Skip to content
2000
image of Carbon Quantum Dots: Green Catalysts for Organic Synthesis

Abstract

Carbon quantum dots (CQDs) have emerged as a promising class of nanomaterials, distinguished by their unique optical and electronic properties, making them ideal candidates for catalyzing various organic synthesis reactions. This review provides a comprehensive overview of recent advancements in the application of CQDs as catalysts in organic transformations, with a focus on their synthesis, functionalization, and mechanisms of action. CQDs, also referred to as carbon dots (CQDs), are innovative zero-dimensional fluorescent carbon-based nanomaterials that have garnered significant global interest. The advantages of CQDs over traditional catalysts are noteworthy. They possess a high surface area, which facilitates increased interaction with reactants, and their surface chemistry can be easily tuned to optimize catalytic performance. Additionally, CQDs exhibit excellent stability under a wide range of reaction conditions, ensuring consistent catalytic activity. Their biocompatibility and low toxicity further enhance their appeal, positioning them as environmentally friendly and sustainable alternatives in chemistry. Due to their catalytic applications, CQDs are recognized for their remarkable optical properties, including strong fluorescence and water solubility, which allow them to be utilized in diverse fields, such as bioimaging, biosensing, and chemical sensing. Their eco-friendliness and simple synthesis methods make CQDs attractive for applications in nanomedicine, solar cells, drug delivery systems, and light-emitting diodes. The combination of these favorable characteristics positions CQDs as promising candidates for advancing technology across multiple domains, especially in medical and environmental applications. As research continues to uncover new functionalities and applications of CQDs, their role in catalysis and other fields is expected to expand, paving the way for innovative solutions to pressing challenges in organic synthesis and beyond.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356368085250304074014
2025-03-19
2025-09-25
Loading full text...

Full text loading...

References

  1. Umar E. Ikram M. Haider J. Nabgan W. Haider A. Imran M. Nazir G. A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis. Sust. Mat. Techn. 2023 35 e00529 10.1016/j.susmat.2022.e00529
    [Google Scholar]
  2. Unnikrishnan E. Krishnamoorthy A. Shaji S.P. Kamath A.S. Ulaganathan M. Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review. Curr. Opin. Electrochem. 2023 43 101436
    [Google Scholar]
  3. Pourmadadi M. Rahmani E. Rajabzadeh-Khosroshahi M. Samadi A. Behzadmehr R. Rahdar A. Ferreira L.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J. Drug Deliv. Sci. Technol. 2023 80 104156 10.1016/j.jddst.2023.104156
    [Google Scholar]
  4. Dua S. Kumar P. Pani B. Kaur A. Khanna M. Bhatt G. Stability of carbon quantum dots: A critical review. RSC Advances 2023 13 20 13845 13861 10.1039/D2RA07180K 37181523
    [Google Scholar]
  5. Giordano M.G. Seganti G. Bartoli M. Tagliaferro A. An overview on carbon quantum dots optical and chemical features. Molecules 2023 28 6 2772 10.3390/molecules28062772 36985743
    [Google Scholar]
  6. Khan A. Ezati P. Kim J.T. Rhim J.W. Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability. Mat. Today Sustainab. 2023 21 100306 10.1016/j.mtsust.2022.100306
    [Google Scholar]
