Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Carbon quantum dots (CQDs) have emerged as a promising class of nanomaterials, distinguished by their unique optical and electronic properties, making them ideal candidates for catalyzing various organic synthesis reactions. This review provides a comprehensive overview of recent advancements in the application of CQDs as catalysts in organic transformations, with a focus on their synthesis, functionalization, and mechanisms of action. CQDs, also referred to as carbon dots (CQDs), are innovative zero-dimensional fluorescent carbon-based nanomaterials that have garnered significant global interest. The advantages of CQDs over traditional catalysts are noteworthy. They possess a high surface area, which facilitates increased interaction with reactants, and their surface chemistry can be easily tuned to optimize catalytic performance. Additionally, CQDs exhibit excellent stability under a wide range of reaction conditions, ensuring consistent catalytic activity. Their biocompatibility and low toxicity further enhance their appeal, positioning them as environmentally friendly and sustainable alternatives in chemistry. Due to their catalytic applications, CQDs are recognized for their remarkable optical properties, including strong fluorescence and water solubility, which allow them to be utilized in diverse fields, such as bioimaging, biosensing, and chemical sensing. Their eco-friendliness and simple synthesis methods make CQDs attractive for applications in nanomedicine, solar cells, drug delivery systems, and light-emitting diodes. The combination of these favorable characteristics positions CQDs as promising candidates for advancing technology across multiple domains, especially in medical and environmental applications. As research continues to uncover new functionalities and applications of CQDs, their role in catalysis and other fields is expected to expand, paving the way for innovative solutions to pressing challenges in organic synthesis and beyond.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356368085250304074014
2025-03-19
2026-02-19
Loading full text...

Full text loading...

References

  1. UmarE. IkramM. HaiderJ. NabganW. HaiderA. ImranM. NazirG. A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis.Sust. Mat. Techn.202335e0052910.1016/j.susmat.2022.e00529
    [Google Scholar]
  2. UnnikrishnanE. KrishnamoorthyA. ShajiS.P. KamathA.S. UlaganathanM. Electrocatalytic behavior of carbon quantum dots in sustainable applications: A review.Curr. Opin. Electrochem.202343101436
    [Google Scholar]
  3. PourmadadiM. RahmaniE. Rajabzadeh-KhosroshahiM. SamadiA. BehzadmehrR. RahdarA. FerreiraL.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review.J. Drug Deliv. Sci. Technol.20238010415610.1016/j.jddst.2023.104156
    [Google Scholar]
  4. DuaS. KumarP. PaniB. KaurA. KhannaM. BhattG. Stability of carbon quantum dots: A critical review.RSC Advances20231320138451386110.1039/D2RA07180K 37181523
    [Google Scholar]
  5. GiordanoM.G. SegantiG. BartoliM. TagliaferroA. An overview on carbon quantum dots optical and chemical features.Molecules2023286277210.3390/molecules28062772 36985743
    [Google Scholar]
  6. KhanA. EzatiP. KimJ.T. RhimJ.W. Biocompatible carbon quantum dots for intelligent sensing in food safety applications: Opportunities and sustainability.Mat. Today Sustainab.20232110030610.1016/j.mtsust.2022.100306
    [Google Scholar]
