Skip to content
2000
image of Microwave-Assisted Synthesis of Heterocycles Using 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)

Abstract

: 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) is a non-nucleophilic base and belongs to the class of amidine compounds. DBU is involved in the synthesis of a variety of biologically active compounds either alone or in combination with microwaves. The use of microwave (MW) irradiation in organic synthesis is covered under the principles of green chemistry. The DBU in combination with MW has been utilized in the synthesis and/or derivatization of many biologically active five-membered, six-membered, and other heterocycles. This review article discusses the utilization of DBU in combination with MW in the synthesis of compounds, like benzoxanthones, indoles, benzimidazoles, isoindolin-1-one, isatins, and so on. This article also covers the transformation of group(s) linked to heterocyclic compounds using MW and DBU.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356412875250925043423
2025-10-14
2025-12-14
Loading full text...

Full text loading...

References

  1. Jampilek J. Heterocycles in medicinal chemistry. Molecules 2019 24 21 3839 10.3390/molecules24213839 31731387
    [Google Scholar]
  2. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  3. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  4. Sharma D. Narasimhan B. Kumar P. Judge V. Narang R. De Clercq E. Balzarini J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem. 2009 44 6 2347 2353 10.1016/j.ejmech.2008.08.010 18851889
    [Google Scholar]
  5. Li Z. Khaliq M. Zhou Z. Post C.B. Kuhn R.J. Cushman M. Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins. J. Med. Chem. 2008 51 15 4660 4671 10.1021/jm800412d 18610998
    [Google Scholar]
  6. Zhan P. Liu X. Li Z. Fang Z. Li Z. Wang D. Pannecouque C. Clercq E.D. Novel 1,2,3-thiadiazole derivatives as HIV-1 NNRTIs with improved potency: Synthesis and preliminary SAR studies. Bioorg. Med. Chem. 2009 17 16 5920 5927 10.1016/j.bmc.2009.07.004 19620009
    [Google Scholar]
  7. Sun L. Huang T. Dick A. Meuser M.E. Zalloum W.A. Chen C.H. Ding X. Gao P. Cocklin S. Lee K.H. Zhan P. Liu X. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur. J. Med. Chem. 2020 190 112085 10.1016/j.ejmech.2020.112085 32066010
    [Google Scholar]
  8. Liu J.C. Narva S. Zhou K. Zhang W. A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors. Mini Rev. Med. Chem. 2019 19 18 1517 1530 10.2174/1389557519666190312152358 30864519
    [Google Scholar]
  9. Sun N. Ren C. Kong Y. Zhong H. Chen J. Li Y. Zhang J. Zhou Y. Qiu X. Lin H. Song X. Yang X. Jiang B. Development of a brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur. J. Med. Chem. 2020 193 112190 10.1016/j.ejmech.2020.112190 32179332
    [Google Scholar]
  10. Liang X. Wu P. Yang Q. Xie Y. He C. Yin L. Yin Z. Yue G. Zou Y. Li L. Song X. Lv C. Zhang W. Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem. 2021 220 113473 10.1016/j.ejmech.2021.113473 33906047
    [Google Scholar]
  11. Ghorab M.M. Hassan A.Y. Nassar O.M. Synthesis of novel heterocyclic compounds for antitumor and radioprotective activities. Phosphorus Sulfur Silicon Relat. Elem. 1998 134 1 447 462 10.1080/10426509808545486