  7. Palacio-Vergara M. Álvarez-Gómez M. Gallego J. López D. Biomass solvothermal treatment methodologies to obtain carbon quantum dots: A systematic review. Talan. Open. 2023 8 100244 10.1016/j.talo.2023.100244
    [Google Scholar]
  8. Prakash A. Yadav S. Yadav U. Saxena P.S. Srivastava A. Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: A review. Bull. Mater. Sci. 2023 46 1 7 10.1007/s12034‑022‑02846‑7
    [Google Scholar]
  9. Korkut S. Vatanpour V. Koyuncu I. Carbon-based quantum dots in fabrication and modification of membranes: A review. Separ. Purif. Tech. 2023 326 124876 10.1016/j.seppur.2023.124876
    [Google Scholar]
  10. Yang H.L. Bai L.F. Geng Z.R. Chen H. Xu L.T. Xie Y.C. Wang D.J. Gu H.W. Wang X.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications. Mat. Today Adv. 2023 18 100376 10.1016/j.mtadv.2023.100376
    [Google Scholar]
  11. Selvaraju N. Ravichandran K. Venugopal G. A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction. Int. J. Hydrogen Energy 2023 48 10 3807 3823 10.1016/j.ijhydene.2022.10.203
    [Google Scholar]
  12. Abu N. Chinnathambi S. Kumar M. Etezadi F. Bakhori N.M. Zubir Z.A. Salleh M.S.N. Shueb R.H. Karthikeyan S. Thangavel V. Abdullah J. Pandian G.N. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents. RSC Advances 2023 13 40 28230 28249 10.1039/D3RA05840A 37753403
    [Google Scholar]
  13. Shilpi S. Thakur A. A review of the application of carbon quantum dots. AIP Conf. Proc., 2023 2535 1 1 6 10.1063/5.0111342
    [Google Scholar]
  14. Rocco D. Moldoveanu V.G. Feroci M. Bortolami M. Vetica F. Electrochemical synthesis of carbon quantum dots. ChemElectroChem 2023 10 3 e202201104 10.1002/celc.202201104 37502311
    [Google Scholar]
  15. Tan T.L. Nulit R. Jusoh M. Rashid S.A. Recent developments, applications and challenges for carbon quantum dots as a photosynthesis enhancer in agriculture. RSC Advances 2023 13 36 25093 25117 10.1039/D3RA01217D 37622012
    [Google Scholar]
  16. Akram Z. Raza A. Mehdi M. Arshad A. Deng X. Sun S. Recent advancements in metal and non-metal mixed-doped carbon quantum dots: Synthesis and emerging potential applications. Nanomaterials 2023 13 16 2336 10.3390/nano13162336 37630922
    [Google Scholar]
  17. Rawat P. Nain P. Sharma S. Sharma P.K. Malik V. Majumder S. Verma V.P. Rawat V. Rhyee J.S. An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots. Luminescence 2023 38 7 845 866 10.1002/bio.4255 35419945
    [Google Scholar]
  18. Kumar V.B. Sher I. Rencus-Lazar S. Rotenstreich Y. Gazit E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 2023 19 7 2205754 10.1002/smll.202205754 36461689
    [Google Scholar]
  19. Wang J. Jiang J. Li F. Zou J. Xiang K. Wang H. Li Y. Li X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023 25 1 32 58 10.1039/D2GC03160D
    [Google Scholar]
  20. Kaur J. Bhattu M. Rawat M. Varma R.S. Acevedo R. Shaban M. Al-Saeedi S.I. Singh J. Facile synthesis of carbon quantum dot/silver nanocomposite and its antimicrobial, catalytic and sensing applications. Environ. Res. 2023 237 Pt 1 116919 10.1016/j.envres.2023.116919 37597826
    [Google Scholar]
  21. Al-Hetty H.R.A.K. Jalil A.T. Al-Tamimi J.H.Z. Shakier H.G. Kandeel M. Saleh M.M. Naderifar M. Engineering and surface modification of carbon quantum dots for cancer bioimaging. Inorg. Chem. Commun. 2023 149 110433 10.1016/j.inoche.2023.110433
    [Google Scholar]
  22. Bhakare M.A. Bondarde M.P. Lokhande K.D. Dhumal P.S. Some S. Quick transformation of polymeric waste into high valuable N-self doped carbon quantum dot for detection of heavy metals from wastewater. Chem. Eng. Sci. 2023 281 119150 10.1016/j.ces.2023.119150
