Skip to content
2000
image of Recent Advances in the Microwave-Assisted Synthesis of Organic Sulfides and Disulfides of Biological Importance

Abstract

The introduction of microwave irradiation in organic synthesis has revolutionized traditional synthetic chemistry by enhancing efficiency, reducing reaction times, lowering costs, improving selectivity, increasing safety, and promoting sustainability. Consequently, microwave technology has become indispensable in diverse fields, including the synthesis of peptides, biologically active heterocycles, industrially valuable organic compounds, polymers, and materials science. The use of microwave heating has significantly advanced the synthesis of biologically relevant organic sulfides/thioethers and disulfides compared to conventional synthetic routes. These methods offer shorter reaction times, excellent yields, simple work-up procedures, and the use of green solvents or solvent-free and metal-free reaction conditions, making them more attractive from a green chemistry perspective. Moreover, microwave heating simplifies the solid-phase synthesis of disulfide-rich peptides, making it more viable, selective, and cost-effective. Notably, substantial progress has been made over the past two decades in synthesizing small molecules of both symmetrical and unsymmetrical organic sulfides and disulfides, including disulfide-containing therapeutic peptides, under microwave irradiation. This review provides an overview of recent advancements in the microwave-assisted synthesis of a wide variety of bioactive diaryl and aryl–alkyl sulfides and disulfides, including a disulfide-bridged cycloheptapeptide, along with critical discussions where necessary.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356423853251117064512
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Cremlyn R.J. An Introduction to Organosulfur Chemistry. Chichester, England 1996
    [Google Scholar]
  2. Petropoulos S. Di Gioia F. Ntatsi G. Vegetable organosulfur compounds and their health-promoting effects. Curr. Pharm. Des. 2017 23 19 2850 2875 10.2174/1381612823666170111100531 28078991
    [Google Scholar]
  3. Cao X. Cao L. Zhang W. Lu R. Bian J.S. Nie X. Therapeutic potential of sulfur-containing natural products in inflammatory diseas-es. Pharmacol. Ther. 2020 216 107687 10.1016/j.pharmthera.2020.107687 32966837
    [Google Scholar]
  4. Kumar G. Naturally occurring organosulfur for treating metabolic disorders and infectious diseases. Med. Chem. Res. 2025 34 1 45 85 10.1007/s00044‑024‑03326‑9
    [Google Scholar]
  5. Kazemi M. Sajjadifar S. Aydi A. Heydari M.M. Biological and pharmaceutical organosulfur molecules. J. Med. Chem. Sci. 2018 1 1 4
    [Google Scholar]
  6. Blume L. Long T.E. Turos E. Applications and opportunities in using disulfides, thiosulfinates, and thiosulfonates as antibacterials. Int. J. Mol. Sci. 2023 24 10 8659 10.3390/ijms24108659 37240003
    [Google Scholar]
  7. Yu J. Jiang X. Synthesis and perspective of organosulfur chemicals in agrochemicals. Advanced Agrochem 2023 2 1 3 14 10.1016/j.aac.2022.12.003
    [Google Scholar]
  8. Wang N. Saidhareddy P. Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020 37 2 246 275 10.1039/C8NP00093J 31204423
    [Google Scholar]
  9. Trost B.M. Some aspects of organosulfur-mediated synthetic methods. Acc. Chem. Res. 1978 11 12 453 461 10.1021/ar50132a004
    [Google Scholar]
  10. Toru T. Bolm C. Organosulfur chemistry in asymmetric synthesis. Wiley-VCH Verlag: Weinheim Germany 2008 10.1002/9783527623235
    [Google Scholar]
