuhaszV. GrazianoF. HirschbergK. DohyZ. BallaD. DrobniZ. Perazzolo MarraM. CorradoD. MerkelyB. ZorziA. VagoH. Certainties and uncertainties of cardiac magnetic resonance imaging in Athletes.J. Cardiovasc. Dev. Dis.202291036110.3390/jcdd910036136286312
    [Google Scholar]
  2. CorradoD. BassoC. RizzoliG. SchiavonM. ThieneG. Does sports activity enhance the risk of sudden death in adolescents and young adults?J. Am. Coll. Cardiol.200342111959196310.1016/j.jacc.2003.03.00214662259
    [Google Scholar]
  3. MaronB.J. HaasT.S. MurphyC.J. AhluwaliaA. Rutten-RamosS. Incidence and causes of sudden death in U.S. college athletes.J. Am. Coll. Cardiol.201463161636164310.1016/j.jacc.2014.01.04124583295
    [Google Scholar]
  4. La GercheA. BurnsA.T. MooneyD.J. InderW.J. TaylorA.J. BogaertJ. MacIsaacA.I. HeidbüchelH. PriorD.L. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes.Eur. Heart J.2012338998100610.1093/eurheartj/ehr39722160404
    [Google Scholar]
  5. OkaR. MiuraK. SakuraiM. NakamuraK. YagiK. MiyamotoS. MoriuchiT. MabuchiH. KoizumiJ. NomuraH. TakedaY. InazuA. NoharaA. KawashiriM.A. NagasawaS. KobayashiJ. YamagishiM. Impacts of visceral adipose tissue and subcutaneous adipose tissue on metabolic risk factors in middle-aged Japanese.Obesity (Silver Spring)201018115316010.1038/oby.2009.18019498348
    [Google Scholar]
  6. BenitoB. Gay-JordiG. Serrano-MollarA. GuaschE. ShiY. TardifJ.C. BrugadaJ. NattelS. MontL. Cardiac arrhythmogenic remodeling in a rat model of longterm intensive exercise training.Circulation20111231132210.1161/CIRCULATIONAHA.110.93828221173356
    [Google Scholar]
  7. OxboroughD. SharmaS. ShaveR. WhyteG. BirchK. ArtisN. BatterhamA.M. GeorgeK. The right ventricle of the endurance athlete: The relationship between morphology and deformation.J. Am. Soc. Echocardiogr.201225326327110.1016/j.echo.2011.11.01722172988
    [Google Scholar]
  8. ForsytheL. SomaurooJ. GeorgeK. PapadakisM. BrownB. QasemM. OxboroughD. The right heart of the elite senior rugby football league athlete.Echocardiography201936588889610.1111/echo.1433030947373
    [Google Scholar]
  9. SchaafsL.A. TzschätzschH. FigielC. van der GietM. ReshetnikA. HammB. SackI. ElgetiT. Quantitative time-harmonic ultrasound elastography of the abdominal aorta and inferior vena cava.Ultrasound Med. Biol.20194592349235510.1016/j.ultrasmedbio.2019.05.02131201021
    [Google Scholar]
  10. CecchiE. GiglioliC. ValenteS. LazzeriC. GensiniG.F. AbbateR. ManniniL. Role of hemodynamic shear stress in cardiovascular disease.Atherosclerosis2011214224925610.1016/j.atherosclerosis.2010.09.00820970139
    [Google Scholar]
  11. NeremR.M. Vascular fluid mechanics, the arterial wall, and atherosclerosis.J. Biomech. Eng.1992114327428210.1115/1.28913841522720
    [Google Scholar]
  12. MarklM. FrydrychowiczA. KozerkeS. HopeM. WiebenO. 4D flow MRI.J. Magn. Reson. Imaging20123651015103610.1002/jmri.2363223090914
    [Google Scholar]
  13. ErolM.K. KarakelleogluS. Assessment of right heart function in the athlete’s heart.Heart Vessels200216517518010.1007/s00380020001812181590
    [Google Scholar]
  14. OnizukaH. SueyoshiE. SakamotoI. MiuraT. Dilation of inferior vena cava and iliac veins in elite athlete.J. Vasc. Surg. Venous Lymphat. Disord.20175457510.1016/j.jvsv.2017.02.00528623999
    [Google Scholar]
  15. RahmanO. MarklM. BalteP. BerhaneH. BlankenC. SuwaK. DashnawS. WiebenO. BluemkeD.A. PrinceM.R. LimaJ. MichosE. Ambale-VenkateshB. HoffmanE.A. GomesA.S. WatsonK. SunY. CarrJ. BarrR.G. Reproducibility and changes in vena caval blood flow by using 4D flow MRI in pulmonary emphysema and chronic obstructive pulmonary disease (COPD): The Multi-ethnic study of atherosclerosis (MESA) COPD substudy.Radiology2019292358559410.1148/radiol.201918214331335282
