Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Introduction

Microwave-assisted extraction (MAE) is a highly efficient technique used to extract bioactive compounds from plant materials. This method is gaining popularity due to its alignment with the principles of sustainable and green chemistry. Microwave radiation selectively heats polar molecules and their solvents, leading to a rapid increase in temperature within the sample.

Methods

The MAE method can be performed solvent-free or utilize environmentally friendly solvents (., water, ethanol), thereby reducing environmental pollution. Therefore, the selection of a suitable solvent is the most crucial parameter in an efficient extraction process. Reduced exposure to high temperatures minimizes the degradation of heat-sensitive compounds, resulting in higher-quality extracts.

Results

This process significantly reduces extraction time compared to conventional methods, which typically require longer heating periods. MAE typically yields higher amounts of bioactive compounds in shorter times due to improved cell wall disruption and enhanced solvent penetration.

Discussion

MAE improves atom economy by enhancing extraction efficiency, leading to less chemical waste. This technique minimizes the generation of hazardous substances during the extraction process.

Conclusion

MAE is considered a green and sustainable technology due to its energy efficiency, reduced solvent usage, enhanced extraction yields, and lower environmental impact.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356393646250811073836
2025-08-27
2026-01-31
Loading full text...

Full text loading...

References

  1. ManA.K. ShahidanR. Microwave-assisted chemical reactions.J. Macromol. Sci. Part A Pure Appl. Chem.200744665165710.1080/10601320701285136
    [Google Scholar]
  2. DudleyG.B. RichertR. StiegmanA.E. On the existence of and mechanism for microwave-specific reaction rate enhancement.Chem. Sci. (Camb.)2015642144215210.1039/C4SC03372H 29308138
    [Google Scholar]
  3. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—a review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  4. OliverK.C. Microwave dielectric heating in synthetic organic chemistry.Chem. Soc. Rev.20083761127113910.1039/b803001b 18497926
    [Google Scholar]
  5. HoogenboomR. WilmsT.F.A. ErdmengerT. SchubertU.S. Microwave-assisted chemistry: A closer look at heating efficiency.Aust. J. Chem.200962323624310.1071/CH08503
    [Google Scholar]
  6. GuoQ. SunD.W. ChengJ.H. HanZ. Microwave processing techniques and their recent applications in the food industry.Trends Food Sci. Technol.20176723624710.1016/j.tifs.2017.07.007
    [Google Scholar]
  7. WahidinS. IdrisA. ShalehS.R.M. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.Bioresour. Technol.201620615015410.1016/j.biortech.2016.01.084 26851899
    [Google Scholar]
  8. OlkiewiczM. PlechkovaN.V. FabregatA. StüberF. FortunyA. FontJ. BengoaC. Efficient extraction of lipids from primary sewage sludge using ionic liquids for biodiesel production.Separ. Purif. Tech.201515311812510.1016/j.seppur.2015.08.038
    [Google Scholar]
  9. TroterD.Z. TodorovićZ.B. Đokić-StojanovićD.R. StamenkovićO.S. VeljkovićV.B. Application of ionic liquids and deep eutectic solvents in biodiesel production: A review.Renew. Sustain. Energy Rev.20166147350010.1016/j.rser.2016.04.011
    [Google Scholar]
  10. SinghS. GuptaD. JainV. SharmaA.K. Microwave processing of materials and applications in manufacturing industries: A review.Mater. Manuf. Process.201530112910.1080/10426914.2014.952028
    [Google Scholar]
  11. YouK.Y. Emerging Microwave Technologies in Industrial, Agricultural, Medical and Food. Processing.IntechOpen201810.5772/intechopen.69578
    [Google Scholar]
  12. CravottoG. CintasP. The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis.Chemistry20071371902190910.1002/chem.200601845 17245792
    [Google Scholar]
  13. LeonelliC. MasonT.J. Microwave and ultrasonic processing: Now a realistic option for industry.Chem. Eng. Process.201049988590010.1016/j.cep.2010.05.006
    [Google Scholar]
  14. LapornikB. ProšekM. Golc WondraA. Comparison of extracts prepared from plant by-products using different solvents and extraction time.J. Food Eng.200571221422210.1016/j.jfoodeng.2004.10.036
    [Google Scholar]
  15. PandeyA. TripathiS. Concept of standardization, extraction and pre-phytochemical screening strategies for herbal drug.J. Pharmacogn. Phytochem.201425115119
    [Google Scholar]
  16. ŞahinS. SamliR. TanA.S.B. BarbaF.J. ChematF. CravottoG. LorenzoJ.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties.Molecules2017227105610.3390/molecules22071056 28672807
    [Google Scholar]
  17. Microwave-assisted extraction for bioactive compounds: Theory and practice.Food. Engineering Series ChematF. CravottoG. Springer Science: New York, NY, USA201323810.1007/978‑1‑4614‑4830‑3