  11. Ren S. Sang P. Guo W. Fu Y. Organosulfur polymer-based cathode materials for rechargeable batteries. Polym. Chem. 2022 13 40 5676 5690 10.1039/D2PY00823H
    [Google Scholar]
  12. Pan Z. Brett D.J.L. He G. Parkin I.P. Progress and perspectives of organosulfur for lithium–sulfur batteries. Adv. Energy Mater. 2022 12 8 2103483 10.1002/aenm.202103483
    [Google Scholar]
  13. Feng M. Tang B. Liang S.H. Jiang X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem. 2016 16 11 1200 1216 10.2174/1568026615666150915111741 26369815
    [Google Scholar]
  14. Mustafa M. Winum J.Y. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin. Drug Discov. 2022 17 5 501 512 10.1080/17460441.2022.2044783 35193437
    [Google Scholar]
  15. Scott K.A. Njardarson J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. 2018 376 1 5 10.1007/s41061‑018‑0184‑5 29356979
    [Google Scholar]
  16. Marshall C.M. Federice J.G. Bell C.N. Cox P.B. Njardarson J.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-approved pharmaceuticals (2013-2023). J. Med. Chem. 2024 67 14 11622 11655 10.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  17. Iciek M. Kwiecień I. Włodek L. Biological properties of garlic and garlic‐derived organosulfur compounds. Environ. Mol. Mutagen. 2009 50 3 247 265 10.1002/em.20474 19253339
    [Google Scholar]
  18. Francioso A. Baseggio Conrado A. Mosca L. Fontana M. Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxid. Med. Cell. Longev. 2020 2020 1 27 10.1155/2020/8294158 33062147
    [Google Scholar]
  19. Zhao C. Rakesh K.P. Ravidar L. Fang W.Y. Qin H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019 162 679 734 10.1016/j.ejmech.2018.11.017 30496988
    [Google Scholar]
  20. Han M.İ. Küçükgüzel Ş.G. Thioethers: An overview. Curr. Drug Targets 2022 23 2 170 219 10.2174/1389450122666210614121237 35139780
    [Google Scholar]
  21. Koval’ I.V. Sulfides: Synthesis and properties. Russ. Chem. Rev. 1994 63 4 323 344 10.1070/RC1994v063n04ABEH000087
    [Google Scholar]
  22. Yang K. Li Q. Li Z. Sun X. Transition-metal-free C–S bond cleavage and transformation of organosulfur compounds. Chem. Commun. 2023 59 36 5343 5364 10.1039/D3CC00377A 37066600
    [Google Scholar]
  23. Pięta M. Purohit V.B. Pietrasik J. Plummer C.M. Disulfide-containing monomers in chain-growth polymerization. Polym. Chem. 2022 14 1 7 31 10.1039/D2PY01291J
    [Google Scholar]
  24. Lee M.H. Sessler J.L. Kim J.S. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery. Acc. Chem. Res. 2015 48 11 2935 2946 10.1021/acs.accounts.5b00406 26513450
    [Google Scholar]
  25. Azcune I. Odriozola I. Aromatic disulfide crosslinks in polymer systems: Self-healing, reprocessability, recyclability and more. Eur. Polym. J. 2016 84 147 160 10.1016/j.eurpolymj.2016.09.023
    [Google Scholar]
  26. Dénès F. Schiesser C.H. Renaud P. Thiols, thioethers, and related compounds as sources of C-centred radicals. Chem. Soc. Rev. 2013 42 19 7900 7942 10.1039/c3cs60143a 23828205
    [Google Scholar]
  27. Patehebieke Y. An overview on disulfide-catalyzed and -cocatalyzed photoreactions. Beilstein J. Org. Chem. 2020 16 1418 1435 10.3762/bjoc.16.118 32647544
    [Google Scholar]
  28. Wang D.Y. Guo W. Fu Y. Organosulfides: An emerging class of cathode materials for rechargeable lithium batteries. Acc. Chem. Res. 2019 52 8 2290 2300 10.1021/acs.accounts.9b00231 31386341
    [Google Scholar]
  29. Góngora-Benítez M. Tulla-Puche J. Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev. 2014 114 2 901 926 10.1021/cr400031z 24446748
    [Google Scholar]