    [Google Scholar]
  23. Manikandan V. Min S.C. Biofabrication of carbon quantum dots and their food packaging applications: A review. Food Sci. Biotechnol. 2023 32 9 1159 1171 10.1007/s10068‑023‑01309‑x 37362813
    [Google Scholar]
  24. Sharma A Sandhu A Pandey T. A mini-review on carbon quantum dots and its applications. Inter. J. Med. Toxicol. Leg. Med., 2023 26 1and2 163 166 10.5958/0974‑4614.2023.00026.8
    [Google Scholar]
  25. Nazibudin N.A. Zainuddin M.F. Abdullah C.A. Hydrothermal synthesis of carbon quantum dots: An updated review. J. Adv. Res. Fluid Mech. Ther. Sci. 2023 101 1 192 206 10.37934/arfmts.101.1.192206
    [Google Scholar]
  26. Dhandapani E. Maadeswaran P. Raj M.R. Raj V. Kandiah K. Duraisamy N. A potential forecast of carbon quantum dots (CQDs) as an ultrasensitive and selective fluorescence probe for Hg (II) ions sensing. Mater. Sci. Eng. B 2023 287 116098 10.1016/j.mseb.2022.116098
    [Google Scholar]
  27. Magdy G. Ebrahim S. Belal F. El-Domany R.A. Abdel-Megied A.M. Sulfur and nitrogen co-doped carbon quantum dots as fluorescent probes for the determination of some pharmaceutically-important nitro compounds. Sci. Rep. 2023 13 1 5502 10.1038/s41598‑023‑32494‑8 37015951
    [Google Scholar]
  28. Xu X. Min H. Li Y. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions. Anal. Methods 2023 15 43 5731 5753 10.1039/D3AY01318A
    [Google Scholar]
  29. Thakur S. Bains A. Sridhar K. Kaushik R. Chawla P. Sharma M. Valorization of food industrial waste: Green synthesis of carbon quantum dots and novel applications. Chemosphere 2024 347 140656 10.1016/j.chemosphere.2023.140656 37951400
    [Google Scholar]
  30. Wang L. Weng S. Su S. Wang W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Advances 2023 13 28 19173 19194 10.1039/D3RA02519E 37362342
    [Google Scholar]
  31. Marković Z.M. Mišović A.S. Zmejkoski D.Z. Zdravković N.M. Kovač J. Bajuk-Bogdanović D.V. Milivojević D.D. Mojsin M.M. Stevanović M.J. Pavlović V.B. Marković B.M.T. Employing gamma-ray-modified carbon quantum dots to combat a wide range of bacteria. Antibiotics 2023 12 5 919 10.3390/antibiotics12050919 37237822
    [Google Scholar]
  32. Ambade R.B. Ali M. Lee K.H. Jeong W. Jeong S.H. Han T.H. Nitrogen and sulfur co-doped carbon quantum dot-engineered tio 2 graphene on carbon fabric for photocatalysis applications. ACS Appl. Nano Mater. 2023 6 17 15782 15794 10.1021/acsanm.3c02661
    [Google Scholar]
  33. Essa L.A. Jamal R.K. Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method. J. Opt. 2023 53 1574 1580
    [Google Scholar]
  34. Ayad M.M. Abdelghafar M.E. Torad N.L. Yamauchi Y. Amer W.A. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor. Chemosphere 2023 312 Pt 1 137031 10.1016/j.chemosphere.2022.137031 36397304
    [Google Scholar]
  35. Hebbar A. Selvaraj R. Vinayagam R. Varadavenkatesan T. Kumar P.S. Duc P.A. Rangasamy G. A critical review on the environmental applications of carbon dots. Chemosphere 2023 313 137308 10.1016/j.chemosphere.2022.137308 36410502
    [Google Scholar]
  36. Adivi G.M. Shojaei A. A review on carbon quantum dots and their potential applications as filler in rubber nanocomposites. Basparesh 2023 14 2 27 40
    [Google Scholar]
  37. Chary K.J. Sharma A. Singh A. Carbon quantum dots in healthcare: A promising solution for sustainable healthcare and biomedical practices. Web Conf. 2023