    [Google Scholar]
  12. Grover G. Nath R. Bhatia R. Akhtar M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem. 2020 28 15 115585 10.1016/j.bmc.2020.115585 32631563
    [Google Scholar]
  13. Valipour M. Naderi N. Heidarli E. Shaki F. Motafeghi F. Talebpour Amiri F. Emami S. Irannejad H. Design, synthesis and biological evaluation of naphthalene-derived (arylalkyl)azoles containing heterocyclic linkers as new anticonvulsants: A comprehensive in silico, in vitro, and in vivo study. Eur. J. Pharm. Sci. 2021 166 105974 10.1016/j.ejps.2021.105974 34390829
    [Google Scholar]
  14. Janssens F. Torremans J. Janssen M. Stokbroekx R.A. Luyckx M. Janssen P.A.J. New antihistaminic N-heterocyclic 4-piperidinamines. 1. Synthesis and antihistaminic activity of N-(4-piperidinyl)-1H-benzimidazol-2-amines. J. Med. Chem. 1985 28 12 1925 1933 10.1021/jm00150a028 4068010
    [Google Scholar]
  15. Qadir T. Amin A. Sharma P.K. Jeelani I. Abe H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J. 2022 16 1 e187410452202280 10.2174/18741045‑v16‑e2202280
    [Google Scholar]
  16. Matos M.J. Vazquez-Rodriguez S. Fonseca A. Uriarte E. Santana L. Borges F. Heterocyclic antioxidants in nature. Coumarins. Curr. Org Chem. 2017 21 311 324 10.2174/1385272820666161017170652
    [Google Scholar]
  17. Santosh R. Selvam M.K. Kanekar S.U. Nagaraja G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole‐linked chalcone derivatives. ChemistrySelect 2018 3 23 6338 6343 10.1002/slct.201800905
    [Google Scholar]
  18. Sayed M. Kamal El-Dean A.M. Ahmed M. Hassanien R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth. Commun. 2018 48 4 413 421 10.1080/00397911.2017.1403627
    [Google Scholar]
  19. Baranwal J. Kushwaha S. Singh S. Jyoti A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr. Phys. Chem. 2023 13 1 2 19 10.2174/1877946813666221021144829
    [Google Scholar]
  20. Zhao S. Zhang X. Wei P. Su X. Zhao L. Wu M. Hao C. Liu C. Zhao D. Cheng M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem. 2017 137 96 107 10.1016/j.ejmech.2017.05.043 28558334
    [Google Scholar]
  21. Quiroga D. Coy-Barrera E. Synthesis of antifungal heterocycle-containing Mannich bases: A comprehensive review. Organics 2023 4 4 503 523 10.3390/org4040035
    [Google Scholar]
  22. Azab M. Youssef M. El-Bordany E. Synthesis and antibacterial evaluation of novel heterocyclic compounds containing a sulfonamido moiety. Molecules 2013 18 1 832 844 10.3390/molecules18010832 23344196
    [Google Scholar]
  23. Srivani K. Radhika V. Laxminarayana E. Haripriya S. A review on hetrocyclic compounds in synthetic, agricultural and industrial applications. Indian J. Public Health Res. Dev. 2018 9 11 717 721 10.5958/0976‑5506.2018.01544.9
    [Google Scholar]
  24. Sadiq A.S. Al-Tamimi E.O. Synthesis, characterization and investigation of new polymer contain heterocyclic derivatives as corrosion inhibitor for stainless steel in acidic medium. Eur. J. Mol. Clin. Med. 2020 7 1567 1580
    [Google Scholar]
  25. Murphree S.S. Heterocyclic dyes: Preparation, properties, and applications. Progress in Heterocyclic Chemistry 2011 22 21 58 10.1016/S0959‑6380(11)22002‑6