  30. Liao Y. Wang M. Jiang X. Sulfur-containing peptides: Synthesis and application in the discovery of potential drug candidates. Curr. Opin. Chem. Biol. 2023 75 102336 10.1016/j.cbpa.2023.102336 37269675
    [Google Scholar]
  31. Deming T.J. Functional modification of thioether groups in peptides, polypeptides, and proteins. Bioconjug. Chem. 2017 28 3 691 700 10.1021/acs.bioconjchem.6b00696 28024390
    [Google Scholar]
  32. Jarrett J.T. The biosynthesis of thiol- and thioether-containing cofactors and secondary metabolites catalyzed by radical S-adenosylmethionine enzymes. J. Biol. Chem. 2015 290 7 3972 3979 10.1074/jbc.R114.599308 25477512
    [Google Scholar]
  33. Dunbar K.L. Scharf D.H. Litomska A. Hertweck C. Enzymatic carbon-sulfur bond formation in natural product biosynthesis. Chem. Rev. 2017 117 8 5521 5577 10.1021/acs.chemrev.6b00697 28418240
    [Google Scholar]
  34. Jiang C.S. Müller W.E.G. Schröder H.C. Guo Y.W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev. 2012 112 4 2179 2207 10.1021/cr200173z 22176580
    [Google Scholar]
  35. Betz S.F. Disulfide bonds and the stability of globular proteins. Protein Sci. 1993 2 10 1551 1558 10.1002/pro.5560021002 8251931
    [Google Scholar]
  36. Zhou H. Wang W. Luo Y. Contributions of disulfide bonds in a nested pattern to the structure, stability, and biological functions of endostatin. J. Biol. Chem. 2005 280 12 11303 11312 10.1074/jbc.M412072200 15634676
    [Google Scholar]
  37. Wang Q. Guan J. Wan J. Li Z. Disulfide based prodrugs for cancer therapy. RSC Advances 2020 10 41 24397 24409 10.1039/D0RA04155F 35516223
    [Google Scholar]
  38. Eichman C.C. Stambuli J.P. Transition metal catalyzed synthesis of aryl sulfides. Molecules 2011 16 1 590 608 10.3390/molecules16010590 21242940
    [Google Scholar]
  39. Li L. Ding Y. Recent advances in the synthesis of thioether. Mini Rev. Org. Chem. 2017 14 5 10.2174/1570193X14666170518121500
    [Google Scholar]
  40. Kazemi M. Shiri L. Kohzadi H. Recent advances in aryl alkyl and dialkyl sulfide synthesis. Phosphorus Sulfur Silicon Relat. Elem. 2015 190 7 978 1003 10.1080/10426507.2014.974754
    [Google Scholar]
  41. Liu C. Szostak M. Forging C-S bonds through decarbonylation: New perspectives for the synthesis of privileged aryl sulfides. ChemCatChem 2021 13 23 4878 4881 10.1002/cctc.202101206 36213423
    [Google Scholar]
  42. Abedinifar F. Bahadorikhalili S. Larijani B. Mahdavi M. Verpoort F. A review on the latest progress of C‐S cross‐coupling in diaryl sulfide synthesis: Update from 2012 to 2021. Appl. Organomet. Chem. 2022 36 1 e6482 10.1002/aoc.6482
    [Google Scholar]
  43. Ong C.L. Titinchi S. Juan J.C. Khaligh N.G. An overview of recent advances in the synthesis of organic unsymmetrical disulfides. Helv. Chim. Acta 2021 104 8 e2100053 10.1002/hlca.202100053
    [Google Scholar]
  44. Musiejuk M. Witt D. Recent developments in the synthesis of unsymmetrical disulfanes (disulfides). A review. Org. Prep. Proced. Int. 2015 47 2 95 131 10.1080/00304948.2015.1005981
    [Google Scholar]
  45. Ling O.C. Khaligh N.G. Ching J.J. Recent catalytic advances in the synthesis of organic symmetric disulfides. Curr. Org. Chem. 2020 24 5 550 581 10.2174/1385272824666200221111120
    [Google Scholar]
  46. Wang K. Liu N. Zhang P. Guo Y. Zhang Y. Zhao Z. Luan Y. Li S. Cai J. Cao J. Synthetic methods of disulfide bonds applied in drug delivery systems. Curr. Org. Chem. 2016 20 14 1477 1489 10.2174/1385272820666151207194002
    [Google Scholar]
  47. Sengupta D. Roy B. Basu B. Microwave-assisted formation of organic disulfides of biochemical significance. Curr. Med. Chem. 2018 24 41 4627 4637 10.2174/0929867323666160418115719 27087242
