Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4056
  • E-ISSN: 1875-6603

Abstract

Objective

This study seeks to assess vasculogenic mimicry (VM) occurrence in lung adenocarcinoma (LUAD) by delineating intratumoral and peritumoral characteristics using preoperative CT-based radiomics and a nomogram for enhanced precision.

Materials and Methods

Our retrospective analysis enrolled 150 LUAD patients, ascertained their VM status, and stratified them randomly into development (n=105) and validation cohorts. We extracted radiomics features from intra- and peritumoral zones, delineating 3, 5, and 7mm expansions on thin-section chest CT images. We formulated logistic models encompassing a clinical model (CM), intratumoral radiomics model (TRM), peritumoral radiomics models at 3, 5, and 7 mm (PRMs), and a composite model integrating both intra- and peritumoral zones (CRM). A radiomics nomogram model (RNM) was devised, amalgamating the Rad-scores from intra- and peritumoral regions with clinical-radiological traits to forecast VM. The models' efficacy was gauged the receiver operating characteristic (ROC) curve analysis, calibration assessment, and decision curve analysis (DCA).

Results

The CRM outperformed its counterparts, the TRM, PRM_3mm, PRM_5mm, and PRM_7mm models, with AUCs reaching 0.859 and 0.860 in the development and validation cohorts. Within the CM, tumor size and spiculation emerged as significant predictive covariates. The RNM, integrating independent predictors with the CRM-Rad-score, demonstrated clinical utility, achieving AUCs of 0.903 and 0.931 in the respective cohorts.

Conclusion

Our findings underscore the potential of CT-based radiomics characteristics derived from intratumoral and peritumoral regions to assess VM presence in LUAD patients. Combining radiomics signatures with clinicoradiological parameters within a nomogram framework significantly enhances predictive accuracy.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmir/10.2174/0115734056383032250320041531
2025-01-01
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/cmir/21/1/CMIR-21-E15734056383032.html?itemId=/content/journals/cmir/10.2174/0115734056383032250320041531&mimeType=html&fmt=ahah