  7. Palacio-VergaraM. Álvarez-GómezM. GallegoJ. LópezD. Biomass solvothermal treatment methodologies to obtain carbon quantum dots: A systematic review.Talan. Open.2023810024410.1016/j.talo.2023.100244
    [Google Scholar]
  8. PrakashA. YadavS. YadavU. SaxenaP.S. SrivastavaA. Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: A review.Bull. Mater. Sci.2023461710.1007/s12034‑022‑02846‑7
    [Google Scholar]
  9. KorkutS. VatanpourV. KoyuncuI. Carbon-based quantum dots in fabrication and modification of membranes: A review.Separ. Purif. Tech.202332612487610.1016/j.seppur.2023.124876
    [Google Scholar]
  10. YangH.L. BaiL.F. GengZ.R. ChenH. XuL.T. XieY.C. WangD.J. GuH.W. WangX.M. Carbon quantum dots: Preparation, optical properties, and biomedical applications.Mater. Today Adv.20231810037610.1016/j.mtadv.2023.100376
    [Google Scholar]
  11. SelvarajuN. RavichandranK. VenugopalG. A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction.Int. J. Hydro. Energy202348103807382310.1016/j.ijhydene.2022.10.203
    [Google Scholar]
  12. AbuN. ChinnathambiS. KumarM. EtezadiF. BakhoriN.M. ZubirZ.A. SallehM.S.N. ShuebR.H. KarthikeyanS. ThangavelV. AbdullahJ. PandianG.N. Development of biomass waste-based carbon quantum dots and their potential application as non-toxic bioimaging agents.RSC Advances20231340282302824910.1039/D3RA05840A 37753403
    [Google Scholar]
  13. ShilpiS. ThakurA. A review of the application of carbon quantum dots.AIP Conf. Proc.2023253511610.1063/5.0111342
    [Google Scholar]
  14. RoccoD. MoldoveanuV.G. FerociM. BortolamiM. VeticaF. Electrochemical synthesis of carbon quantum dots.ChemElectroChem2023103e20220110410.1002/celc.202201104 37502311
    [Google Scholar]
  15. TanT.L. NulitR. JusohM. RashidS.A. Recent developments, applications and challenges for carbon quantum dots as a photosynthesis enhancer in agriculture.RSC Adv.20231336250932511710.1039/D3RA01217D 37622012
    [Google Scholar]
  16. AkramZ. RazaA. MehdiM. ArshadA. DengX. SunS. Recent advancements in metal and non-metal mixed-doped carbon quantum dots: Synthesis and emerging potential applications.Nanomaterials20231316233610.3390/nano13162336 37630922
    [Google Scholar]
  17. RawatP. NainP. SharmaS. SharmaP.K. MalikV. MajumderS. VermaV.P. RawatV. RhyeeJ.S. An overview of synthetic methods and applications of photoluminescence properties of carbon quantum dots.Luminescence202338784586610.1002/bio.4255 35419945
    [Google Scholar]
  18. KumarV.B. SherI. Rencus-LazarS. RotenstreichY. GazitE. Functional carbon quantum dots for ocular imaging and therapeutic applications.Small2023197220575410.1002/smll.202205754 36461689
    [Google Scholar]
  19. WangJ. JiangJ. LiF. ZouJ. XiangK. WangH. LiY. LiX. Emerging carbon-based quantum dots for sustainable photocatalysis.Green Chem.2023251325810.1039/D2GC03160D
    [Google Scholar]
  20. KaurJ. BhattuM. RawatM. VarmaR.S. AcevedoR. ShabanM. Al-SaeediS.I. SinghJ. Facile synthesis of carbon quantum dot/silver nanocomposite and its antimicrobial, catalytic and sensing applications.Environ. Res.2023237Pt 111691910.1016/j.envres.2023.116919 37597826
    [Google Scholar]
  21. Al-HettyH.R.A.K. JalilA.T. Al-TamimiJ.H.Z. ShakierH.G. KandeelM. SalehM.M. NaderifarM. Engineering and surface modification of carbon quantum dots for cancer bioimaging.Inorg. Chem. Commun.202314911043310.1016/j.inoche.2023.110433
    [Google Scholar]
  22. BhakareM.A. BondardeM.P. LokhandeK.D. DhumalP.S. SomeS. Quick transformation of polymeric waste into high valuable N-self doped carbon quantum dot for detection of heavy metals from wastewater.Chem. Eng. Sci.202328111915010.1016/j.ces.2023.119150