    [Google Scholar]
  48. Ahammed S. Kundu D. Mukherjee N. Ranu B. Microwave assisted synthesis of chalcogenides. Curr. Microw. Chem. 2016 4 1 25 35 10.2174/2213335602666150810204449
    [Google Scholar]
  49. Ranu B.C. Ghosh T. Adak L. Recent progress on carbon-chalcogen bond formation reaction under microwave irradiation. Curr. Microw. Chem. 2020 7 1 40 49 10.2174/2213335607666200214130544
    [Google Scholar]
  50. Moseley J.D. Kappe C.O. A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem. 2011 13 4 794 10.1039/c0gc00823k
    [Google Scholar]
  51. Li J. Bi X. Wang H. Xiao J. Microwave-assisted Pd-catalyzed desulfitative C-S coupling of arylsulfinate metal salts and alkanethiols. Phosphorus Sulfur Silicon Relat. Elem. 2014 189 12 1873 1881 10.1080/10426507.2014.906425
    [Google Scholar]
  52. Lee C-F. Chen Y-A. Badsara S. Tsai W-T. Microwave-assisted copper-catalyzed cross-coupling reaction of thiols with aryl iodides in water. Synthesis 2014 47 2 181 186 10.1055/s‑0034‑1379206
    [Google Scholar]
  53. Saini V. Khungar B. Recyclable imidazolium ion-tagged nickel catalyst for microwave-assisted C–S cross-coupling in water using sul-fonyl hydrazide as the sulfur source. New J. Chem. 2018 42 15 12796 12801 10.1039/C8NJ00904J
    [Google Scholar]
  54. Gavhane D.S. Sarkate A.P. Karnik K.S. Jagtap S.D. Ansari S.H. Izankar A.V. Narula I.K. Jambhorkar V.S. Rajhans A.P. Nano Copper catalyzed microwave assisted coupling of benzene boronic acids with thiophenols. Lett. Org. Chem. 2019 16 6 491 494 10.2174/1570178616666181116113243
    [Google Scholar]
  55. Sarkate A.P. Gavane D.S. Kale B.D. Karnik K.S. Narula I.S. Khandare A.L. Rajhans A.P. Jambhorkar V.S. Microwave-assisted copper slag-catalyzed green S-arylation of arenethiols with arylboronic acids. Russ. J. Org. Chem. 2020 56 7 1300 1303 10.1134/S107042802007026X
    [Google Scholar]
  56. Zimmerman J.B. Anastas P.T. Erythropel H.C. Leitner W. Designing for a green chemistry future. Science 2020 367 6476 397 400 10.1126/science.aay3060 31974246
    [Google Scholar]
  57. Bahekar S. Sarkate A. Kale I. Wakte P. Catalyst free microwave assisted synthesis of sulfides in aqueous media. Curr. Microw. Chem. 2016 3 3 233 237 10.2174/2213335602666150930205918
    [Google Scholar]
  58. Zhou Y. Microwave-assisted, metal- and solvent-free synthesis of diaryl thioethers from aryl halides and carbon disulfide in the presence of [DBUH]+[OAc]-. J. Chem. Res. 2016 40 5 305 307 10.3184/174751916X14605556925623
    [Google Scholar]
  59. Anjaiah C. Nagamani M. Abraham Lincoln C. Ashok D. Microwave assisted synthesis of 1-(arylthio)naphthalen-2-ols and their anti-microbial activity. Russ. J. Gen. Chem. 2017 87 12 2930 2932 10.1134/S1070363217120337
    [Google Scholar]
  60. Chen H. Jiang W. Zeng Q. Recent advances in synthesis of chiral thioethers. Chem. Rec. 2020 20 11 1269 1296 10.1002/tcr.202000084 32930488
    [Google Scholar]
  61. Annamalai P. Liu K.C. Singh Badsara S. Lee C.F. Carbon-sulfur bond constructions: From transition-metal catalysis to sustainable catalysis. Chem. Rec. 2021 21 12 3674 3688 10.1002/tcr.202100133 34101980
    [Google Scholar]
  62. Tabarelli G. Godoi M. Canto R.F.S. Mora J.R. Nome F. Braga A.L. Direct synthesis of allylic thioethers under greener conditions: A solvent- and catalyst-free approach. Synth. Commun. 2014 44 23 3441 3449 10.1080/00397911.2014.945187
    [Google Scholar]
  63. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  64. Taylor A.P. Robinson R.P. Fobian Y.M. Blakemore D.C. Jones L.H. Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem. 2016 14 28 6611 6637 10.1039/C6OB00936K 27282396