References

  1. DenisenkoT.V. BudkevichI.N. ZhivotovskyB. Cell death-based treatment of lung adenocarcinoma.Cell Death Dis.20189211710.1038/s41419‑017‑0063‑y29371589
    [Google Scholar]
  2. HirschF.R. ScagliottiG.V. MulshineJ.L. KwonR. CurranW.J.Jr WuY.L. Paz-AresL. Lung cancer: Current therapies and new targeted treatments.Lancet20173891006629931110.1016/S0140‑6736(16)30958‑827574741
    [Google Scholar]
  3. GettingerS. HornL. JackmanD. SpigelD. AntoniaS. HellmannM. PowderlyJ. HeistR. SequistL.V. SmithD.C. LemingP. GeeseW.J. YoonD. LiA. BrahmerJ. Five-year follow-up of nivolumab in previously treated advanced non–small-cell lung cancer: Results from the CA209-003 study.J. Clin. Oncol.201836171675168410.1200/JCO.2017.77.041229570421
    [Google Scholar]
  4. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑731690961
    [Google Scholar]
  5. TianW. CaoC. ShuL. WuF. Anti-angiogenic therapy in the treatment of non-small cell lung cancer.OncoTargets Ther.202013121131212910.2147/OTT.S27615033262610
    [Google Scholar]
  6. TanA.C. PavlakisN. Anti-angiogenic therapy in ALK rearranged non-small cell lung cancer (NSCLC).Int. J. Mol. Sci.20222316886310.3390/ijms2316886336012123
    [Google Scholar]
  7. FangH. SunQ. ZhouJ. ZhangH. SongQ. ZhangH. YuG. GuoY. HuangC. MouY. JiaC. SongY. LiuA. SongK. LuC. TianR. WeiS. YangD. ChenY. LiT. WangK. YuY. LvY. MoK. SunP. YuX. SongX. m6A methylation reader IGF2BP2 activates endothelial cells to promote angiogenesis and metastasis of lung adenocarcinoma.Mol. Cancer20232219910.1186/s12943‑023‑01791‑137353784
    [Google Scholar]
  8. YanX. ZhaoZ. TangH. Current status and future of anti-angiogenic drugs in lung cancer.Clin. Exp. Med.20232362009202310.1007/s10238‑023‑01039‑836920592
    [Google Scholar]
  9. SimizuS. Vasculogenic mimicry: A dynamic event of malignancy.Biochim. Biophys. Acta, Gen. Subj.20221866313008410.1016/j.bbagen.2022.13008434999116
    [Google Scholar]
  10. HeX. YouJ. DingH. ZhangZ. CuiL. ShenX. BianX. LiuY. ChenJ. Vasculogenic mimicry, a negative indicator for progression free survival of lung adenocarcinoma irrespective of first line treatment and epithelial growth factor receptor mutation status.BMC Cancer202121113210.1186/s12885‑021‑07863‑z33549061
    [Google Scholar]
  11. ZhengN. ZhangS. WuW. ZhangN. WangJ. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma.Pharmacol. Res.202116610550710.1016/j.phrs.2021.10550733610718
    [Google Scholar]
  12. LiW. WuJ. JiaQ. ShiY. LiF. ZhangL. ShiF. WangX. WuS. PD-L1 knockdown suppresses vasculogenic mimicry of non-small cell lung cancer by modulating ZEB1-triggered EMT.BMC Cancer202424163310.1186/s12885‑024‑12390‑838783271
    [Google Scholar]
  13. GilliesR.J. KinahanP.E. HricakH. Radiomics: Images are more than pictures, they are data.Radiology2016278256357710.1148/radiol.201515116926579733
    [Google Scholar]
  14. ShangY. ChenW. LiG. HuangY. WangY. KuiX. LiM. ZhengH. ZhaoW. LiuJ. Computed Tomography-derived intratumoral and peritumoral radiomics in predicting EGFR mutation in lung adenocarcinoma.Radiol. Med.2023128121483149610.1007/s11547‑023‑01722‑637749461
    [Google Scholar]
  15. WangY. DingY. LiuX. LiX. JiaX. LiJ. ZhangH. SongZ. XuM. RenJ. SunD. Preoperative CT-based radiomics combined with tumour spread through air spaces can accurately predict early recurrence of stage I lung adenocarcinoma: A multicentre retrospective cohort study.Cancer Imaging20232318310.1186/s40644‑023‑00605‑337679806
    [Google Scholar]
  16. MeißnerA.K. GutscheR. GalldiksN. KocherM. JüngerS.T. EichM.L. NogovaL. AraceliT. SchmidtN.O. RugeM.I. GoldbrunnerR. ProescholdtM. GrauS. LohmannP. Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer.J. Neurooncol.2023163359760510.1007/s11060‑023‑04367‑737382806
    [Google Scholar]
  17. WeiX. ChenY. JiangX. PengM. LiuY. MoY. RenD. HuaY. YuB. ZhouY. LiaoQ. WangH. XiangB. ZhouM. LiX. LiG. LiY. XiongW. ZengZ. Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments.Mol. Cancer2021201710.1186/s12943‑020‑01288‑133397409
    [Google Scholar]
  18. ChenQ. ShaoJ. XueT. PengH. LiM. DuanS. FengF. Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer.Eur. Radiol.202233294795810.1007/s00330‑022‑09109‑336064979
    [Google Scholar]
  19. GiraudP. AntoineM. LarrouyA. MilleronB. CallardP. De RyckeY. CaretteM.F. RosenwaldJ.C. CossetJ.M. HoussetM. TouboulE. Evaluation of microscopic tumor extension in non–small-cell lung cancer for three-dimensional conformal radiotherapy planning.Int. J. Radiat. Oncol. Biol. Phys.20004841015102410.1016/S0360‑3016(00)00750‑111072158
    [Google Scholar]
  20. ZhangX. ZhangG. QiuX. YinJ. TanW. YinX. YangH. LiaoL. WangH. ZhangY. Radiomics under 2D regions, 3D regions, and peritumoral regions reveal tumor heterogeneity in non-small cell lung cancer: A multicenter study.Radiol. Med.202312891079109210.1007/s11547‑023‑01676‑937486526
    [Google Scholar]
  21. LiuK. LiK. WuT. LiangM. ZhongY. YuX. LiX. XieC. ZhangL. LiuX. Improving the accuracy of prognosis for clinical stage I solid lung adenocarcinoma by radiomics models covering tumor per se and peritumoral changes on CT.Eur. Radiol.20223221065107710.1007/s00330‑021‑08194‑034453574
    [Google Scholar]
