Skip to content
2000
image of Microwave-Assisted Synthesis of Imidazole Derivatives: A Recent Update

Abstract

Microwave-assisted synthesis has emerged as a sustainable and eco-friendly approach for the rapid and efficient production of organic compounds. This technique offers significant advantages over conventional methods, including shorter reaction times, enhanced yields, and improved product purity. The uniform heating provided by microwave radiation is particularly beneficial for the synthesis of heterocyclic compounds and their derivatives. Among these, imidazole derivatives hold great pharmaceutical and biological significance. In light of this, the present review focuses on recent solvent-free, acid-mediated, ionic liquid-mediated, NPs-catalyzed, and metal-catalyzed microwave-assisted methods for the synthesis of these molecules.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356406782250912042632
2025-09-23
2026-01-02
Loading full text...

Full text loading...

References

  1. Ebenezer O. Oyetunde-Joshua F. Omotoso O.D. Shapi M. Benzimidazole and its derivatives: Recent advances (2020–2022). Results Chem. 2023 5 100925 10.1016/j.rechem.2023.100925
    [Google Scholar]
  2. Siwach A. Verma P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem. 2021 15 1 12 10.1186/s13065‑020‑00730‑1 33602331
    [Google Scholar]
  3. Li S.R. Tan Y.M. Zhang L. Zhou C.H. Comprehensive insights into medicinal research on imidazole-based supramolecular complexes. Pharmaceutics 2023 15 5 1348 10.3390/pharmaceutics15051348 37242590
    [Google Scholar]
  4. Gupta S. Babu M.A. Kumar R. Singh T.G. Goel A. Rastogi S. Sharma P. Tyagi Y. Goel K.K. Kumar B. Exploring USFDA‐approved imidazole‐based small molecules in drug discovery: A mini perspective. Chem. Biodivers. 2025 22 7 e202403020 10.1002/cbdv.202403020 40062971
    [Google Scholar]
  5. Yoo J. Lee J. Ahn B. Han J. Lim M.H. Multi-target-directed therapeutic strategies for Alzheimer’s disease: Controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem. Sci. 2025 16 5 2105 2135 10.1039/D4SC06762B 39810997
    [Google Scholar]
  6. Kushwaha P. Das B. Kumar R. Unveiling of indanone‐benzimidazole hybrids as anti‐alzheimer’s agents: Computational and experimental studies. ChemistrySelect 2024 9 15 e202400275 10.1002/slct.202400275
    [Google Scholar]
  7. Alzhrani Z.M.M. Alam M.M. Nazreen S. Recent advancements on benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev. Med. Chem. 2022 22 2 365 386 10.2174/1389557521666210331163810 33797365
    [Google Scholar]
  8. Flood D. Taylor C. Inhibition of microtubule function prevents hypoxia-induced glycolysis. Physiology 2024 39 S1 933 10.1152/physiol.2024.39.S1.933
    [Google Scholar]
  9. Ali A.M. Tawfik S.S. Mostafa A.S. Massoud M.A.M. Benzimidazole‐based protein kinase inhibitors: Current perspectives in targeted cancer therapy. Chem. Biol. Drug Des. 2022 100 5 656 673 10.1111/cbdd.14130 35962624
    [Google Scholar]
  10. Sharma P. LaRosa C. Antwi J. Govindarajan R. Werbovetz K.A. Imidazoles as potential anticancer agents: An update on recent studies. Molecules 2021 26 14 4213 10.3390/molecules26144213 34299488
    [Google Scholar]
  11. Deng C. Yan H. Wang J. Liu B. Liu K. Shi Y. The anti-HIV potential of imidazole, oxazole and thiazole hybrids: A mini-review. Arab. J. Chem. 2022 15 11 104242 10.1016/j.arabjc.2022.104242
    [Google Scholar]
