
Full text loading...
Carbon quantum dots (CQDs) have emerged as a promising class of nanomaterials, distinguished by their unique optical and electronic properties, making them ideal candidates for catalyzing various organic synthesis reactions. This review provides a comprehensive overview of recent advancements in the application of CQDs as catalysts in organic transformations, with a focus on their synthesis, functionalization, and mechanisms of action. CQDs, also referred to as carbon dots (CQDs), are innovative zero-dimensional fluorescent carbon-based nanomaterials that have garnered significant global interest. The advantages of CQDs over traditional catalysts are noteworthy. They possess a high surface area, which facilitates increased interaction with reactants, and their surface chemistry can be easily tuned to optimize catalytic performance. Additionally, CQDs exhibit excellent stability under a wide range of reaction conditions, ensuring consistent catalytic activity. Their biocompatibility and low toxicity further enhance their appeal, positioning them as environmentally friendly and sustainable alternatives in chemistry. Due to their catalytic applications, CQDs are recognized for their remarkable optical properties, including strong fluorescence and water solubility, which allow them to be utilized in diverse fields, such as bioimaging, biosensing, and chemical sensing. Their eco-friendliness and simple synthesis methods make CQDs attractive for applications in nanomedicine, solar cells, drug delivery systems, and light-emitting diodes. The combination of these favorable characteristics positions CQDs as promising candidates for advancing technology across multiple domains, especially in medical and environmental applications. As research continues to uncover new functionalities and applications of CQDs, their role in catalysis and other fields is expected to expand, paving the way for innovative solutions to pressing challenges in organic synthesis and beyond.
Article metrics loading...
Full text loading...
References
Data & Media loading...