    [Google Scholar]
  16. DyverfeldtP BissellM BarkerAJ 4D flow cardiovascular magnetic resonance consensus statement.J Cardiovasc Magn Reson20151717210.1186/s12968‑023‑00942‑z
    [Google Scholar]
  17. FernandesJF GillH NioA Non-invasive cardiovascular magnetic resonance assessment of pressure recovery distance after aortic valve stenosis.J Cardiovasc Magn Reson20232515
    [Google Scholar]
  18. LeiX. LiuH. HanY. ChengW. SunJ. LuoY. YangD. DongY. ChungY. ChenY. Reference values of cardiac ventricular structure and function by steady-state free-procession MRI at 3.0T in healthy adult chinese volunteers.J. Magn. Reson. Imaging20174561684169210.1002/jmri.2552027862557
    [Google Scholar]
  19. AquaroG.D. CamastraG. MontiL. LombardiM. PepeA. CastellettiS. MaestriniV. TodiereG. MasciP. di GiovineG. BarisonA. DellegrottaglieS. Perazzolo MarraM. PontoneG. Di BellaG. working group “Applicazioni della Risonanza Magnetica” of the Italian Society of Cardiology Reference values of cardiac volumes, dimensions, and new functional parameters by MR: A multicenter, multivendor study.J. Magn. Reson. Imaging20174541055106710.1002/jmri.2545027571232
    [Google Scholar]
  20. LiW WanK HanY Reference value of left and right atrial size and phasic function by SSFP CMR at 3.0T in healthy Chinese adultsSci Rep2017713196
    [Google Scholar]
  21. OriY. KorzetsA. KatzM. PerekY. ZahaviI. GafterU. Haemodialysis arteriovenous access: A prospective haemodynamic evaluation.Nephrol. Dial. Transplant.199611194978649659
    [Google Scholar]
  22. MacRaeJ.M. PandeyaS. HumenD.P. KrivitskiN. LindsayR.M. Arteriovenous fistula-associated high-output cardiac failure: A review of mechanisms.Am. J. Kidney Dis.2004435e21.1, e21.610.1053/j.ajkd.2004.01.01615112194
    [Google Scholar]
  23. LangerS. PaulusN. HeissC. KoeppelT.A. GreinerA. BuhlA. LauerT. KokozidouM. JacobsM.J. KrombachG.A. European Vascular Center Aachen-Maastricht Cardiovascular remodeling after AVF surgery in rats assessed by a clinical MRI scanner.Magn. Reson. Imaging2011291576310.1016/j.mri.2010.07.01020832223
    [Google Scholar]
  24. ShehabM. AbualigahL. ShambourQ. Abu-HashemM.A. ShambourM.K.Y. AlsalibiA.I. GandomiA.H. Machine learning in medical applications: A review of state-of-the-art methods.Comput. Biol. Med.202214510545810.1016/j.compbiomed.2022.10545835364311
    [Google Scholar]
  25. LiJ ZhuY DongZ Development and validation of a feature extraction-based logical anthropomorphic diagnostic system for early gastric cancer: A case-control study.E Clinical Med20224610136610.1016/j.eclinm.2022.101366
    [Google Scholar]
  26. PluimB.M. ZwindermanA.H. van der LaarseA. van der WallE.E. The athlete’s heart. A meta-analysis of cardiac structure and function.Circulation2000101333634410.1161/01.CIR.101.3.33610645932
    [Google Scholar]
  27. QasemM. GeorgeK. SomaurooJ. ForsytheL. BrownB. OxboroughD. Right ventricular function in elite male athletes meeting the structural echocardiographic task force criteria for arrhythmogenic right ventricular cardiomyopathy.J. Sports Sci.201937330631210.1080/02640414.2018.149939230022711
    [Google Scholar]
  28. MerloM. GobboM. ArticoJ. Etiological definition and diagnostic work-up.Dilated Cardiomyopathy: From Genetics to Clinical Management. SinagraG. MerloM. PinamontiB. Cham, CHSpringer2019274310.1007/978‑3‑030‑13864‑6_4