    [Google Scholar]
  18. FarzanehV. CarvalhoI.S. Modelling of microwave-assisted extraction (MAE) of anthocyanins (TMA).J. Appl. Res. Med. Aromat. Plants201769210010.1016/j.jarmap.2017.02.005
    [Google Scholar]
  19. LovrićV. PutnikP. BursaćK.D. JukićM. Dragović-UzelacV. Effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers.Food Technol. Biotechnol.201755224325010.17113/ftb.55.02.17.4687 28867955
    [Google Scholar]
  20. BarbaF.J. ZhuZ. KoubaaM. Sant’AnaA.S. OrlienV. Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: A review.Trends Food Sci. Technol.2016499610910.1016/j.tifs.2016.01.006
    [Google Scholar]
  21. ZhengX. LiuB. LiL. ZhuX. Microwave-assisted extraction and antioxidant activity of total phenolic compounds from pomegranate peel.J. Med. Plants Res.2011510041011
    [Google Scholar]
  22. ZhangL. WangY. WuD. XuM. ChenJ. Microwave-assisted extraction of polyphenols from Camellia oleifera fruit hull.Molecules20111664428443710.3390/molecules16064428 21623313
    [Google Scholar]
  23. ZlotorzynskiA. The application of microwave radiation to analytical and environmental chemistry.Crit. Rev. Anal. Chem.1995251437610.1080/10408349508050557
    [Google Scholar]
  24. SahooB.M. RaviK.B.V.V. PandaJ. DindaS.C. Ecofriendly and facile one-pot multicomponent synthesis of thiopyrimidines under microwave irradiation.J. Nanoparticles201320131610.1155/2013/780786
    [Google Scholar]
  25. ChanC.H. YusoffR. NgohG.C. KungF.W.L. Microwave-assisted extractions of active ingredients from plants.J. Chromatogr. A20111218376213622510.1016/j.chroma.2011.07.040 21820119
    [Google Scholar]
  26. CavalluzziM. LamonacaA. RotondoN. MinieroD. MuragliaM. GabrieleP. CorboF. De PalmaA. BudriesiR. De AngelisE. MonaciL. LentiniG. Microwave-assisted extraction of bioactive compounds from lentil wastes: Antioxidant activity evaluation and metabolomic characterization.Molecules20222721747110.3390/molecules27217471 36364300
    [Google Scholar]
  27. BagleyM.C. LubinuM.C. Microwave-assisted multicomponent reactions for the synthesis of heterocycles.J. Het. Chem.200613158
    [Google Scholar]
  28. ChardeM.S. ShuklaA. BukhariyaV. ChakoleR.D. ChakoleR. A review on: A significance of microwave assist technique in green chemistry.Int. J. Phytopharm.201222395010.7439/ijpp.v2i2.441
    [Google Scholar]
  29. BagadeS.B. PatilM. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review.Crit. Rev. Anal. Chem.202151213814910.1080/10408347.2019.1686966 31729248
    [Google Scholar]
  30. SuratiM.A. JauhariS. DesaiK.R. A brief review: Microwave assisted organic reaction.Arch. Appl. Sci. Res.201241645661
    [Google Scholar]
  31. MandalV. MohanY. HemalathaS. Microwave-assisted extraction: An innovative and promising extraction tool for medicinal plant research.Phcog Rev.200711718
    [Google Scholar]
  32. AlcheraF. GineproM. GiacaloneG. Microwave-assisted extraction (MAE) of bioactive compounds from blueberry by-products using a sugar-based NADES: A novelty in green chemistry.Lebensm. Wiss. Technol.202419211564210.1016/j.lwt.2023.115642
    [Google Scholar]
  33. BhattK. VaidyaD. KaushalM. GuptaA. SoniP. AryaP. GautamA. SharmaC. Microwaves and radiowaves in food processing and preservation.Int. J. Curr. Microbiol. Appl. Sci.20209911813110.20546/ijcmas.2020.909.015
    [Google Scholar]
  34. RifnaE.J. MisraN.N. DwivediM. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review.Crit. Rev. Food Sci. Nutr.202363671975210.1080/10408398.2021.1952923 34309440
    [Google Scholar]
  35. Sparr EskilssonC. BjörklundE. Analytical-scale microwave-assisted extraction.J. Chromatogr. A2000902122725010.1016/S0021‑9673(00)00921‑3 11192157
    [Google Scholar]
  36. FerraraD. BeccariaM. CorderoC.E. PurcaroG. Microwave‐assisted extraction in closed vessel in food analysis.J. Sep. Sci.20234620230039010.1002/jssc.202300390 37654060
    [Google Scholar]
  37. SuttiarpornP. ChoommongkolV. Microwave-assisted improved extraction and purification of anticancer nimbolide from Azadirachta indica (Neem) leaves.Molecules20202512291310.3390/molecules25122913 32599926
    [Google Scholar]
  38. DelazarA. NaharL. HamedeyazdanS. SarkerS.D. Microwave-assisted extraction in natural products isolation.Methods Mol. Biol.20128648911510.1007/978‑1‑61779‑624‑1_5 22367895
    [Google Scholar]
  39. KaufmannB. ChristenP. Recent extraction techniques for natural products: microwave‐assisted extraction and pressurised solvent extraction.Phytochem. Anal.200213210511310.1002/pca.631 12018022
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356393646250811073836
Loading
/content/journals/cmic/10.2174/0122133356393646250811073836
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): extraction; green; Microwave; radiation; sustainable; technology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test