    [Google Scholar]
  65. Pathania S. Narang R.K. Rawal R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019 180 486 508 10.1016/j.ejmech.2019.07.043 31330449
    [Google Scholar]
  66. Manjunatha B. Bodke Y.D. Kumaraswamy H.M. Meghana P. Nagaraja O. Anjan kumar, G.C. Novel thioether linked 4-hydroxycoumarin derivatives: Synthesis, characterization, in vitro pharmacological investigation and molecular docking studies. J. Mol. Struct. 2022 1249 131642 131642 10.1016/j.molstruc.2021.131642
    [Google Scholar]
  67. Mottaghi Amlashi D. Mobini S. Shahedi M. Habibi Z. Bavandi H. Yousefi M. Biocatalytic synthesis of oxa(thia)diazole aryl thi-oethers. Sci. Rep. 2024 14 1 19468 10.1038/s41598‑024‑70239‑3 39174618
    [Google Scholar]
  68. Yang Z. Li P. He Y. Luo J. Zhou J. Wu Y. Chen L. Novel pyrethrin derivatives containing an 1,3,4‐oxadiazole thioether moiety: Design, synthesis, and insecticidal activity. J. Heterocycl. Chem. 2020 57 1 81 88 10.1002/jhet.3750
    [Google Scholar]
  69. Aggarwal R. Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem. 2020 205 112652 112652 10.1016/j.ejmech.2020.112652 32771798
    [Google Scholar]
  70. Sathyanarayana R. Poojary B. Exploring recent developments on 1,2,4‐triazole: Synthesis and biological applications. J. Chin. Chem. Soc. 2020 67 4 459 477 10.1002/jccs.201900304
    [Google Scholar]
  71. Slivka M.V. Korol N.I. Fizer M.M. Fused bicyclic 1,2,4‐triazoles with one extra sulfur atom: Synthesis, properties, and biological activity. J. Heterocycl. Chem. 2020 57 13 3236 3254 10.1002/jhet.4044
    [Google Scholar]
  72. Min L.J. Shi Y.X. Wu H.K. Sun Z.H. Liu X.H. Li B.J. Zhang Y.G. Microwave-assisted synthesis and antifungal activity of some novel thioethers containing 1,2,4-triazole moiety. Appl. Sci. 2015 5 4 1211 1220 10.3390/app5041211
    [Google Scholar]
  73. Zhai Z.W. Shi Y.X. Yang M.Y. Zhao W. Sun Z.H. Weng J.Q. Tan C.X. Liu X.H. Li B.J. Zhang Y.G. Microwave assisted syn-thesis and antifungal activity of some novel thioethers containing 1,2,4-triazolo[4,3-a] pyridine moiety. Lett. Drug Des. Discov. 2016 13 6 521 525 10.2174/157018081306160618181757
    [Google Scholar]
  74. Xu M. Zhu Y.B. Wang M. Khan I.A. Liu X.H. Weng J.Q. Microwave-assisted synthesis and antifungal activity of novel 1,2,4-triazole thioether derivatives containing pyrimidine moiety. Lett. Drug Des. Discov. 2018 15 4 347 352 10.2174/1570180814666170602082440
    [Google Scholar]
  75. Zhang L.Y. Wang N.X. Lucan D. Nastasi J. Xing Y. Recent advances of C-S coupling reaction of (hetero)arenes by C-H functionali-zation. Chem. Rec. 2024 24 12 e202400177 10.1002/tcr.202400177 39558752
    [Google Scholar]
  76. Rani P. Chahal S. Singh R. Sindhu J. Pushing boundaries: What’s next in metal-free C-H functionalization for sulfenylation? Top. Curr. Chem. 2024 382 2 13 10.1007/s41061‑024‑00460‑1 38607428
    [Google Scholar]
  77. Tong Y. Wang Z. Liu B. Xu Y. Gao S. Tang X. Zhang X. Recent advances in synthesis of 3-sulfenylated indoles. Youji Huaxue 2023 43 4 1310 1324 10.6023/cjoc202211012
    [Google Scholar]
  78. Chadha N. Silakari O. Indoles as therapeutics of interest in medicinal chemistry: Bird’s eye view. Eur. J. Med. Chem. 2017 134 159 184 10.1016/j.ejmech.2017.04.003 28412530
    [Google Scholar]
  79. Kumari A. Singh R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem. 2019 89 103021 103021 10.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  80. Sravanthi T.V. Manju S.L. Indoles — A promising scaffold for drug development. Eur. J. Pharm. Sci. 2016 91 1 10 10.1016/j.ejps.2016.05.025 27237590