    [Google Scholar]
  29. WeeksK.L. McMullenJ.R. The athlete’s heart vs. the failing heart: Can signaling explain the two distinct outcomes?Physiology (Bethesda)20112629710510.1152/physiol.00043.201021487028
    [Google Scholar]
  30. ChengC.P. HerfkensR.J. TaylorC.A. Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging.Am. J. Physiol. Heart Circ. Physiol.20032844H1161H116710.1152/ajpheart.00641.200212595296
    [Google Scholar]
  31. van de SchoorF.R. AengevaerenV.L. HopmanM.T.E. OxboroughD.L. GeorgeK.P. ThompsonP.D. EijsvogelsT.M.H. Myocardial fibrosis in athletes.Mayo Clin. Proc.201691111617163110.1016/j.mayocp.2016.07.01227720455
    [Google Scholar]
  32. DooleyS. ten DijkeP. TGF-β in progression of liver disease.Cell Tissue Res.2012347124525610.1007/s00441‑011‑1246‑y22006249
    [Google Scholar]
  33. ShimizuI. MinaminoT. Physiological and pathological cardiac hypertrophy.J. Mol. Cell. Cardiol.20169724526210.1016/j.yjmcc.2016.06.00127262674
    [Google Scholar]
  34. Hernandez-GeaV. FriedmanS.L. Pathogenesis of liver fibrosis.Annu. Rev. Pathol.20116142545610.1146/annurev‑pathol‑011110‑13024621073339
    [Google Scholar]
  35. MorettiR. PizziB. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage.Neurocrit. Care20101313910.1007/s12028‑010‑9356‑z20373051
    [Google Scholar]
  36. SongY JiaH HuaY The molecular mechanism of aerobic exercise improving vascular remodeling in hypertension.Front Physiol20221379229210.3389/fphys.2022.792292
    [Google Scholar]
  37. HeuschG. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: Benefit from selective bradycardic agents.Br. J. Pharmacol.200815381589160110.1038/sj.bjp.070767318223669
    [Google Scholar]
  38. PalmisanoA. DarvizehF. CundariG. RovereG. FerrandinoG. NicolettiV. CiliaF. De VizioS. PalumboR. EspositoA. FranconeM. Advanced cardiac imaging in athlete’s heart: Unravelling the grey zone between physiologic adaptation and pathology.Radiol. Med. (Torino)2021126121518153110.1007/s11547‑021‑01411‑234420142
    [Google Scholar]
  39. FutterJ.E. ClelandJ.G.F. ClarkA.L. Body mass indices and outcome in patients with chronic heart failure.Eur. J. Heart Fail.201113220721310.1093/eurjhf/hfq21821138908
    [Google Scholar]
  40. FoxC.S. MassaroJ.M. HoffmannU. PouK.M. Maurovich-HorvatP. LiuC.Y. VasanR.S. MurabitoJ.M. MeigsJ.B. CupplesL.A. D’AgostinoR.B.Sr O’DonnellC.J. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham heart study.Circulation20071161394810.1161/CIRCULATIONAHA.106.67535517576866
    [Google Scholar]
  41. PouK.M. MassaroJ.M. HoffmannU. VasanR.S. Maurovich-HorvatP. LarsonM.G. KeaneyJ.F.Jr MeigsJ.B. LipinskaI. KathiresanS. MurabitoJ.M. O’DonnellC.J. BenjaminE.J. FoxC.S. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham heart study.Circulation2007116111234124110.1161/CIRCULATIONAHA.107.71050917709633
    [Google Scholar]
  42. DucluzeauP.H. Manchec-PoilblancP. RoullierV. CesbronE. LebigotJ. BertraisS. AubéC. Distribution of abdominal adipose tissue as a predictor of hepatic steatosis assessed by MRI.Clin. Radiol.201065969570010.1016/j.crad.2010.03.01320696296
    [Google Scholar]
  43. LandsbergL. YoungJ.B. Fasting, feeding and regulation of the sympathetic nervous system.N. Engl. J. Med.1978298231295130110.1056/NEJM19780608298230626026
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056316396241227064057
Loading
/content/journals/cmir/10.2174/0115734056316396241227064057
Loading

Data & Media loading...

Supplements

Supplementray material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test