    [Google Scholar]
  23. ManikandanV. MinS.C. Biofabrication of carbon quantum dots and their food packaging applications: A review.Food Sci. Biotechnol.20233291159117110.1007/s10068‑023‑01309‑x 37362813
    [Google Scholar]
  24. SharmaA SandhuA PandeyT. A mini-review on carbon quantum dots and its applications.Inter. J. Med. Toxicol. Leg. Med.2023261and216316610.5958/0974‑4614.2023.00026.8
    [Google Scholar]
  25. NazibudinN.A. ZainuddinM.F. AbdullahC.A. Hydrothermal synthesis of carbon quantum dots: An updated review.J. Adv. Res. Fluid Mech. Ther. Sci.2023101119220610.37934/arfmts.101.1.192206
    [Google Scholar]
  26. DhandapaniE. MaadeswaranP. RajM.R. RajV. KandiahK. DuraisamyN. A potential forecast of carbon quantum dots (CQDs) as an ultrasensitive and selective fluorescence probe for Hg (II) ions sensing.Mater. Sci. Eng. B202328711609810.1016/j.mseb.2022.116098
    [Google Scholar]
  27. MagdyG. EbrahimS. BelalF. El-DomanyR.A. Abdel-MegiedA.M. Sulfur and nitrogen co-doped carbon quantum dots as fluorescent probes for the determination of some pharmaceutically-important nitro compounds.Sci. Rep.2023131550210.1038/s41598‑023‑32494‑8 37015951
    [Google Scholar]
  28. XuX. MinH. LiY. Preparation and application of carbon quantum dot fluorescent probes combined with rare earth ions.Anal. Methods202315435731575310.1039/D3AY01318A
    [Google Scholar]
  29. ThakurS. BainsA. SridharK. KaushikR. ChawlaP. SharmaM. Valorization of food industrial waste: Green synthesis of carbon quantum dots and novel applications.Chemosphere202434714065610.1016/j.chemosphere.2023.140656 37951400
    [Google Scholar]
  30. WangL. WengS. SuS. WangW. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis.RSC Advances20231328191731919410.1039/D3RA02519E 37362342
    [Google Scholar]
  31. MarkovićZ.M. MišovićA.S. ZmejkoskiD.Z. ZdravkovićN.M. KovačJ. Bajuk-BogdanovićD.V. MilivojevićD.D. MojsinM.M. StevanovićM.J. PavlovićV.B. MarkovićB.M.T. Employing gamma-ray-modified carbon quantum dots to combat a wide range of bacteria.Antibiotics202312591910.3390/antibiotics12050919 37237822
    [Google Scholar]
  32. AmbadeR.B. AliM. LeeK.H. JeongW. JeongS.H. HanT.H. Nitrogen and sulfur co-doped carbon quantum dot-engineered tio2 graphene on carbon fabric for photocatalysis applications.ACS Appl. Nano Mater.2023617157821579410.1021/acsanm.3c02661
    [Google Scholar]
  33. EssaL.A. JamalR.K. Studying the structural and optical properties of carbon quantum dots prepared by electro-chemical method.J. Opt.20235315741580
    [Google Scholar]
  34. AyadM.M. AbdelghafarM.E. ToradN.L. YamauchiY. AmerW.A. Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor.Chemosphere2023312Pt 113703110.1016/j.chemosphere.2022.137031 36397304
    [Google Scholar]
  35. HebbarA. SelvarajR. VinayagamR. VaradavenkatesanT. KumarP.S. DucP.A. RangasamyG. A critical review on the environmental applications of carbon dots.Chemosphere202331313730810.1016/j.chemosphere.2022.137308 36410502
    [Google Scholar]
  36. AdiviG.M. ShojaeiA. A review on carbon quantum dots and their potential applications as filler in rubber nanocomposites.Basparesh20231422740
    [Google Scholar]
  37. CharyK.J. SharmaA. SinghA. Carbon quantum dots in healthcare: A promising solution for sustainable healthcare and biomedical practices.Web Conf.202345301017
    [Google Scholar]
  38. AnpalaganK. KarakkatJ.V. JelinekR. KadamannilN.N. ZhangT. ColeI. NurgaliK. YinH. LaiD.T.H. A green synthesis route to derive carbon quantum dots for bioimaging cancer cells.Nanomaterials20231314210310.3390/nano13142103 37513114