    [Google Scholar]
  38. Anpalagan K. Karakkat J.V. Jelinek R. Kadamannil N.N. Zhang T. Cole I. Nurgali K. Yin H. Lai D.T.H. A green synthesis route to derive carbon quantum dots for bioimaging cancer cells. Nanomaterials 2023 13 14 2103 10.3390/nano13142103 37513114
    [Google Scholar]
  39. Wang Z. Yao B. Xiao Y. Tian X. Wang Y. Fluorescent quantum dots and its composites for highly sensitive detection of heavy metal ions and pesticide residues: A review. Chemosensors 2023 11 7 405 10.3390/chemosensors11070405
    [Google Scholar]
  40. Lin C. Dong B. Xu Z. A value product after the hydrothermal treatment of sludge: Carbon quantum dots and its application. J. Environ. Chem. Eng. 2023 11 6 111430 10.1016/j.jece.2023.111430
    [Google Scholar]
  41. Su H. Wang W. Shi R. Tang H. Sun L. Wang L. Liu Q. Zhang T. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application. Carbon Energy 2023 5 9 e280 10.1002/cey2.280
    [Google Scholar]
  42. Baslak C. Demirel S. Kocyigit A. Erdal M.O. Yıldırım M. Electrolyte performance of green synthesized carbon quantum dots from fermented tea for high-speed capacitors. Diamond Related Materials 2023 139 110275 10.1016/j.diamond.2023.110275
    [Google Scholar]
  43. Khan S.H. Green nanotechnology for the environment and sustainable development.In: Green Materials for Wastewater Treatment. 2020 pp. 13-46 10.1007/978‑3‑030‑17724‑9_2
    [Google Scholar]
  44. Backx B.P. Green nanotechnology: Only the final product that matters? Nat. Prod. Res. 2022 36 13 3507 3509 33280439
    [Google Scholar]
  45. Palit S. Frontiers of applications of nanotechnology in biological sciences and green chemistry. Green Chemistry and Sustainable Technology 2020 157 181 10.1201/9780367808310‑7
    [Google Scholar]
  46. Ratan Z.A. Haidere M.F. Nurunnabi M. Shahriar S.M. Ahammad A.J.S. Shim Y.Y. Reaney M.J.T. Cho J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 2020 12 4 855 10.3390/cancers12040855 32244822
    [Google Scholar]
  47. García-Quintero A. Palencia M. A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology. Sci. Total Environ. 2021 793 148524 10.1016/j.scitotenv.2021.148524 34182452
    [Google Scholar]
  48. Nabipour H. Hu Y. Sustainable drug delivery systems through green nanotechnology. Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier 2020 61 89 10.1016/B978‑0‑08‑102985‑5.00004‑8
    [Google Scholar]
  49. Falsini S. Bardi U. Abou-Hassan A. Ristori S. Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chem. 2018 20 17 3897 3907 10.1039/C8GC01248B
    [Google Scholar]
  50. Soltys L. Olkhovyy O. Tatarchuk T. Naushad M. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials. Magnetochemistry 2021 7 11 145 10.3390/magnetochemistry7110145
    [Google Scholar]
  51. Cao J. Pan Y. Jiang Y. Qi R. Yuan B. Jia Z. Jiang J. Wang Q. Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles via nano-QSAR. Green Chem. 2020 22 11 3512 3521 10.1039/D0GC00933D
    [Google Scholar]
  52. Fahmy S. Preis E. Bakowsky U. Azzazy H.M. Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents. Materials 2020 13 17 3661 10.3390/ma13173661 32825057
    [Google Scholar]
  53. Campos D.A. Ribeiro T.B. Teixeira J.A. Pastrana L. Pintado M.M. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients. Foods 2020 9 1 60 10.3390/foods9010060 31936041
    [Google Scholar]
  54. Payal; Pandey, P. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Pat. Nanotechnol. 2022 16 1 45 66 10.2174/1872210515666210120114504 33494686
    [Google Scholar]