  12. Marinescu M. Benzimidazole-triazole hybrids as antimicrobial and antiviral agents: A systematic review. Antibiotics 2023 12 7 1220 10.3390/antibiotics12071220 37508316
    [Google Scholar]
  13. Marinescu M. Synthesis of antimicrobial benzimidazole–pyrazole compounds and their biological activities. Antibiotics 2021 10 8 1002 10.3390/antibiotics10081002 34439052
    [Google Scholar]
  14. Andrei G.Ș. Andrei B.F. Roxana P.R. Imidazole derivatives and their antibacterial activity - A mini-review. Mini Rev. Med. Chem. 2021 21 11 1380 1392 10.2174/1389557520999201209213648 33302837
    [Google Scholar]
  15. Ng J.W. Mohd Tahir N.A. Chin P.K.L. Makmor-Bakry M. Mohd Saffian S. A systematic review and meta‐analysis of dabigatran peak and trough concentration in adults. Br. J. Clin. Pharmacol. 2022 88 10 4443 4459 10.1111/bcp.15431 35665523
    [Google Scholar]
  16. Gao Y. Liu Y. Zou D. Microwave-assisted synthesis and environmental remediation: A review. Environ. Chem. Lett. 2023 21 4 2399 2416 10.1007/s10311‑023‑01599‑x
    [Google Scholar]
  17. Lew A. Krutzik P.O. Hart M.E. Chamberlin A.R. Increasing rates of reaction: Microwave-assisted organic synthesis for combinatorial chemistry. J. Comb. Chem. 2002 4 2 95 105 10.1021/cc010048o 11886281
    [Google Scholar]
  18. Rajak H. Mishra P. Microwave assisted combinatorial chemistry: The potential approach for acceleration of drug discovery. J. Sci. Ind. Res. 2004 63 641 654
    [Google Scholar]
  19. Gabriel C. Gabriel S. Grant E.H. Halstead B.S. Mingos D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev. 1998 27 213 223 10.1039/a827213z
    [Google Scholar]
  20. Langa F. de la Cruz P. de la Hoz A. Díaz-Ortiz A. Díez-Barra E. Microwave irradiation: More than just a method for accelerating reactions. Contemp. Org. Synth. 1997 4 5 373 386 10.1039/CO9970400373
    [Google Scholar]
  21. Elander N. Jones J.R. Lu S.Y. Stone-Elander S. Microwave-enhanced radiochemistry. Chem. Soc. Rev. 2000 29 4 239 249 10.1039/a901713e
    [Google Scholar]
  22. Gabano E. Ravera M. Microwave-assisted synthesis: Can transition metal complexes take advantage of this “Green” method? Molecules 2022 27 13 4249 10.3390/molecules27134249 35807493
    [Google Scholar]
  23. Hu H. Liu N. Ru Q. Jiang W. Yang Y. Ma K. Meng L. Du Z. Zhang B. Cheng G. Highly selective, catalyst-free CO 2 reduction in strong acid without alkali cations by a mechanical energy-induced triboelectric plasma-electrolytic system. Green Chem. 2025 27 23 6747 6753 10.1039/D5GC00977D
    [Google Scholar]
  24. Liu N. Ru Q. Jiang W. Hu H. Yang Y. Ma K. Du Z. Jia Y. Yang X. Zhang B. Cheng G. Efficient catalyst-free CO2 reduction by CO2— radical anions at gas–liquid interface under ambient conditions. Chem. Eng. J. 2025 513 162480 10.1016/j.cej.2025.162480
    [Google Scholar]
  25. Zhang B. Ru Q. Liu L. Wang J. Zhang Y. Zhao K. Gu G. Xiang X. Li S. Zhu Y. Jia Y. Cheng G. Du Z. Overcoming energy mismatch of metal oxide semiconductor catalysts for CO 2 reduction with triboelectric plasma. J. Catal. 2023 419 1 8 10.1016/j.jcat.2023.01.031
    [Google Scholar]
  26. Nori V. Pesciaioli F. Sinibaldi A. Giorgianni G. Carlone A. Boron-based lewis acid catalysis: Challenges and perspectives. Catalysts 2021 12 1 5 10.3390/catal12010005
    [Google Scholar]