    [Google Scholar]
  39. WangZ. YaoB. XiaoY. TianX. WangY. Fluorescent quantum dots and its composites for highly sensitive detection of heavy metal ions and pesticide residues: A review.Chemosensors202311740510.3390/chemosensors11070405
    [Google Scholar]
  40. LinC. DongB. XuZ. A value product after the hydrothermal treatment of sludge: Carbon quantum dots and its application.J. Environ. Chem. Eng.202311611143010.1016/j.jece.2023.111430
    [Google Scholar]
  41. SuH. WangW. ShiR. TangH. SunL. WangL. LiuQ. ZhangT. Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application.Carbon Energy202359e28010.1002/cey2.280
    [Google Scholar]
  42. BaslakC. DemirelS. KocyigitA. ErdalM.O. YıldırımM. Electrolyte performance of green synthesized carbon quantum dots from fermented tea for high-speed capacitors.Diam. Rel. Mat.202313911027510.1016/j.diamond.2023.110275
    [Google Scholar]
  43. KhanS.H. Green nanotechnology for the environment and sustainable development.Green Materials for Wastewater Treatment2020134610.1007/978‑3‑030‑17724‑9_2
    [Google Scholar]
  44. BackxB.P. Green nanotechnology: Only the final product that matters?Nat. Prod. Res.2022361335073509 33280439
    [Google Scholar]
  45. PalitS. Frontiers of applications of nanotechnology in biological sciences and green chemistry.Green Chemistry and Sustainable Technology202015718110.1201/9780367808310‑7
    [Google Scholar]
  46. RatanZ.A. HaidereM.F. NurunnabiM. ShahriarS.M. AhammadA.J.S. ShimY.Y. ReaneyM.J.T. ChoJ.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects.Cancers202012485510.3390/cancers12040855 32244822
    [Google Scholar]
  47. García-QuinteroA. PalenciaM. A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology.Sci. Total Environ.202179314852410.1016/j.scitotenv.2021.148524 34182452
    [Google Scholar]
  48. NabipourH. HuY. Sustainable drug delivery systems through green nanotechnology.Nanoengineered Biomaterials for Advanced Drug Delivery.Elsevier2020618910.1016/B978‑0‑08‑102985‑5.00004‑8
    [Google Scholar]
  49. FalsiniS. BardiU. Abou-HassanA. RistoriS. Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field.Green Chem.201820173897390710.1039/C8GC01248B
    [Google Scholar]
  50. SoltysL. OlkhovyyO. TatarchukT. NaushadM. Green synthesis of metal and metal oxide nanoparticles: Principles of green chemistry and raw materials.Magnetochemistry202171114510.3390/magnetochemistry7110145
    [Google Scholar]
  51. CaoJ. PanY. JiangY. QiR. YuanB. JiaZ. JiangJ. WangQ. Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles via nano-QSAR.Green Chem.202022113512352110.1039/D0GC00933D
    [Google Scholar]
  52. FahmyS. PreisE. BakowskyU. AzzazyH.M. Palladium nanoparticles fabricated by green chemistry: Promising chemotherapeutic, antioxidant and antimicrobial agents.Materials20201317366110.3390/ma13173661 32825057
    [Google Scholar]
  53. CamposD.A. RibeiroT.B. TeixeiraJ.A. PastranaL. PintadoM.M. Integral valorization of pineapple (Ananas comosus L.) by-products through a green chemistry approach towards added value ingredients.Foods2020916010.3390/foods9010060 31936041
    [Google Scholar]
  54. Payal; Pandey, P. Role of nanotechnology in electronics: A review of recent developments and patents.Recent Pat. Nanotechnol.2022161456610.2174/1872210515666210120114504 33494686
    [Google Scholar]