    [Google Scholar]
  81. Guo W. Tan W. Zhao M. Tao K. Zheng L.Y. Wu Y. Chen D. Fan X.L. Photocatalytic direct C–S bond formation: Facile access to 3-sulfenylindoles via metal-free C-3 sulfenylation of indoles with thiophenols. RSC Advances 2017 7 60 37739 37742 10.1039/C7RA08086G
    [Google Scholar]
  82. La Regina G. Gatti V. Famiglini V. Piscitelli F. Silvestri R. Venting-while-heating microwave-assisted synthesis of 3-arylthioindoles. ACS Comb. Sci. 2012 14 4 258 262 10.1021/co200165j 22432410
    [Google Scholar]
  83. Rahaman R. Devi N. Sarma K. Barman P. Microwave-assisted synthesis of 3-sulfenylindoles by sulfonyl hydrazides using organic ionic base-Brønsted acid. RSC Advances 2016 6 13 10873 10879 10.1039/C5RA24851E
    [Google Scholar]
  84. Rahaman R. Barman P. Iodine-catalyzed mono- and disulfenylation of indoles in PEG400 through a facile microwave-assisted process. Eur. J. Org. Chem. 2017 2017 42 6327 6334 10.1002/ejoc.201701293
    [Google Scholar]
  85. Patel O.P.S. Nandwana N.K. Legoabe L.J. Das B.C. Kumar A. Recent advances in radical C−H bond functionalization of imidazohet-erocycles. Adv. Synth. Catal. 2020 362 20 4226 4255 10.1002/adsc.202000633
    [Google Scholar]
  86. Devi N. Singh D. Rawal R.K. Bariwal J. Singh V. Medicinal attributes of imidazo[1,2-a]pyridine derivatives: An update. Curr. Top. Med. Chem. 2016 16 26 2963 2994 10.2174/1568026616666160506145539 27150367
    [Google Scholar]
  87. Shareef M.A. Khan I. Babu B.N. Kamal A. A comprehensive review on the therapeutic versatility of imidazo [2,1-b]thiazoles. Curr. Med. Chem. 2020 27 40 6864 6887 10.2174/0929867326666190729152440 31362648
    [Google Scholar]
  88. Bhongade B.A. Talath S. Gadad R.A. Gadad A.K. Biological activities of imidazo[2,1-b][1,3,4]thiadiazole derivatives: A review. J. Saudi Chem. Soc. 2016 20 S463 S475 10.1016/j.jscs.2013.01.010
    [Google Scholar]
  89. Karaman B. Ulusoy Güzeldemirci N. Synthesis and biological evaluation of new imidazo[2,1-b]thiazole derivatives as anticancer agents. Med. Chem. Res. 2016 25 11 2471 2484 10.1007/s00044‑016‑1684‑x
    [Google Scholar]
  90. Chitrakar R. Rawat D. Sistla R. Vadithe L.N. Subbarayappa A. Design, synthesis and anticancer activity of sulfenylated imidazo-fused heterocycles. Bioorg. Med. Chem. Lett. 2021 49 128307 128307 10.1016/j.bmcl.2021.128307 34363936
    [Google Scholar]
  91. Dong D.Q. Hao S.H. Yang D.S. Li L.X. Wang Z.L. Sulfenylation of C–H bonds for C–S bond formation under metal-free conditions. Eur. J. Org. Chem. 2017 2017 45 6576 6592 10.1002/ejoc.201700853
    [Google Scholar]
  92. Kushwaha P. Rashi; Bhardwaj, A.; Khan, D. Synthetic approaches toward imidazo‐fused heterocycles: A comprehensive review. J. Heterocycl. Chem. 2024 61 11 1807 1869 10.1002/jhet.4910
    [Google Scholar]
  93. Ravi C. Adimurthy S. Synthesis of imidazo[1,2-a]pyridines: C-H functionalization in the direction of C-S bond formation. Chem. Rec. 2017 17 10 1019 1038 10.1002/tcr.201600146 28318093
    [Google Scholar]
  94. Wang S. Luo R. Guo L. Zhu T. Chen X. Liu W. Microwave-assisted and catalyst-free sulfenylation of imidazo[2,1- b]thiazoles with sulfonyl hydrazides in water. Phosphorus Sulfur Silicon Relat. Elem. 2020 195 10 805 811 10.1080/10426507.2020.1768537
    [Google Scholar]
  95. Zhan H. Cao H. Qiu H. Li N. Chen L. Liu J. Cai H. Tan J. Microwave-assisted C–N and C–S bond-forming reactions: an efficient three-component domino sequence for the synthesis of sulfoether-decorated imidazo[1,2-a]pyridines. RSC Advances 2015 5 41 32205 32209 10.1039/C5RA05377C