  55. Jordan C.C. Kaiser I. Moore V.C. 2013 nanotechnology patent literature review: Graphitic carbon-based nanotechnology and energy applications are on the rise. Nanotech. Law Bus. 2014 11 2 111 125
    [Google Scholar]
  56. Krishnaswamy K Pandian P. A novel carbon quantum dots and its applications in drug delivery system–a review. Pharmacophore, 2022 13 1-2022 62 71 10.51847/xvYP9Hw9fG
    [Google Scholar]
  57. Pradeep P. Kumar P. Choonara Y.E. Pillay V. Targeted nanotechnologies for cancer intervention: A patent review (2010-2016). Expert Opin. Ther. Pat. 2017 27 9 1005 1019 10.1080/13543776.2017.1344216 28621571
    [Google Scholar]
  58. Pawar G. Sphingosomes: Highlights of the progressive journey and their application perspectives in modern drug delivery. Int J. Med. Phar. Sci. 2022 12 01 1 6
    [Google Scholar]
  59. Mansoori-Kermani A. Khalighi S. Akbarzadeh I. Niavol F.R. Motasadizadeh H. Mahdieh A. Jahed V. Abdinezhad M. Rahbariasr N. Hosseini M. Ahmadkhani N. Panahi B. Fatahi Y. Mozafari M. Kumar A.P. Mostafavi E. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater. Today Bio 2022 16 100349 10.1016/j.mtbio.2022.100349 35875198
    [Google Scholar]
  60. Jin S. Allam O. Lee K. Lim J. Lee M.J. Loh S.H. Jang S.S. Lee S.W. Carbon quantum dot modified reduced graphene oxide framework for improved alkali metal ion storage performance. Small 2022 18 35 2202898 10.1002/smll.202202898 35927029
    [Google Scholar]
  61. Hoan B.T. Tam P.D. Pham V.H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J. Nanotechnol. 2019 2019 1 9 10.1155/2019/2852816
    [Google Scholar]
  62. Safardoust-Hojaghan H. Salavati-Niasari M. Amiri O. Rashki S. Ashrafi M. Green synthesis, characterization and antimicrobial activity of carbon quantum dots-decorated ZnO nanoparticles. Ceram. Int. 2021 47 4 5187 5197 10.1016/j.ceramint.2020.10.097
    [Google Scholar]
  63. Wei Y. Zhang D. Fang Y. Wang H. Liu Y. Xu Z. Wang S. Guo Y. Detection of ascorbic acid using green synthesized carbon quantum dots. J. Sens. 2019 2019 1 10 10.1155/2019/9869682
    [Google Scholar]
  64. Baweja H Jeet K Economical and green synthesis of graphene and carbon quantum dots from agricultural waste. Mat. Res. Exp., 2019 6 8 0850g8 10.1088/2053‑1591/ab28e5
    [Google Scholar]
  65. Zhao X. Liao S. Wang L. Liu Q. Chen X. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta 2019 201 1 8 10.1016/j.talanta.2019.03.095 31122398
    [Google Scholar]
  66. Wang R.C. Lu J.T. Lin Y.C. High-performance nitrogen doped carbon quantum dots: Facile green synthesis from waste paper and broadband photodetection by coupling with ZnO nanorods. J. Alloys Compd. 2020 813 152201 10.1016/j.jallcom.2019.152201
    [Google Scholar]
  67. Chandra S. Bano D. Sahoo K. Kumar D. Kumar V. Yadav K.P. Hasan H.S. Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos. Microchem. J. 2022 172 106953 10.1016/j.microc.2021.106953
    [Google Scholar]
  68. Wang R. Lu K.Q. Tang Z.R. Xu Y.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 8 3717 3734 10.1039/C6TA08660H
    [Google Scholar]
  69. Shen T. Wang Q. Guo Z. Kuang J. Cao W. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceram. Int. 2018 44 10 11828 11834 10.1016/j.ceramint.2018.03.271
    [Google Scholar]
  70. Nammahachak N. Aup-Ngoen K.K. Asanithi P. Horpratum M. Chuangchote S. Ratanaphan S. Surareungchai W. Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation. RSC Advances 2022 12 49 31729 31733 10.1039/D2RA05989D 36380919
    [Google Scholar]