    [Google Scholar]
  26. Pibiri I. Recent advances: Heterocycles in drugs and drug discovery. Int. J. Mol. Sci. 2024 25 17 9503 10.3390/ijms25179503 39273451
    [Google Scholar]
  27. The top 20 drugs by worldwide sales in 2021 2022 Available from"https://www.fiercepharma.com/special-reports/top-20-drugs-world
  28. Rizzo C. Pace A. Pibiri I. Buscemi S. Palumbo Piccionello A. From conventional to sustainable catalytic approaches for heterocycles synthesis. ChemSusChem 2024 17 8 e202301604 10.1002/cssc.202301604 38140917
    [Google Scholar]
  29. Joule J.A. Natural products containing nitrogen heterocycles—some highlights 1990–2015. Adv. Heterocycl. Chem. 2016 119 81 106 10.1016/bs.aihch.2015.10.005
    [Google Scholar]
  30. Arora P. Arora V. Lamba H.S. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 2012 9 2947 2954 10.13040/IJPSR.0975‑8232.3(9).2947‑54
    [Google Scholar]
  31. Ciufolini M.A. Synthetic studies on heterocyclic natural products. Farmaco 2005 60 8 627 641 10.1016/j.farmac.2005.01.007 16095596
    [Google Scholar]
  32. Singh R. Geetanjali R. Exploring alkaloids as inhibitors of selected enzyme. Asian J. Chem. 2018 23 2 483 490
    [Google Scholar]
  33. Singh R. Dagar P. Geetanjali R. Chemotaxonomic significance of alkaloids in plants. In: Biodiversity and Chemotaxonomy; Ramawat, K., Ed.; Springer, 2019 121 136 10.1007/978‑3‑030‑30746‑2_6
    [Google Scholar]
  34. Nishanth Rao R. Jena S. Mukherjee M. Maiti B. Chanda K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett. 2021 19 4 3315 3358 10.1007/s10311‑021‑01232‑9
    [Google Scholar]
  35. Giguere R.J. Bray T.L. Duncan S.M. Majetich G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett. 1986 27 41 4945 4948 10.1016/S0040‑4039(00)85103‑5
    [Google Scholar]
  36. Gedye R. Smith F. Westaway K. Ali H. Baldisera L. Laberge L. Rousell J. The use of microwave ovens for rapid organic synthesis. Tet lett 1986 27 (3) 279 282 10.1016/S0040‑4039(00)83996‑9
    [Google Scholar]
  37. Li Z. Peng K. Ji N. Zhang W. Tian W. Gao Z. Advanced mechanisms and applications of microwave-assisted synthesis of carbon-based materials: A brief review. Nanoscale Adv. 2025 7 2 419 432 10.1039/D4NA00701H 39664787
    [Google Scholar]
  38. Hayes B.L. Recent advances in microwave-assisted synthesis. Aldrichim Acta 2004 37 66 77 10.1016/j.mtcomm.2022.103890
    [Google Scholar]
  39. Singh R. Microwave-assisted synthesis of metalloporphyrins. Asian J. Chem. 2005 17 1 612 614
    [Google Scholar]
  40. Singh R. Solvent free regioselective synthesis of 6- and 7-substituted pteridines under microwaves. Russ. J. Org. Chem. 2006 42 136 138 10.1134/S1070428006010210
    [Google Scholar]
  41. Sharma A. Piplani P. Microwave‐activated synthesis of pyrroles: A short review. J. Heterocycl. Chem. 2017 54 1 27 34 10.1002/jhet.2550
    [Google Scholar]
  42. Geetanjali S. Singh R. Microwave-assisted organic synthesis in water. Curr. Microw. Chem. 2021 8 2 117 127 10.2174/2213335608666210623151121
    [Google Scholar]
  43. Santagada V. Frecentese F. Perissutti E. Fiorino F. Severino B. Caliendo G. Microwave assisted synthesis: A new technology in drug discovery. Mini Rev. Med. Chem. 2009 9 3 340 358 10.2174/1389557510909030340 19275727