  27. Bathula C. Mk R. K, A.K.; Yadav, H.; Ramesh, S.; Shinde, S.; Shrestha, N.K.; Km, M.; Reddy, V.; Mohammed, A. Microwave assisted synthesis of imidazolyl fluorescent dyes as antimicrobial agents. J. Mater. Res. Technol. 2020 9 3 6900 6908 10.1016/j.jmrt.2020.01.011
    [Google Scholar]
  28. Güngör T. Microwave assisted, sequential two-step, one-pot synthesis of novel imidazo[1,2-a] pyrimidine containing tri/tetrasubstituted imidazole derivatives. Turk. J. Chem. 2021 45 1 219 230 10.3906/kim‑2009‑40 33679165
    [Google Scholar]
  29. Kalhor M. Samiei S. Mirshokraei S.A. Microwave-assisted one-step rapid synthesis of dicyano imidazoles by HNO 3 as a high efficient promoter. Green Chem. Lett. Rev. 2021 14 3 500 508 10.1080/17518253.2021.1943005
    [Google Scholar]
  30. Kalhor M. Seyedzade Z. Rapid synthesis of 2-amino maleonitrile Schiff bases in aqueous media catalyzed by cerium(IV) ammonium nitrate (CAN) and a new method for the one-pot preparation of their dicyano imidazoles (DCI). Res. Chem. Intermed. 2017 43 5 3349 3360 10.1007/s11164‑016‑2829‑8
    [Google Scholar]
  31. Baig N. Shetty S. Parikh A. Sah A.K. Alameddine B. Aggregation-induced enhanced emission (AIEE), pH sensing and selective detection of sulfuric acid of novel imidazole-based surrogates made via microwave-assisted synthesis. RSC Advances 2025 15 8 5932 5941 10.1039/D5RA00786K 39990816
    [Google Scholar]
  32. Abdelhamid A.A. El-Eisawy R.A. Alsenani N.I. Alqurashi E.A. Alsimaree A.A. Mohamed Babiker M.E. Amer A.A. Alqahtany F.Z. Badrey M.G. Microwave assisted, one-pot four component designing of 1-butyl-4,5-bis(4-chlorophenyl)-2-aryl-1H-imidazoles. Synth. Commun. 2025 55 7 536 543 10.1080/00397911.2025.2472375
    [Google Scholar]
  33. Itoh T. Ionic liquids as tool to improve enzymatic organic synthesis. Chem. Rev. 2017 117 15 10567 10607 10.1021/acs.chemrev.7b00158 28745876
    [Google Scholar]
  34. Manjul R.K. Gaikwad S.T. Gade V.B. Rajbhoj A.S. Jopale M.K. Patil S.M. Gaikwad D.N. Suryavanshi D.M. Goskulwad S.P. Shinde S.D. [EMIm][BH 3 CN] ionic liquid as an efficient catalyst for the microwave- assisted one-pot synthesis of triaryl imidazole derivatives. Lett. Org. Chem. 2023 20 10 967 975 10.2174/1570178620666230510122033
    [Google Scholar]
  35. Rajesh B. Manjul K. Gade V.B. Gaikwad D.N. Suryavanshi D.M. Rajbhoj A.S. Gaikwad S.T. 1-ethyl-3-methylimidazolium cyanoborohydride catalyzed solvent-free microwave-assisted one-pot multicomponent synthesis of tetrahydrobenzo[b]pyran derivatives. Lett. Org. Chem. 2019 19 6 457 462 10.2174/1570178619666190520112937
    [Google Scholar]
  36. Nakamura I. Yamamoto Y. Transition-metal-catalyzed reactions in heterocyclic synthesis. Chem. Rev. 2004 104 5 2127 2198 10.1021/cr020095i 15137788
    [Google Scholar]
  37. Yan L. Fu J. Li S. Zhang J. Wang S. Gu Q. Zhang Y. Lin F. Microwave-assisted catalyzed synthesis and in vitro bioactivity evaluation of benzimidazoles bearing phenolic hydroxyl. Chem. Res. Chin. Univ. 2021 37 3 639 646 10.1007/s40242‑020‑0274‑0
    [Google Scholar]
  38. Sedaghat M. Moeinpour F. Mohseni-Shahri F.S. Copper(II)/polyimide linked covalent organic framework as a powerful catalyst for the solvent‐free microwave irradiation‐based synthesis of 2,4,5‐trisubstituted imidazoles. Anal. Sci. Adv. 2023 4 9-10 302 311 10.1002/ansa.202300012 38715596
    [Google Scholar]
  39. Chary ahankhali Venu Keerthysri Nallani Chakravarthula Vupallapati Srinivasu Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles. Catal. Commun. 2008 9 10 2013 2017 10.1016/j.catcom.2008.03.037