    [Google Scholar]
  96. Stefanachi A. Leonetti F. Pisani L. Catto M. Carotti A. Coumarin: A natural, privileged and versatile scaffold for bioactive com-pounds. Molecules 2018 23 2 250 10.3390/molecules23020250 29382051
    [Google Scholar]
  97. Wu L. Wang X. Xu W. Farzaneh F. Xu R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem. 2009 16 32 4236 4260 10.2174/092986709789578187 19754420
    [Google Scholar]
  98. Xia D. Liu H. Cheng X. Maraswami M. Chen Y. Lv X. Recent developments of coumarin-based hybrids in drug discovery. Curr. Top. Med. Chem. 2022 22 4 269 283 10.2174/1568026622666220105105450 34986774
    [Google Scholar]
  99. Irfan A. Rubab L. Rehman M.U. Anjum R. Ullah S. Marjana M. Qadeer S. Sana S. Coumarin sulfonamide derivatives: An emerg-ing class of therapeutic agents. Heterocycl. Commun. 2020 26 1 46 59 10.1515/hc‑2020‑0008
    [Google Scholar]
  100. Eruçar F.M. Senadeera S.P.D. Wilson J.A. Goncharova E. Beutler J.A. Miski M. Novel Cytotoxic sesquiterpene coumarin ethers and sulfur-Containing compounds from the roots of Ferula turcica. Molecules 2023 28 15 5733 10.3390/molecules28155733 37570703
    [Google Scholar]
  101. Zhang Y. Xu Z. Dou M. Xu Y. Fu X. Zhu F. Ye H. Zhang J. Feng G. Design, synthesis, and bioactivity of novel coumarin-3-carboxylic acid derivatives containing a thioether quinoline moiety. ACS Omega 2024 9 51 50695 50704 10.1021/acsomega.4c08627 39741815
    [Google Scholar]
  102. Kang D. Ahn K. Hong S. Site‐selective C−H bond functionalization of chromones and coumarins. Asian J. Org. Chem. 2018 7 7 1136 1150 10.1002/ajoc.201800128
    [Google Scholar]
  103. Anjaiah C. Nagamani M. Abraham Lincoln C. Ashok D. Microwave-assisted synthesis and antimicrobial activity of 3-(arylsulfanyl)-4-hydroxy-2H-chromen-2-ones. Russ. J. Gen. Chem. 2018 88 10 2149 2153 10.1134/S1070363218100201
    [Google Scholar]
  104. Jana A. Bhaumick P. Choudhury L.H. Microwave assisted synthesis of β-keto thioethers and furan derivatives by thiol directed multi-component reactions. New J. Chem. 2020 44 20 8442 8453 10.1039/D0NJ00587H
    [Google Scholar]
  105. Mohammadi M.K. Ghammamy S. Microwave assisted oxidative coupling of thiols to symmetrical disulfides with tripropylammonium fluorochromate(VI) (TPAFC). Bull. Chem. Soc. Ethiop. 2012 26 1 10.4314/bcse.v26i1.16
    [Google Scholar]
  106. Mohammadi M.K. Nasehi P. Microwave assisted solvent free synthesis of disulfides with tributylammonium halochromates(VI), (C4H9)3NH+[CrO3X]-, (X=F, Cl). Int. J. Chem. Eng. Appl. 2016 7 3 213 216 10.7763/IJCEA.2016.V7.575
    [Google Scholar]
  107. Bettanin L. Saba S. Galetto F.Z. Mike G.A. Rafique J. Braga A.L. Solvent- and metal-free selective oxidation of thiols to disulfides using I2/DMSO catalytic system. Tetrahedron Lett. 2017 58 50 4713 4716 10.1016/j.tetlet.2017.11.009
    [Google Scholar]
  108. Ley S.V. Baxendale I.R. Bream R.N. Jackson P.S. Leach A.G. Longbottom D.A. Nesi M. Scott J.S. Storer R.I. Taylor S.J. Mul-ti-step organic synthesis using solid-supported reagents and scavengers: A new paradigm in chemical library generation. J. Chem. Soc., Perkin Trans. 1 2000 23 23 3815 4195 10.1039/b006588i
    [Google Scholar]
  109. Bartolozzi A. Grogan M.J. Kates S.A. Advances in the applications of polymer-supported reagents for organic synthesis. Methods Enzymol. 2003 369 347 366 10.1016/S0076‑6879(03)69019‑1 14722963
    [Google Scholar]
  110. Swamy K. Yeh W.B. Lin M.J. Sun C.M. Microwave-assisted polymer-supported combinatorial synthesis. Curr. Med. Chem. 2003 10 22 2403 2423 10.2174/0929867033456594 14529482