    [Google Scholar]
  44. Majumder A. Gupta R. Jain A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev. 2013 6 2 151 182 10.1080/17518253.2012.733032
    [Google Scholar]
  45. Kaur N. Microwave-assisted synthesis of seven-membered S-heterocycles. Synth. Commun. 2014 44 22 3201 3228 10.1080/00397911.2013.798665
    [Google Scholar]
  46. Lambat T.L. Chopra P.K.P.G. Mahmood S.H. Microwave: A green contrivance for the synthesis of N-heterocyclic compounds. Curr. Org. Chem. 2020 24 22 2527 2554 10.2174/1385272824999200622114919
    [Google Scholar]
  47. Chauhan S.M.S. Singh R. Geetanjali, Microwave-assisted synthesis of 10-substituted isoalloxazines in the presence of solid acids. Synth. Commun. 2003 33 7 1179 1184 10.1081/SCC‑120017194
    [Google Scholar]
  48. Jain A. De S. Barman P. Microwave-assisted synthesis and notable applications of Schiff-base and metal complexes: A comparative study. Res. Chem. Intermed. 2022 48 5 2199 2251 10.1007/s11164‑022‑04708‑7
    [Google Scholar]
  49. Horikoshi S. Serpone N. Role of microwaves in heterogeneous catalytic systems. Catal. Sci. Technol. 2014 4 5 1197 1210 10.1039/c3cy00753g
    [Google Scholar]
  50. Leadbeater N. Torenius H. Tye H. Microwave-promoted organic synthesis using ionic liquids: A mini review. Comb. Chem. High Throughput Screen. 2004 7 5 511 528 10.2174/1386207043328562 15320715
    [Google Scholar]
  51. Pathak A.K. Ameta C. Ameta R. Punjabi P.B. Microwave‐assisted organic synthesis in ionic liquids. J. Heterocycl. Chem. 2016 53 6 1697 1705 10.1002/jhet.2515
    [Google Scholar]
  52. Chavan S.S. Pedgaonkar Y.Y. Jadhav A.J. Degani M.S. Microwave accelerated synthesis of 2-aminothiophenes in ionic liquid via three component Gewald reaction. Indian J. Chem. 2012 51B 4 653 657
    [Google Scholar]
  53. Chudasama S.J. Shah B.J. Patel K.M. Dhameliya T.M. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J. Mol. Liq. 2022 361 119664 10.1016/j.molliq.2022.119664
    [Google Scholar]
  54. Polshettiwar V. Varma R.S. Greener and expeditious synthesis of bioactive heterocycles using microwave irradiation. Pure Appl. Chem. 2008 80 4 777 790 10.1351/pac200880040777
    [Google Scholar]
  55. Kranjc K. Kocevar M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem. 2010 14 10 1050 1074 10.2174/138527210791130488
    [Google Scholar]
  56. Prakash C. Singh R. Microwave-assisted synthesis of fluorinated heterocycles. Curr. Green Chem. 2022 9 3 145 161 10.2174/2213346110666221223140653
    [Google Scholar]
  57. Prakash C. Singh R. Microwave‐assisted synthesis of fluorinated 5‐Membered nitrogen heterocycles. ChemistrySelect 2024 9 23 e202401376 10.1002/slct.202401376
    [Google Scholar]
  58. Thanh G.V. Pegot B. Loupy A. Solvent‐free microwave‐assisted preparation of chiral ionic liquids from (−)‐N‐methylephedrine. Eur. J. Org. Chem. 2004 2004 5 1112 1116 10.1002/ejoc.200300601
    [Google Scholar]
  59. Pillai U.R. Sahle-Demessie E. Varma R.S. Microwave-expedited olefin epoxidation over hydrotalcites using hydrogen peroxide and acetonitrile. Tetrahedron Lett. 2002 43 16 2909 2911 10.1016/S0040‑4039(02)00426‑4