  71. Shen T.Y. Jia P.Y. Chen D.S. Wang L.N. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021 248 119282 10.1016/j.saa.2020.119282 33316652
    [Google Scholar]
  72. Hu S.L. Niu K.Y. Sun J. Yang J. Zhao N.Q. Du X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009 19 4 484 488 10.1039/B812943F
    [Google Scholar]
  73. Hasan M.R. Saha N. Quaid T. Reza M.T. Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors. Energies 2021 14 4 986 10.3390/en14040986
    [Google Scholar]
  74. Guo X. Zhang H. Sun H. Tade M.O. Wang S. Green synthesis of carbon quantum dots for sensitized solar cells. ChemPhotoChem 2017 1 4 116 119 10.1002/cptc.201600038
    [Google Scholar]
  75. Sariga; Kolaprath, A.M.K.; Benny, L.; Varghese, A. A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium. Dyes Pigments 2023 210 111048 10.1016/j.dyepig.2022.111048
    [Google Scholar]
  76. Yen Y.C. Lin C.C. Chen P.Y. Ko W.Y. Tien T.R. Lin K.J. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent. R. Soc. Open Sci. 2017 4 5 161051 10.1098/rsos.161051 28572996
    [Google Scholar]
  77. Yadav P.K. Singh V.K. Chandra S. Bano D. Kumar V. Talat M. Hasan S.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater. Sci. Eng. 2019 5 2 623 632 10.1021/acsbiomaterials.8b01528 33405826
    [Google Scholar]
  78. Ghorbani M. Tajik H. Moradi M. Molaei R. Alizadeh A. One-pot microbial approach to synthesize carbon dots from baker’s yeast-derived compounds for the preparation of antimicrobial membrane. J. Environ. Chem. Eng. 2022 10 3 107525 10.1016/j.jece.2022.107525
    [Google Scholar]
  79. Chahal S. Macairan J.R. Yousefi N. Tufenkji N. Naccache R. Green synthesis of carbon dots and their applications. RSC Advances 2021 11 41 25354 25363 10.1039/D1RA04718C 35478913
    [Google Scholar]
  80. Oliveira B.P. da Silva Abreu F.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges. Mater. Lett. 2021 282 128764 10.1016/j.matlet.2020.128764
    [Google Scholar]
  81. Elango D. Packialakshmi J.S. Manikandan V. Jayanthi P. Sustainable synthesis of carbon quantum dots from shrimp shell and its emerging applications. Mater. Lett. 2022 312 131667 131731 10.1016/j.matlet.2022.131667
    [Google Scholar]
  82. Song K. Yuan J. Shen T. Du J. Guo R. Pullerits T. Tian J. Spray coated colloidal quantum dot films for broadband photodetectors. Nanomaterials 2019 9 12 1738 10.3390/nano9121738 31817681
    [Google Scholar]
  83. Wu L. Gao Y. Zhao C. Huang D. Chen W. Lin X. Liu A. Lin L. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. Biomat. Adv. 2022 133 112608 10.1016/j.msec.2021.112608 35525745
    [Google Scholar]
  84. Azam N. Ali N.M. Khan J.T. Carbon quantum dots for biomedical applications: Review and analysis. Front. Mater. 2021 8 700403 10.3389/fmats.2021.700403
    [Google Scholar]
  85. Guo Y. Zhang L. Cao F. Leng Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci. Rep. 2016 6 1 35795 10.1038/srep35795 27762342
    [Google Scholar]
  86. Tyagi A. Tripathi K.M. Singh N. Choudhary S. Gupta R.K. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis. RSC Advances 2016 6 76 72423 72432 10.1039/C6RA10488F
    [Google Scholar]
  87. Aziz A.A. Ramzilah U.R. Removal of methyl orange (MO) using carbon quantum dots (CQDs) derived from watermelon rinds. Inter. J. Eng. Tech. Sci. 2019 6 1 91 99 10.15282/ijets.v6i1.2226
    [Google Scholar]
  88. Atchudan R. Perumal S. Edison T.N. Aldawood S. Vinodh R. Sundramoorthy A.K. Ghodake G. Lee Y.R. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction. Chemosphere 2022 307 Pt 1 135712 10.1016/j.chemosphere.2022.135712 35843438