  55. JordanC.C. KaiserI. MooreV.C. 2013 nanotechnology patent literature review: Graphitic carbon-based nanotechnology and energy applications are on the rise.Nanotech. Law Bus.2014112111125
    [Google Scholar]
  56. KrishnaswamyK PandianP. A novel carbon quantum dots and its applications in drug delivery system–a review.Pharmacophore2022131-2022627110.51847/xvYP9Hw9fG
    [Google Scholar]
  57. PradeepP. KumarP. ChoonaraY.E. PillayV. Targeted nanotechnologies for cancer intervention: A patent review (2010-2016).Expert Opin. Ther. Pat.20172791005101910.1080/13543776.2017.1344216 28621571
    [Google Scholar]
  58. PawarG. Sphingosomes: Highlights of the progressive journey and their application perspectives in modern drug delivery.Int J. Med. Phar. Sci.2022120116
    [Google Scholar]
  59. Mansoori-KermaniA. KhalighiS. AkbarzadehI. NiavolF.R. MotasadizadehH. MahdiehA. JahedV. AbdinezhadM. RahbariasrN. HosseiniM. AhmadkhaniN. PanahiB. FatahiY. MozafariM. KumarA.P. MostafaviE. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer.Mater. Today Bio20221610034910.1016/j.mtbio.2022.100349 35875198
    [Google Scholar]
  60. JinS. AllamO. LeeK. LimJ. LeeM.J. LohS.H. JangS.S. LeeS.W. Carbon quantum dot modified reduced graphene oxide framework for improved alkali metal ion storage performance.Small20221835220289810.1002/smll.202202898 35927029
    [Google Scholar]
  61. HoanB.T. TamP.D. PhamV.H. Green synthesis of highly luminescent carbon quantum dots from lemon juice.J. Nanotechnol.201920191910.1155/2019/2852816
    [Google Scholar]
  62. Safardoust-HojaghanH. Salavati-NiasariM. AmiriO. RashkiS. AshrafiM. Green synthesis, characterization and antimicrobial activity of carbon quantum dots-decorated ZnO nanoparticles.Ceram. Int.20214745187519710.1016/j.ceramint.2020.10.097
    [Google Scholar]
  63. WeiY. ZhangD. FangY. WangH. LiuY. XuZ. WangS. GuoY. Detection of ascorbic acid using green synthesized carbon quantum dots.J. Sens.2019201911010.1155/2019/9869682
    [Google Scholar]
  64. BawejaH JeetK Economical and green synthesis of graphene and carbon quantum dots from agricultural waste.Mat. Res. Exp.2019680850g810.1088/2053‑1591/ab28e5
    [Google Scholar]
  65. ZhaoX. LiaoS. WangL. LiuQ. ChenX. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion.Talanta20192011810.1016/j.talanta.2019.03.095 31122398
    [Google Scholar]
  66. WangR.C. LuJ.T. LinY.C. High-performance nitrogen doped carbon quantum dots: Facile green synthesis from waste paper and broadband photodetection by coupling with ZnO nanorods.J. Alloys Compd.202081315220110.1016/j.jallcom.2019.152201
    [Google Scholar]
  67. ChandraS. BanoD. SahooK. KumarD. KumarV. YadavK.P. HasanH.S. Synthesis of fluorescent carbon quantum dots from Jatropha fruits and their application in fluorometric sensor for the detection of chlorpyrifos.Microchem. J.202217210695310.1016/j.microc.2021.106953
    [Google Scholar]
  68. WangR. LuK.Q. TangZ.R. XuY.J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis.J. Mater. Chem. A Mater. Energy Sustain.2017583717373410.1039/C6TA08660H
    [Google Scholar]
  69. ShenT. WangQ. GuoZ. KuangJ. CaoW. Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity.Ceram. Int.20184410118281183410.1016/j.ceramint.2018.03.271
    [Google Scholar]
  70. NammahachakN. Aup-NgoenK.K. AsanithiP. HorpratumM. ChuangchoteS. RatanaphanS. SurareungchaiW. Hydrothermal synthesis of carbon quantum dots with size tunability via heterogeneous nucleation.RSC Adv.20221249317293173310.1039/D2RA05989D 36380919
    [Google Scholar]