    [Google Scholar]
  60. Vasudevan A. Verzal M.K. Neutral, metal-free hydration of alkynes using microwave irradiation in superheated water. Synlett 2004 04 4 631 634 10.1055/s‑2004‑817749
    [Google Scholar]
  61. Lamberto M. Corbett D.F. Kilburn J.D. Microwave assisted free radical cyclisation of alkenyl and alkynyl isocyanides with thiols. Tetrahedron Lett. 2003 44 7 1347 1349 10.1016/S0040‑4039(02)02888‑5
    [Google Scholar]
  62. Bachu P. Gibson J.S. Sperry J. Brimble M.A. The influence of microwave irradiation on lipase-catalyzed kinetic resolution of racemic secondary alcohols. Tetrahedron Asymmetry 2007 18 13 1618 1624 10.1016/j.tetasy.2007.06.035
    [Google Scholar]
  63. Yu D. Wang Z. Chen P. Jin L. Cheng Y. Zhou J. Cao S. Microwave-assisted resolution of (R,S)-2-octanol by enzymatic transesterification. J. Mol. Catal., B Enzym. 2007 48 1-2 51 57 10.1016/j.molcatb.2007.06.009
    [Google Scholar]
  64. Caddick S. Fitzmaurice R. Microwave enhanced synthesis. Tetrahedron 2009 65 17 3325 3355 10.1016/j.tet.2009.01.105
    [Google Scholar]
  65. Veer B. Singh R. Facile synthesis of 2-arylimidazo[1,2-a]pyridines catalysed by DBU in aqueous ethanol. Proc.- Royal Soc., Math. Phys. Eng. Sci. 2019 475 2230 20190238 10.1098/rspa.2019.0238
    [Google Scholar]
  66. Mishra D. Singh R. Rout C. A facile amidation of chloroacetyl chloride using DBU. Int. J. Chemtech Res. 2017 10 3 365 372
    [Google Scholar]
  67. Ghosh N. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) - A nucleophillic base. Synlett 2004 3 3 574 575 10.1055/s‑2004‑815436
    [Google Scholar]
  68. Nand B. Khanna G. Chaudhary A. Lumb A. Khurana J.M. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU): A versatile reagent in organic synthesis. Curr. Org. Chem. 2015 19 790 812 10.2174/1385272819666150402221133
    [Google Scholar]
  69. Savoca A.C. Urgaonkar S. 2001 10.1002/047084289X.rd011.pub2
  70. Boddu S.K. Ur Rehman N. Mohanta T.K. Majhi A. Avula S.K. Al-Harrasi A. A review on DBU-mediated organic transformations. Green Chem. Lett. Rev. 2022 15 3 765 795 10.1080/17518253.2022.2132836
    [Google Scholar]
  71. Muzart J. DBU: A reaction product component. ChemistrySelect 2020 5 37 11608 11620 10.1002/slct.202002910
    [Google Scholar]
  72. Del Sole R. De Luca A. Catalano M. Mele G. Vasapollo G. Noncovalent imprinted microspheres: Preparation, evaluation and selectivity of DBU template. J. Appl. Polym. Sci. 2007 105 4 2190 2197 10.1002/app.26208
    [Google Scholar]
  73. Kaljurand I. Rodima T. Leito I. Koppel I.A. Schwesinger R. Self-consistent spectrophotometric basicity scale in acetonitrile covering the range between pyridine and DBU. J. Org. Chem. 2000 65 19 6202 6208 10.1021/jo005521j 10987960
    [Google Scholar]
  74. Varala R. Kamsali M.M.A. Bollikolla H.B. Mahurkar S.S. Hussein M. Alam M.M. Research progress of DBU in C─C, C–Het-eroatom, and heteroatom–heteroatom bond formations Chem. Bio-divers 2025 e01527, e01527 10.1002/cbdv.202501527 406016732025
    [Google Scholar]
  75. Thummala Y. Karunakar G.V. Doddi V.R. DBU‐mediated synthesis of aryl acetylenes or 1‐bromoethynylarenes from aldehydes. Adv. Synth. Catal. 2019 361 3 611 616 10.1002/adsc.201801334