    [Google Scholar]
  89. Aji M.P. Susanto; Wiguna, P.A.; Sulhadi. Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. J. Theoret. App. Phy. 2017 11 2 119 126 10.1007/s40094‑017‑0250‑3
    [Google Scholar]
  90. Hong W.T. Yang H.K. Anti-counterfeiting application of fluorescent carbon dots derived from wasted coffee grounds. Optik (Stuttg.) 2021 241 166449 10.1016/j.ijleo.2021.166449
    [Google Scholar]
  91. Vandarkuzhali S.A.A. Jeyalakshmi V. Sivaraman G. Singaravadivel S. Krishnamurthy K.R. Viswanathan B. Highly fluorescent carbon dots from Pseudo-stem of banana plant: Applications as nanosensor and bio-imaging agents. Sens. Actuators B Chem. 2017 252 894 900 10.1016/j.snb.2017.06.088
    [Google Scholar]
  92. Balu R. Dutta N.K. Choudhury R.N. Plastic Waste upcycling: A sustainable solution for waste management, product development, and circular economy. Polymers 2022 14 22 4788 10.3390/polym14224788 36432915
    [Google Scholar]
  93. Ahn J. Song Y. Kwon J.E. Lee S.H. Park K.S. Kim S. Woo J. Kim H. Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C 2019 102 106 112 10.1016/j.msec.2019.04.019 31146980
    [Google Scholar]
  94. Singh R.K. Patil T. Pandey D. Tekade S.P. Sawarkar A.N. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis. J. Environ. Manage. 2022 301 113854 10.1016/j.jenvman.2021.113854 34607141
    [Google Scholar]
  95. Arul V. Sethuraman M.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt. Mater. 2018 78 181 190 10.1016/j.optmat.2018.02.029
    [Google Scholar]
  96. Malavika J.P. Shobana C. Ragupathi M. Kumar P. Lee Y.S. Govarthanan M. Selvan R.K. A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications. Environ. Res. 2021 200 111414 10.1016/j.envres.2021.111414 34052245
    [Google Scholar]
  97. Hu S. Wei Z. Chang Q. Trinchi A. Yang J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl. Surf. Sci. 2016 378 402 407 10.1016/j.apsusc.2016.04.038
    [Google Scholar]
  98. Chatzimitakos T. Kasouni A. Sygellou L. Avgeropoulos A. Troganis A. Stalikas C. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta 2017 175 305 312 10.1016/j.talanta.2017.07.053 28841995
    [Google Scholar]
  99. Adinarayana L. Chunduri A. Kurdekar A. Patnaik S. Aditha S. Prathibha C. Kamisetti V. Single step synthesis of carbon quantum dots from coconut shell: Evaluation for antioxidant efficacy and hemotoxicity. J. Mater. Sci. Appl. 2017 3 6 83 93
    [Google Scholar]
  100. Costa A.I. Barata P.D. Mores B. Prata J.U. Alexandra I. Carbon dots from coffee grounds: Synthesis, characterization, and detection of noxious nitroanilines. Chemosensors 2022 10 3 113 10.3390/chemosensors10030113
    [Google Scholar]
  101. Eskalen H. Uruş S. Cömertpay S. Kurt A.H. Özgan Ş. Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties. Ind. Crops Prod. 2020 147 112209 10.1016/j.indcrop.2020.112209
    [Google Scholar]
  102. Dehvari K. Liu K.Y. Tseng P.J. Gedda G. Girma W.M. Chang J.Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J. Taiwan Inst. Chem. Eng. 2019 95 495 503 10.1016/j.jtice.2018.08.037
    [Google Scholar]
  103. Kavitha T. Kumar S. Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots. Sci. Rep. 2018 8 1 16269 10.1038/s41598‑018‑34349‑z 30389974
    [Google Scholar]
  104. Thangaraj B. Chuangchote S. Wongyao N. Solomon P.R. Roongraung K. Chaiworn W. Surareungchai W. Flexible sodium-ion batteries using electrodes from Samanea saman tree leaf - derived carbon quantum dots decorated with SnO2 and NaVO3. Clean Energy 2021 5 2 354 374 10.1093/ce/zkab016