  71. ShenT.Y. JiaP.Y. ChenD.S. WangL.N. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging.Spectrochim. Acta A Mol. Biomol. Spectrosc.202124811928210.1016/j.saa.2020.119282 33316652
    [Google Scholar]
  72. HuS.L. NiuK.Y. SunJ. YangJ. ZhaoN.Q. DuX.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation.J. Mater. Chem.200919448448810.1039/B812943F
    [Google Scholar]
  73. HasanM.R. SahaN. QuaidT. RezaM.T. Formation of carbon quantum dots via hydrothermal carbonization: Investigate the effect of precursors.Energies202114498610.3390/en14040986
    [Google Scholar]
  74. GuoX. ZhangH. SunH. TadeM.O. WangS. Green synthesis of carbon quantum dots for sensitized solar cells.ChemPhotoChem20171411611910.1002/cptc.201600038
    [Google Scholar]
  75. Sariga; Kolaprath, A.M.K.; Benny, L.; Varghese, A. A facile, green synthesis of carbon quantum dots from Polyalthia longifolia and its application for the selective detection of cadmium.Dyes Pigments202321011104810.1016/j.dyepig.2022.111048
    [Google Scholar]
  76. YenY.C. LinC.C. ChenP.Y. KoW.Y. TienT.R. LinK.J. Green synthesis of carbon quantum dots embedded onto titanium dioxide nanowires for enhancing photocurrent.R. Soc. Open Sci.20174516105110.1098/rsos.161051 28572996
    [Google Scholar]
  77. YadavP.K. SinghV.K. ChandraS. BanoD. KumarV. TalatM. HasanS.H. Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits.ACS Biomater. Sci. Eng.20195262363210.1021/acsbiomaterials.8b01528 33405826
    [Google Scholar]
  78. GhorbaniM. TajikH. MoradiM. MolaeiR. AlizadehA. One-pot microbial approach to synthesize carbon dots from baker’s yeast-derived compounds for the preparation of antimicrobial membrane.J. Environ. Chem. Eng.202210310752510.1016/j.jece.2022.107525
    [Google Scholar]
  79. ChahalS. MacairanJ.R. YousefiN. TufenkjiN. NaccacheR. Green synthesis of carbon dots and their applications.RSC Adv.20211141253542536310.1039/D1RA04718C 35478913
    [Google Scholar]
  80. Oliveirad.B.P. da Silva AbreuF.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges.Mater. Lett.202128212876410.1016/j.matlet.2020.128764
    [Google Scholar]
  81. ElangoD. PackialakshmiJ.S. ManikandanV. JayanthiP. Sustainable synthesis of carbon quantum dots from shrimp shell and its emerging applications.Mater. Lett.202231213166713173110.1016/j.matlet.2022.131667
    [Google Scholar]
  82. SongK. YuanJ. ShenT. DuJ. GuoR. PulleritsT. TianJ. Spray coated colloidal quantum dot films for broadband photodetectors.Nanomaterials2019912173810.3390/nano9121738 31817681
    [Google Scholar]
  83. WuL. GaoY. ZhaoC. HuangD. ChenW. LinX. LiuA. LinL. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing.Biomater. Adv.202213311260810.1016/j.msec.2021.112608 35525745
    [Google Scholar]
  84. AzamN. AliN.M. KhanJ.T. Carbon quantum dots for biomedical applications: Review and analysis.Front. Mater.2021870040310.3389/fmats.2021.700403
    [Google Scholar]
  85. GuoY. ZhangL. CaoF. LengY. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+.Sci. Rep.2016613579510.1038/srep35795 27762342
    [Google Scholar]
  86. TyagiA. TripathiK.M. SinghN. ChoudharyS. GuptaR.K. Green synthesis of carbon quantum dots from lemon peel waste: Applications in sensing and photocatalysis.RSC Advances2016676724237243210.1039/C6RA10488F
    [Google Scholar]
  87. AzizA.A. RamzilahU.R. Removal of methyl orange (MO) using carbon quantum dots (CQDs) derived from watermelon rinds.Inter. J. Eng. Tech. Sci.201961919910.15282/ijets.v6i1.2226
    [Google Scholar]