    [Google Scholar]
  76. Wolff S. Huecas M.E. Agosta W.C. Convenient preparation of 1,1-disubstituted olefins from primary tosylates and iodides. J. Org. Chem. 1982 47 22 4358 4359 10.1021/jo00143a043
    [Google Scholar]
  77. Pal M. Swamy N.K. Hameed P.S. Padakanti S. Yeleswarapu K.R. A rapid and direct access to symmetrical/unsymmetrical 3,4-diarylmaleimides and pyrrolin-2-ones. Tetrahedron 2004 60 18 3987 3997 10.1016/j.tet.2004.03.036
    [Google Scholar]
  78. Wu Y. Hu Q. Sun Y.P. Yang Y.Q. Facile removal of 4-phenyl-oxazolidinethione auxiliary with EtSH mediated by DBU. Tetrahedron Lett. 2004 45 41 7715 7717 10.1016/j.tetlet.2004.08.113
    [Google Scholar]
  79. Muathen H.A. 1,8-Diazabicyclo[5.4.0]undec-7-ene hydrobromide perbromide: A new mild stable brominating agent for aromatic compounds. J. Org. Chem. 1992 57 9 2740 2741 10.1021/jo00035a038
    [Google Scholar]
  80. Zhu Y.S. Wang W.B. Yuan B.B. Li Y.N. Wang Q.L. Bu Z.W. A DBU-catalyzed Michael–Pinner–isomerization cascade reaction of 3-hydroxyoxindoles with isatylidene malononitriles: Access to highly functionalized bispirooxindoles containing a fully substituted dihydrofuran motif. Org. Biomol. Chem. 2017 15 4 984 990 10.1039/C6OB02254E 28067385
    [Google Scholar]
  81. Utsumi N. Kitagaki S. Barbas C.F. Organocatalytic mannich-type reactions of trifluoroethyl thioesters. Org. Lett. 2008 10 16 3405 3408 10.1021/ol801207x 18630874
    [Google Scholar]
  82. Chanthavong F. Leadbeater N.E. The application of organic bases in microwave-promoted Suzuki coupling reactions in water. Tetrahedron Lett. 2006 47 12 1909 1912 10.1016/j.tetlet.2006.01.092
    [Google Scholar]
  83. Gavara L. Petit C. Montchamp J.L. DBU-promoted alkylation of alkyl phosphinates and H-phosphonates. Tetrahedron Lett. 2012 53 37 5000 5003 10.1016/j.tetlet.2012.07.019
    [Google Scholar]
  84. Cordaro M. Grassi G. Risitano F. Scala A. A new construction of diversely functionalized oxazoles from enolizable cyclic 1, 3-dicarbonyls and 5 (4H)-oxazolones. Synlett 2009 2009 1 103 105 10.1055/s‑0028‑1087483
    [Google Scholar]
  85. Shimakawa Y. Morikawa T. Sakaguchi S. Facile route to benzils from aldehydes via NHC-catalyzed benzoin condensation under metal-free conditions. Tetrahedron Lett. 2010 51 13 1786 1789 10.1016/j.tetlet.2010.01.103
    [Google Scholar]
  86. Rong L. Tao S. Xia S. Liu L. Yin S. Shi Y. An efficient synthesis of 2-amino-4-aryl-6,7,8,9-tetrahydro-5H-benzo[7]annulene-1,3-dicarbonitriles in THF with DBU as catalyst. Res. Chem. Intermed. 2012 38 7 1647 1654 10.1007/s11164‑012‑0491‑3
    [Google Scholar]
  87. Miura M. Toriyama M. Kawakubo T. Yasukawa K. Takido T. Motohashi S. Asymmetric synthesis of γ-Hydroxy α-enones by 1,8-diazabicyclo[5.4.0]undec-7-ene-catalyzed stereoselective rearrangement of chiral α-sulfinyl enones. Org. Lett. 2010 12 17 3882 3885 10.1021/ol1015724 20704185
    [Google Scholar]
  88. Zhang L. Zhang Y. Wang X. Shen J. Efficient synthesis of a (Z)-3-methyleneisoindolin-1-one library using Cu(OAc)2•H2O/DBU under microwave irradiation. Molecules 2013 18 1 654 665 10.3390/molecules18010654 23292328
    [Google Scholar]
