Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Introduction

This paper presents a detailed overview of the synthesis and spectroscopic characterization of azocalix[4]resorcene using microwave assistance. Compared to traditional methods, this microwave approach is not only faster but also more energy-efficient. Plus, it gives higher yields (20-24% more yields).

Methods

The synthesized compounds are characterized using various spectroscopic techniques. These include mass spectrometry, elemental analysis, FT-IR, & NMR. Through extensive spectroscopic analysis, we confirm both structural and functional properties.

Results

The findings highlight the advantages of utilizing microwave-assisted synthesis in producing azocalix[4]resorcinarene. This study highlights the advantages of microwave-assisted synthesis in producing structurally complex and biologically active molecules efficiently. Additionally, we conducted tests to evaluate the antibacterial and antifungal properties of these compounds. The study evaluated the efficacy of the synthesized compounds against , , , and . Antimicrobial activity tests revealed significant inhibitory effects against and , while the antibacterial assays demonstrated inhibition zones of 12 mm for and 9 mm for .

Conclusion

These results underscore the potential of azocalix[4]resorcinarene as a versatile compound with promising antimicrobial properties.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356365251250314051938
2025-03-27
2025-10-03
Loading full text...

Full text loading...

References

  1. AgrawalY.K. Design and synthesis of Calixarene.J. Sci. Ind. Res.200968745768
    [Google Scholar]
  2. JainV.K. PandyaR.A. PillaiS.G. AgrawalY.K. KanaiyaP.H. Solid-phase extractive preconcentration and separation of lanthanum(III) and cerium(III) using a polymer-supported chelating calix [4] arene resin.J. Anal. Chem.200762210411210.1134/S1061934807020025
    [Google Scholar]
  3. TimmermanP. VerboomW. ReinhoudtD.N. Resorcinarenes.Tetrahedron19965282663270410.1016/0040‑4020(95)00984‑1
    [Google Scholar]
  4. JainV.K. KanaiyaP.H. Chemistry of calix[4]resorcinarenes.Russ. Chem. Rev.20118017510210.1070/RC2011v080n01ABEH004127
    [Google Scholar]
  5. AgrawalY.K. Studies on resorcinarenes and their analytical applications.Rev. Anal. Chem.200623155239
    [Google Scholar]
  6. SliwaW. ZujewskaT. BachowskaB. Resorcinarenes.Pol. J. Chem.20037710791111
    [Google Scholar]
  7. JainV.K. PillaiS.G. KanaiyaP.H. Octafunctionalized calix[4]resorcinarene-N-fenil-acetohydroxamic acid for the separation, preconcentration and transport studies of cerium(IV).J. Braz. Chem. Soc.20061771316132210.1590/S0103‑50532006000700018
    [Google Scholar]
  8. HeL. LiL. WangS.C. ChanY.T. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd8Pt8 nano-Saturn complexes.Chem. Commun.20235977115001150310.1039/D3CC03414C 37622211
    [Google Scholar]
  9. HassanA.K. RayA.K. NabokA.V. DavisF. Spun films of novel calix[4]resorcinarene derivatives for benzene vapour sensing.Sens. Actuators B Chem.200177363864110.1016/S0925‑4005(01)00777‑8
    [Google Scholar]
  10. MakwanaB.A. BhattK. VyasD. GupteH.S. JainV.K. Synthesis, characterisation, binding behaviour and antimicrobial activity of azocalix[4]resorcine dye derived from 8-aminoquinoline.Sch. Acad. J. Pharm.20143463470
    [Google Scholar]
  11. BishnoiA. ChawalaH.M. Synthesis and applications of chromogenic calix[4]resorcinarene derivatives.Res. J. Chem. Environ.2014184549
    [Google Scholar]
  12. KazakovaE.K. MorozovaJ.E. MironovaD.A. KonovalovA.I. Sorption of azo dyes from aqueous solutions by tetradodecyloxybenzylcalix[4]resorcinarene derivatives.J. Incl. Phenom. Macrocycl. Chem.2012741-446747210.1007/s10847‑011‑0075‑7
    [Google Scholar]
  13. JainV.K. MandaliaH.C. Azocalix[4]pyrroles: One-pot microwave and one drop water assisted synthesis, spectroscopic characterization and preliminary investigation of its complexation with copper (II).J. Incl. Phenom. Macrocycl. Chem.2009631-2273510.1007/s10847‑008‑9485‑6
    [Google Scholar]
  14. AgrawalY.K. DesaiN.C. MehtaN.D. Microwave‐assisted synthesis of azocalixarenes.Synth. Commun.200737132243225210.1080/00397910701397086
    [Google Scholar]
  15. SardjonoR.E. KadarohmanA. MardhiyahA. Green synthesis of some Calix[4]Resorcinarene under microwave irradiation.Procedia Chem.2012422423110.1016/j.proche.2012.06.031
    [Google Scholar]
  16. JainV.K. A facial microwave-assisted synthesis, spectroscopiccharacterization and preliminary complexation studiesof calix[4]pyrroles containing the hydroxamic-acid moiety.J. Incl. Phenom. Macrocycl. Chem.20086216717810.1007/s10847‑008‑9453‑1
    [Google Scholar]
  17. SelvakumarK. KumaresanM. SamiP. SwaminathanM. Eco-friendly heteropoly acid supported on natural clay for the synthesis of calix[4]resorcinarene derivatives.Indian J. Chem. Technol.202027185191
    [Google Scholar]
  18. KanaiyaP.H. JainV.K. Microwave-assisted synthesis and characterization of Calix[4]resorcinarenes.Russ. J. Org. Chem.202460102014201910.1134/S107042802410018X
    [Google Scholar]
  19. JainV.K. KanaiyaP.H. BhojakN. Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers.Fibers Polym.20089672072610.1007/s12221‑008‑0113‑2
    [Google Scholar]
  20. JainV.K. Synthesis of Calix[4]resorcinarene based dyes and its application in dyeing of fibres.E-J. Chem.200851037
    [Google Scholar]
  21. JainV.K. KanaiyaP.H. Diazo reductive: A new approach to the synthesis of novel “upper rim” functionalized resorcin[4]arene Schiff-bases.J. Incl. Phenom. Macrocycl. Chem.2008621-211111510.1007/s10847‑008‑9445‑1
    [Google Scholar]
  22. KanaiyaP.H. JainV.K. Tetrafunctionalized Azocalix[4]resorcinarene dye: A chromogenic supramolecule used for the selective liquid-liquid extraction and spectrophotometric determination of Cu(II).Curr. Anal. Chem.20242110.2174/0115734110346665241016094729
    [Google Scholar]
  23. SinghR. JainA. PanwarS. GuptaD. KhareS.K. Antimicrobial activity of some natural dyes.Dyes Pigments20056629910210.1016/j.dyepig.2004.09.005
    [Google Scholar]
  24. ShurpikD.N. PadnyaP.L. StoikovI.I. CraggP.J. Antimicrobial activity of calixarenes and related macrocycles.Molecules20202521514510.3390/molecules25215145
    [Google Scholar]
  25. KarcıF. Azocalixarenes 1 Synthesis, characterization and investigation of the absorption spectra of substituted azocalix[4]arenes.Dyes Pigments2003591536110.1016/S0143‑7208(03)00095‑0
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356365251250314051938
Loading
/content/journals/cmic/10.2174/0122133356365251250314051938
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test