    [Google Scholar]
  40. Gawande M.B. Bonifácio V.D.B. Luque R. Branco P.S. Varma R.S. Solvent-free and catalysts-free chemistry: A benign pathway to sustainability. ChemSusChem 2014 7 1 24 44 10.1002/cssc.201300485 24357535
    [Google Scholar]
  41. Mohammadi M.K. Microwave assisted solvent free one pot synthesis of acenaphtho [1,2-d] imidazole derivatives using NH 4+ OAc –/NH 4+ Cl –. Main Group Chem. 2024 23 4 447 454 10.3233/MGC‑230073
    [Google Scholar]
  42. Ndolomingo M.J. Bingwa N. Meijboom R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 2020 55 15 6195 6241 10.1007/s10853‑020‑04415‑x
    [Google Scholar]
  43. Kafi-Ahmadi L. Khademinia S. Poursattar Marjani A. Nozad E. Microwave-assisted preparation of polysubstituted imidazoles using Zingiber extract synthesized green Cr 2 O 3 nanoparticles. Sci. Rep. 2022 12 1 19942 10.1038/s41598‑022‑24364‑6 36402805
    [Google Scholar]
  44. Esmaeilpour M. Javidi J. Zandi M. One-pot synthesis of multisubstituted imidazoles under solvent-free conditions and microwave irradiation using Fe3O4@SiO2–imid–PMAn magnetic porous nanospheres as a recyclable catalyst. New J. Chem. 2015 39 5 3388 3398 10.1039/C5NJ00050E
    [Google Scholar]
  45. Gurav S.S. Jadhav S.R. Mali S.N. Lotlikar O.A. Waghmode K.T. An efficient one-pot multicomponent, Amberlite IR120(H) catalyzed microwave-assisted synthesis of 1,2,4,5-tetrasubstituted-1 H -imidazoles: Plausible mechanism and antibacterial evaluation. Synth. Commun. 2023 53 23 2029 2040 10.1080/00397911.2023.2267131
    [Google Scholar]
  46. Asressu K.H. Chan C.K. Wang C.C. TMSOTf-catalyzed synthesis of trisubstituted imidazoles using hexamethyldisilazane as a nitrogen source under neat and microwave irradiation conditions. RSC Advances 2021 11 45 28061 28071 10.1039/D1RA05802A 35480777
    [Google Scholar]
  47. Shah D. Patel M. Patel D. Patel A. Microwave-assisted synthesis of benzimidazole derivatives: A green and effective approach. Curr. Green Chem. 2025 12 2 159 165 10.2174/0122133461335908240920060520
    [Google Scholar]
  48. Roberts B.A. Strauss C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res. 2005 38 8 653 661 10.1021/ar040278m 16104688
    [Google Scholar]
  49. Boiani M. González M. Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem. 2005 5 4 409 424 10.2174/1389557053544047 15853629
    [Google Scholar]
  50. Venugopal S. Kaur B. Verma A. Wadhwa P. Sahu S.K. A review on modern approaches to benzimidazole synthesis. Curr. Org. Synth. 2023 20 6 595 605 10.2174/1570179420666221010091157 36221870
    [Google Scholar]
  51. Pardeshi V.A.S. Chundawat N.S. Pathan S.I. Sukhwal P. Chundawat T.P.S. Singh G.P. A review on synthetic approaches of benzimidazoles. Synth. Commun. 2021 51 4 485 513 10.1080/00397911.2020.1841239
    [Google Scholar]
  52. Soni J. Sethiya A. Sahiba N. Agarwal D.K. Agarwal S. Contemporary progress in the synthetic strategies of imidazole and its biological activities. Curr. Org. Synth. 2020 16 8 1078 1104 10.2174/1570179416666191007092548 31984918
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356406782250912042632
Loading
/content/journals/cmic/10.2174/0122133356406782250912042632
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: imidazole ; solvent-free ; benzimidazole ; Microwave ; ionic liquid ; green chemistry
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test