    [Google Scholar]
  105. Zaib M. Arshad A. Khalid S. Shahzadi T. One pot ultrasonic plant mediated green synthesis of carbon dots and their application invisible light induced dye photocatalytic studies: A kinetic approach. Int. J. Environ. Anal. Chem. 2021 103 17 5063 5081
    [Google Scholar]
  106. Li Y. Liu F. Cai J. Huang X. Lin L. Lin Y. Yang H. Li S. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications. Microchem. J. 2019 147 1038 1047 10.1016/j.microc.2019.04.015
    [Google Scholar]
  107. Atchudan R. Edison T.N.J.I. Perumal S. Muthuchamy N. Lee Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 2020 275 117821 10.1016/j.fuel.2020.117821
    [Google Scholar]
  108. Dager A. Baliyan A. Kurosu S. Maekawa T. Tachibana M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: Application of C-QDs to grow fluorescent protein crystals. Sci. Rep. 2020 10 1 12333 10.1038/s41598‑020‑69264‑9 32704038
    [Google Scholar]
  109. Murugan N. Prakash M. Jayakumar M. Sundaramurthy A. Sundramoorthy A.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl. Surf. Sci. 2019 476 468 480 10.1016/j.apsusc.2019.01.090
    [Google Scholar]
  110. Zhang Z. Duan Y. Yu Y. Yan Z. Chen J. Carbon quantum dots: Synthesis, characterization, and assessment of cytocompatibility. J. Mater. Sci. Mater. Med. 2015 26 7 213 10.1007/s10856‑015‑5536‑x 26186917
    [Google Scholar]
  111. Wan Y. Wang M. Zhang K. Fu Q. Gao M. Wang L. Xia Z. Gao D. Facile and green synthesis of fluorescent carbon dots from the flowers of Abelmoschus manihot (Linn.) Medicus for sensitive detection of 2,4,6-trinitrophenol and cellular imaging. Microchem. J. 2019 148 385 396 10.1016/j.microc.2019.05.026
    [Google Scholar]
  112. Wang M. Wan Y. Zhang K. Fu Q. Wang L. Zeng J. Xia Z. Gao D. Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: Application in Fe3+ and ascorbic acid determination and cell imaging. Anal. Bioanal. Chem. 2019 411 12 2715 2727 10.1007/s00216‑019‑01712‑6 30941477
    [Google Scholar]
  113. Genc M.T. Yanalak G. Arslan G. Patir I.H. Green preparation of Carbon Quantum dots using Gingko biloba to sensitize TiO2 for the photohydrogen production. Mater. Sci. Semicond. Process. 2020 109 104945 10.1016/j.mssp.2020.104945
    [Google Scholar]
  114. Liu S. Tian J. Wang L. Zhang Y. Qin X. Luo Y. Asiri A.M. Al-Youbi A.O. Sun X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012 24 15 2037 2041 10.1002/adma.201200164 22419383
    [Google Scholar]
  115. Mmelesi O.K. Mguni L.L. Li F. Nkosi B. Liu X. Recent development in fluorescent carbon quantum dots-based photocatalysts for water and energy applications. Mater. Sci. Semicond. Process. 2024 181 108661 10.1016/j.mssp.2024.108661
    [Google Scholar]
  116. Hunter R.H. A history of the ulster medical society. Ulster Med. J. 1936 5 3 178 195 20476096
    [Google Scholar]
  117. Yadav P.K. Chandra S. Kumar V. Kumar D. Hasan S.H. Carbon quantum dots: Synthesis, structure, properties, and catalytic applications for organic synthesis. Catalysts 2023 13 2 422 10.3390/catal13020422
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356368085250304074014
Loading
/content/journals/cmic/10.2174/0122133356368085250304074014
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bioimaging ; Carbon quantum dots ; catalysts ; biosensing ; chemical sensing ; zero-dimensional
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test