  88. AtchudanR. PerumalS. EdisonT.N. AldawoodS. VinodhR. SundramoorthyA.K. GhodakeG. LeeY.R. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction.Chemosphere2022307Pt 113571210.1016/j.chemosphere.2022.135712 35843438
    [Google Scholar]
  89. AjiM.P. Susanto WigunaP.A. Sulhadi. Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method.J. Theoret. App. Phy.201711211912610.1007/s40094‑017‑0250‑3
    [Google Scholar]
  90. HongW.T. YangH.K. Anti-counterfeiting application of fluorescent carbon dots derived from wasted coffee grounds.Optik202124116644910.1016/j.ijleo.2021.166449
    [Google Scholar]
  91. VandarkuzhaliS.A.A. JeyalakshmiV. SivaramanG. SingaravadivelS. KrishnamurthyK.R. ViswanathanB. Highly fluorescent carbon dots from Pseudo-stem of banana plant: Applications as nanosensor and bio-imaging agents.Sens. Actuators B Chem.201725289490010.1016/j.snb.2017.06.088
    [Google Scholar]
  92. BaluR. DuttaN.K. ChoudhuryR.N. Plastic Waste upcycling: A sustainable solution for waste management, product development, and circular economy.Polymers20221422478810.3390/polym14224788 36432915
    [Google Scholar]
  93. AhnJ. SongY. KwonJ.E. LeeS.H. ParkK.S. KimS. WooJ. KimH. Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging.Mater. Sci. Eng. C201910210611210.1016/j.msec.2019.04.019 31146980
    [Google Scholar]
  94. SinghR.K. PatilT. PandeyD. TekadeS.P. SawarkarA.N. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis.J. Environ. Manage.202230111385410.1016/j.jenvman.2021.113854 34607141
    [Google Scholar]
  95. ArulV. SethuramanM.G. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications.Opt. Mater.20187818119010.1016/j.optmat.2018.02.029
    [Google Scholar]
  96. MalavikaJ.P. ShobanaC. RagupathiM. KumarP. LeeY.S. GovarthananM. SelvanR.K. A sustainable green synthesis of functionalized biocompatible carbon quantum dots from Aloe barbadensis Miller and its multifunctional applications.Environ. Res.202120011141410.1016/j.envres.2021.111414 34052245
    [Google Scholar]
  97. HuS. WeiZ. ChangQ. TrinchiA. YangJ. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity.Appl. Surf. Sci.201637840240710.1016/j.apsusc.2016.04.038
    [Google Scholar]
  98. ChatzimitakosT. KasouniA. SygellouL. AvgeropoulosA. TroganisA. StalikasC. Two of a kind but different: Luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging.Talanta201717530531210.1016/j.talanta.2017.07.053 28841995
    [Google Scholar]
  99. AdinarayanaL. ChunduriA. KurdekarA. PatnaikS. AdithaS. PrathibhaC. KamisettiV. Single step synthesis of carbon quantum dots from coconut shell: Evaluation for antioxidant efficacy and hemotoxicity.J. Mater. Sci. Appl.2017368393
    [Google Scholar]
  100. CostaA.I. BarataP.D. MoresB. PrataJ.U. AlexandraI. Carbon dots from coffee grounds: Synthesis, characterization, and detection of noxious nitroanilines.Chemosensors202210311310.3390/chemosensors10030113
    [Google Scholar]
  101. EskalenH. UruşS. CömertpayS. KurtA.H. ÖzganŞ. Microwave-assisted ultra-fast synthesis of carbon quantum dots from linter: Fluorescence cancer imaging and human cell growth inhibition properties.Ind. Crops Prod.202014711220910.1016/j.indcrop.2020.112209
    [Google Scholar]
  102. DehvariK. LiuK.Y. TsengP.J. GeddaG. GirmaW.M. ChangJ.Y. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging.J. Taiwan Inst. Chem. Eng.20199549550310.1016/j.jtice.2018.08.037
    [Google Scholar]
  103. KavithaT. KumarS. Turning date palm fronds into biocompatible mesoporous fluorescent carbon dots.Sci. Rep.2018811626910.1038/s41598‑018‑34349‑z 30389974
    [Google Scholar]