  89. Singh H. Sindhu J. Khurana J.M. Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU–H2O catalytic system. RSC Advances 2013 3 44 22360 22366 10.1039/c3ra44440f
    [Google Scholar]
  90. Bharadwaj A.R. Scheidt K.A. Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot sila-Stetter/Paal-Knorr strategy. Org. Lett. 2004 6 14 2465 2468 10.1021/ol049044t 15228305
    [Google Scholar]
  91. Festa A.A. Zalte R.R. Golantsov N.E. Varlamov A.V. Van der Eycken E.V. Voskressensky L.G. DBU-catalyzed alkyne–imidate cyclization toward 1-alkoxypyrazino[1,2- a]indole Synthesis. J. Org. Chem. 2018 83 16 9305 9311 10.1021/acs.joc.8b01279 29944827
    [Google Scholar]
  92. Patonay T. Varma R.S. Vass A. Lévai A. Dudás J. Highly diastereoselective Michael reaction under solvent-free conditions using microwaves: Conjugate addition of flavanone to its chalcone precursor. Tetrahedron Lett. 2001 42 8 1403 1406 10.1016/S0040‑4039(00)02264‑4
    [Google Scholar]
  93. Raghuvanshi D.S. Singh K.N. An expeditious synthesis of novel pyranopyridine derivatives involving chromenes under controlled microwave irradiation. ARKIVOC 2010 2010 10 305 317 10.3998/ark.5550190.0011.a25
    [Google Scholar]
  94. Kamila S. Biehl E.R. Synthetic studies of bioactive quinoxalinones: A facile approach to potent euglycemic and hypolipidemic agents. Heterocycles 2006 68 1931 1940 10.3987/COM‑06‑10793
    [Google Scholar]
  95. Liang Y.E.D. Barve B. Kuo Y.H. Fang H.W. Kuo T.S. Li W.T. Metal‐free, DBU‐mediated, microwave‐assisted synthesis of benzo [c] xanthones by tandem reactions of alkynyl‐1,3‐diketones. Adv. Synth. Catal. 2021 363 505 511 10.1002/adsc.202001169
    [Google Scholar]
  96. Dai W.M. Wang X. Ma C. Microwave-assisted one-pot regioselective synthesis of 2-alkyl-3,4-dihydro-3-oxo-2H-1,4-benzoxazines. Tetrahedron 2005 61 28 6879 6885 10.1016/j.tet.2005.04.072
    [Google Scholar]
  97. Sonar S.S. Sadaphal S.A. Pawar S.S. Shingate B.B. Shingare M.S. Microwave assisted convenient synthesis of quino[2,3-b][1,5]benzoxazepines. Chin. Chem. Lett. 2009 20 5 557 561 10.1016/j.cclet.2009.01.031
    [Google Scholar]
  98. Spencer J. Rathnam R.P. Patel H. Anjum N. Microwave mediated reduction of heterocycle and fluorine containing nitroaromatics with Mo(CO)6 and DBU. Tetrahedron 2008 64 44 10195 10200 10.1016/j.tet.2008.08.036
    [Google Scholar]
  99. Jordan C.A. Wieczerzak K.B. Knisley K.J. Ketcha D.M. Expedited microwave-assisted N-alkylation of isatins utilizing DBU. ARKIVOC 2014 2014 4 183 192 10.3998/ark.5550190.p008.205
    [Google Scholar]
  100. Chen S. Huang H. Liu X. Shen J. Jiang H. Liu H. Microwave-assisted efficient copper-promoted N-arylation of amines with arylboronic acids. J. Comb. Chem. 2008 10 3 358 360 10.1021/cc8000053 18393467
    [Google Scholar]
  101. Shieh W.C. Dell S. Repič O. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org. Lett. 2001 3 26 4279 4281 10.1021/ol016949n 11784197
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356412875250925043423
Loading
/content/journals/cmic/10.2174/0122133356412875250925043423
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: benzimidazoles ; heterocycles ; isatins ; microwave ; DBU ; indoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test