    [Google Scholar]
  111. Majid; Heravi, M.; Moghimi, S. Solid-supported reagents in organic Synthesis using microwave irradiation. Curr. Org. Chem. 2013 17 5 504 527 10.2174/1385272811317050007
    [Google Scholar]
  112. Mathew A. Mathew B. Koshy E.P. Microwave-assisted oxidative coupling of thiols using polystyrene supported bromoderivatives of 2-oxazolidone. Polym. Polymer Compos. 2021 29 9_Suppl S1351 S1360 10.1177/09673911211048607
    [Google Scholar]
  113. Nguyen N.G.T. Nguyen X.T. Nguyen N.H. Luu T.X.T. Dao X.T. Ground solid permanganate oxidative coupling of thiols into sym-metrical/unsymmetrical disulfides: Selective and improved process. J. Sulfur Chem. 2022 43 6 593 605 10.1080/17415993.2022.2083914
    [Google Scholar]
  114. Lu X. Wang H. Gao R. Sun D. Bi X. Microwave-assisted synthesis of asymmetric disulfides. RSC Advances 2014 4 54 28794 28797 10.1039/C4RA03592E
    [Google Scholar]
  115. Marqus S. Pirogova E. Piva T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017 24 1 21 10.1186/s12929‑017‑0328‑x 28320393
    [Google Scholar]
  116. Wang L. Wang N. Zhang W. Cheng X. Yan Z. Shao G. Wang X. Wang R. Fu C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  117. Lu S. Fan S. Xiao S. Li J. Zhang S. Wu Y. Kong C. Zhuang J. Liu H. Zhao Y. Wu C. Disulfide-directed multicyclic peptide libraries for the discovery of peptide ligands and drugs. J. Am. Chem. Soc. 2023 145 3 1964 1972 10.1021/jacs.2c12462 36633218
    [Google Scholar]
  118. Northfield S.E. Wang C.K. Schroeder C.I. Durek T. Kan M.W. Swedberg J.E. Craik D.J. Disulfide-rich macrocyclic peptides as templates in drug design. Eur. J. Med. Chem. 2014 77 248 257 10.1016/j.ejmech.2014.03.011 24650712
    [Google Scholar]
  119. Huang Z. Wu Y. Dong H. Zhao Y. Wu C. Design and synthesis of disulfide-rich peptides with orthogonal disulfide pairing motifs. J. Org. Chem. 2020 85 17 11475 11481 10.1021/acs.joc.0c01600 32786636
    [Google Scholar]
  120. Martin V. Egelund P.H.G. Johansson H. Thordal Le Quement S. Wojcik F. Sejer Pedersen D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances 2020 10 69 42457 42492 10.1039/D0RA07204D 35516773
    [Google Scholar]
  121. Jad Y.E. Kumar A. El-Faham A. de la Torre B.G. Albericio F. Green transformation of solid-phase peptide synthesis. 2019 7 4 3671 3683 10.1021/acssuschemeng.8b06520
  122. Mukhia M. Pradhan K. Biswas K. Microwave-assisted solid phase synthesis of different peptide bonds: Recent advancements. Curr. Microw. Chem. 2023 10 2 155 179 10.2174/0122133356271504231020050826
    [Google Scholar]
  123. Singh S.K. Collins J.M. New developments in microwave-assisted solid phase peptide synthesis. Methods Mol. Biol. 2020 2103 95 109 10.1007/978‑1‑0716‑0227‑0_6 31879920
    [Google Scholar]
  124. Pedersen S.L. Tofteng A.P. Malik L. Jensen K.J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 2012 41 5 1826 1844 10.1039/C1CS15214A 22012213
    [Google Scholar]
  125. Sabatino G. D’Ercole A. Pacini L. Zini M. Ribecai A. Paio A. Rovero P. Papini A.M. An optimized scalable fully automated sol-id-phase microwave-assisted cGMP-ready process for the preparation of eptifibatide. Org. Process Res. Dev. 2021 25 3 552 563 10.1021/acs.oprd.0c00490
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356423853251117064512
Loading
/content/journals/cmic/10.2174/0122133356423853251117064512
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: heterocycles ; disulfides ; bioactive ; organic sulfides ; Microwave ; peptide synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test