  104. ThangarajB. ChuangchoteS. WongyaoN. SolomonP.R. RoongraungK. ChaiwornW. SurareungchaiW. Flexible sodium-ion batteries using electrodes from Samanea saman tree leaf - derived carbon quantum dots decorated with SnO2 and NaVO3.Clean Energy20215235437410.1093/ce/zkab016
    [Google Scholar]
  105. ZaibM. ArshadA. KhalidS. ShahzadiT. One pot ultrasonic plant mediated green synthesis of carbon dots and their application invisible light induced dye photocatalytic studies: A kinetic approach.Int. J. Environ. Anal. Chem.20211031750635081
    [Google Scholar]
  106. LiY. LiuF. CaiJ. HuangX. LinL. LinY. YangH. LiS. Nitrogen and sulfur co-doped carbon dots synthesis via one step hydrothermal carbonization of green alga and their multifunctional applications.Microchem. J.20191471038104710.1016/j.microc.2019.04.015
    [Google Scholar]
  107. AtchudanR. EdisonT.N.J.I. PerumalS. MuthuchamyN. LeeY.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications.Fuel202027511782110.1016/j.fuel.2020.117821
    [Google Scholar]
  108. DagerA. BaliyanA. KurosuS. MaekawaT. TachibanaM. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: Application of C-QDs to grow fluorescent protein crystals.Sci. Rep.20201011233310.1038/s41598‑020‑69264‑9 32704038
    [Google Scholar]
  109. MuruganN. PrakashM. JayakumarM. SundaramurthyA. SundramoorthyA.K. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+.Appl. Surf. Sci.201947646848010.1016/j.apsusc.2019.01.090
    [Google Scholar]
  110. ZhangZ. DuanY. YuY. YanZ. ChenJ. Carbon quantum dots: Synthesis, characterization, and assessment of cytocompatibility.J. Mater. Sci. Mater. Med.201526721310.1007/s10856‑015‑5536‑x 26186917
    [Google Scholar]
  111. WanY. WangM. ZhangK. FuQ. GaoM. WangL. XiaZ. GaoD. Facile and green synthesis of fluorescent carbon dots from the flowers of Abelmoschus manihot (Linn.) Medicus for sensitive detection of 2,4,6-trinitrophenol and cellular imaging.Microchem. J.201914838539610.1016/j.microc.2019.05.026
    [Google Scholar]
  112. WangM. WanY. ZhangK. FuQ. WangL. ZengJ. XiaZ. GaoD. Green synthesis of carbon dots using the flowers of Osmanthus fragrans (Thunb.) Lour. as precursors: Application in Fe3+ and ascorbic acid determination and cell imaging.Anal. Bioanal. Chem.2019411122715272710.1007/s00216‑019‑01712‑6 30941477
    [Google Scholar]
  113. GencM.T. YanalakG. ArslanG. PatirI.H. Green preparation of Carbon Quantum dots using Gingko biloba to sensitize TiO2 for the photohydrogen production.Mater. Sci. Semicond. Process.202010910494510.1016/j.mssp.2020.104945
    [Google Scholar]
  114. LiuS. TianJ. WangL. ZhangY. QinX. LuoY. AsiriA.M. Al-YoubiA.O. SunX. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions.Adv. Mater.201224152037204110.1002/adma.201200164 22419383
    [Google Scholar]
  115. MmelesiO.K. MguniL.L. LiF. NkosiB. LiuX. Recent development in fluorescent carbon quantum dots-based photocatalysts for water and energy applications.Mater. Sci. Semicond. Process.202418110866110.1016/j.mssp.2024.108661
    [Google Scholar]
  116. HunterR.H. A history of the ulster medical society.Ulster Med. J.193653178195 20476096
    [Google Scholar]
  117. YadavP.K. ChandraS. KumarV. KumarD. HasanS.H. Carbon quantum dots: Synthesis, structure, properties, and catalytic applications for organic synthesis.Catalysts202313242210.3390/catal13020422
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356368085250304074014
Loading
/content/journals/cmic/10.2174/0122133356368085250304074014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test