  22. YangW. LiZ. WangW. WuJ. LiJ. HuangX. ZhangX. YeX. Vasculogenic mimicry score identifies the prognosis and immune landscape of lung adenocarcinoma.Front. Genet.202314120614110.3389/fgene.2023.120614137351348
    [Google Scholar]
  23. ChengY. XuS. WangH. WangX. NiuS. LuoY. ZhaoN. Intra- and peri-tumoral radiomics for predicting the sentinel lymph node metastasis in breast cancer based on preoperative mammography and MRI.Front. Oncol.202212104757210.3389/fonc.2022.104757236578933
    [Google Scholar]
  24. JiangW. MengR. ChengY. WangH. HanT. QuN. YuT. HouY. XuS. Intra‐ and peritumoral based radiomics for assessment of lymphovascular invasion in invasive breast cancer.J. Magn. Reson. Imaging202459261362510.1002/jmri.2877637199241
    [Google Scholar]
  25. LiS. YangZ. LiY. ZhaoN. YangY. ZhangS. JiangM. WangJ. SunH. XieZ. Preoperative prediction of vasculogenic mimicry in lung adenocarcinoma using a CT radiomics model.Clin. Radiol.2024791e164e17310.1016/j.crad.2023.09.02737940444
    [Google Scholar]
  26. ShinoharaS. TakahashiY. KomuroH. MatsuiT. SugitaY. Demachi-OkamuraA. MuraokaD. TakaharaH. NakadaT. SakakuraN. MasagoK. MiyaiM. NishidaR. ShomuraS. ShigematsuY. HatookaS. SasanoH. WatanabeF. AdachiK. FujinagaK. KanedaS. TakaoM. OhtsukaT. YamaguchiR. KurodaH. MatsushitaH. New evaluation of the tumor immune microenvironment of non-small cell lung cancer and its association with prognosis.J. Immunother. Cancer2022104e00376510.1136/jitc‑2021‑00376535396225
    [Google Scholar]
  27. AldreesR. SiegalG.P. WeiS. The peritumoral CD8+/FOXP3+ cell ratio has prognostic value in triple-negative breast cancer.Appl. Immunohistochem. Mol. Morphol.202331962162810.1097/PAI.000000000000114737615661
    [Google Scholar]
  28. LimJ.U. LeeE. LeeS.Y. ChoH.J. AhnD.H. HwangY. ChoiJ.Y. YeoC.D. ParkC.K. KimS.J. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer.Transl. Lung Cancer Res.202312485787610.21037/tlcr‑22‑63337197639
    [Google Scholar]
  29. ShiinokiT. FujimotoK. KawazoeY. YuasaY. KajimaM. ManabeY. OnoT. HiranoT. MatsunagaK. TanakaH. Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomics features on computed tomography.Biomed. Phys. Eng. Express20228202500810.1088/2057‑1976/ac4d4335051908
    [Google Scholar]
  30. ChangR. QiS. ZuoY. YueY. ZhangX. GuanY. QianW. Predicting chemotherapy response in non-small-cell lung cancer via computed tomography radiomics features: Peritumoral, intratumoral, or combined?Front. Oncol.20221291583510.3389/fonc.2022.91583536003781
    [Google Scholar]
  31. WangJ. XiaW. HuangY. LiH. TangY. LiY. YiB. ZhangZ. YangJ. CaoZ. ZhouJ. A vasculogenic mimicry prognostic signature associated with immune signature in human gastric cancer.Front. Immunol.202213101661210.3389/fimmu.2022.101661236505458
    [Google Scholar]
  32. LapkinaE.Z. EsimbekovaA.R. RukshaT.G. Vasculogenic mimicry.Arkh. Patol.2023856626910.17116/patol2023850616238010640
    [Google Scholar]
  33. TunaliI. HallL.O. NapelS. CherezovD. GuvenisA. GilliesR.J. SchabathM.B. Stability and reproducibility of computed tomography radiomics features extracted from peritumoral regions of lung cancer lesions.Med. Phys.201946115075508510.1002/mp.1380831494946
    [Google Scholar]
  34. NayakP. SinhaS. GodaJ.S. SahuA. JoshiK. ChoudharyO.R. MhatreR. MummudiN. AgarwalJ.P. Computerized tomography-based first order tumor texture features in non-small cell lung carcinoma treated with concurrent chemoradiation: A simplistic and potential surrogate imaging marker for survival.J. Cancer Res. Ther.202319236637510.4103/jcrt.jcrt_2317_2137313912
    [Google Scholar]
  35. XuH. WangA. ZhangC. RenJ. ZhouP. LiuJ. Intra- and peritumoral MRI radiomics assisted in predicting radiochemotherapy response in metastatic cervical lymph nodes of nasopharyngeal cancer.BMC Med. Imaging20232316610.1186/s12880‑023‑01026‑137254101
    [Google Scholar]
  36. GaneshanB. GohV. MandevilleH.C. NgQ.S. HoskinP.J. MilesK.A. Non-small cell lung cancer: Histopathologic correlates for texture parameters at CT.Radiology2013266132633610.1148/radiol.1211242823169792
    [Google Scholar]
  37. ProvanceO.K. OriaV.O. TranT.T. CaulfieldJ.I. ZitoC.R. Aguirre-DuclerA. SchalperK.A. KlugerH.M. JilaveanuL.B. Vascular mimicry as a facilitator of melanoma brain metastasis.Cell. Mol. Life Sci.202481118810.1007/s00018‑024‑05217‑z38635031
    [Google Scholar]
  38. WangM. ZhaoX. ZhuD. LiuT. LiangX. LiuF. ZhangY. DongX. SunB. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment.J. Exp. Clin. Cancer Res.20173616010.1186/s13046‑017‑0533‑128449718
    [Google Scholar]
  39. ShintaniY. KimuraT. FunakiS. OseN. KanouT. FukuiE. Therapeutic targeting of cancer-associated fibroblasts in the non-small cell lung cancer tumor microenvironment.Cancers202315233510.3390/cancers1502033536672284
    [Google Scholar]
  40. TrepsL. FaureS. ClereN. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target.Pharmacol. Ther.202122310780510.1016/j.pharmthera.2021.10780533465401
    [Google Scholar]
/content/journals/cmir/10.2174/0115734056383032250320041531
Loading
/content/journals/cmir/10.2174/0115734056383032250320041531
Loading

Data & Media loading...

Supplements

Supplementary material is available on the Publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test