Skip to content
2000
Volume 12, Issue 2
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

The use of microwave irradiation proves to be a promising technique for the rapid and environmentally friendly synthesis of α-aminophosphonate derivatives, ranging from simple to more complex, with diverse structural and pharmacological properties. This review presents an analogous overview of the synthesis of α-aminophosphonate derivatives the Kabachnik–Fields reaction from dialkyl phosphonates, utilizing microwave irradiation as a versatile and effective method. Compared to classical heating methods, often characterized by longer reaction times, several synthesis steps, lower yields, and less efficient energy transfer, the assistance of microwave irradiation provides significant advantages to the synthesis, including shorter reaction times, higher product yields, and improved purity. Several strategies and reaction conditions for the synthesis of α-aminophosphonates under microwave irradiation have been analyzed and discussed, including the use of different catalysts, solvents, and starting materials.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356396585250804101212
2025-08-27
2026-01-31
Loading full text...

Full text loading...

References

  1. HoriguchiM. KandatstuM. Isolation of 2-aminoethane phosphonic acid from rumen protozoa.Nature1959184469090190210.1038/184901b0 14403103
    [Google Scholar]
  2. LacosteA-M. CassaigneA. TamariM. NeuzilE. Transport de l’acide amino-2-éthylphosphonique chez Pseudomonas aeruginosa.Biochimie197658670371210.1016/S0300‑9084(76)80395‑1
    [Google Scholar]
  3. LejczakB. KafarskiP. SztajerH. MastalerzP. Antibacterial activity of phosphono dipeptides related to alafosfalin.J. Med. Chem.198629112212221710.1021/jm00161a014 3783584
    [Google Scholar]
  4. a GrembeckaJ. MuchaA. CierpickiT. KafarskiP. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.J. Med. Chem.200346132641265510.1021/jm030795v 12801228
    [Google Scholar]
  5. (b MooreJ.D. SprottK.T. HansonP.R. Conformationally constrained α-boc-aminophosphonates via transition metal-catalyzed/curtius rearrangement strategies.J. Org. Chem.200267238123812910.1021/jo0262208 12423141
    [Google Scholar]
  6. (c LiuW. RogersC.J. FisherA.J. ToneyM.D. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow binding inhibition.Biochemistry20024141123201232810.1021/bi026318g 12369820
    [Google Scholar]
  7. HuangJ. ChenR. An overview of recent advances on the synthesis and biological activity of α-Aminophosphonic acid derivatives.Heteroatom Chem.200011748049210.1002/1098‑1071(2000)11:7<480:AID‑HC6>3.0.CO;2‑J
    [Google Scholar]
  8. ChenT. ShenP. LiY. HeH. Synthesis and herbicidal activity of O,O-dialkyl phenoxyacetoxyalkylphosphonates containing fluorine.J. Fluor. Chem.2006127229129510.1016/j.jfluchem.2005.11.013
    [Google Scholar]
  9. DeFrankJ.J. ChengT.C. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate.J. Bacteriol.199117361938194310.1128/jb.173.6.1938‑1943.1991 2001997
    [Google Scholar]
  10. CherkasovR.A. GalkinV.I. The Kabachnik–Fields reaction: Synthetic potential and the problem of the mechanism.Russ. Chem. Rev.1998671085788210.1070/RC1998v067n10ABEH000421
    [Google Scholar]
  11. ZefirovN.S. MatveevaE.D. Catalytic Kabachnik-Fields reaction: New horizons for old reaction.ARKIVOC20082008111710.3998/ark.5550190.0009.101
    [Google Scholar]
  12. KeglevichG. BálintE. The Kabachnik-Fields reaction: Mechanism and synthetic use.Molecules20121711128211283510.3390/molecules171112821 23117425
    [Google Scholar]
  13. KafarskiP. Gorny vel GorniakM. AndrasiakI. Kabachnik-Fields reaction under green conditions–A critical overview.Curr. Green Chem.20152321822210.2174/2213346102666150109203606
    [Google Scholar]
  14. DukeS.O. PowlesS.B. Glyphosate: A once‐in‐a‐century herbicide.Pest Manag. Sci.200864431932510.1002/ps.1518 18273882
    [Google Scholar]
  15. LiL. StefanM.I. Le NovèreN. HouC.R. HuD.Y. LiX.Y. WangZ.C. FanH.T. BiL. LiuJ.J. YuD.D. JinL.H. YangS. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII.PLoS One201279e4381010.1371/journal.pone.0043810 22962589
    [Google Scholar]
  16. KukharV.P. SolodenkoV.A. The phosphorus analogues of aminocarboxylic acids.Russ. Chem. Rev.198756985987410.1070/RC1987v056n09ABEH003310
    [Google Scholar]
  17. KabachnikM.I. MedvedT.Y. New synthesis of aminophosphonic acids.Dokl. Akad. Nauk SSSR195283689692
    [Google Scholar]
  18. FieldsE.K. The synthesis of esters of substituted amino phosphonic acids1a.J. Am. Chem. Soc.19527461528153110.1021/ja01126a054
    [Google Scholar]
  19. BhagatS. ChakrabortiA.K. An extremely efficient three-component reaction of aldehydes/ketones, amines, and phosphites (Kabachnik-Fields reaction) for the synthesis of α-aminophosphonates catalyzed by magnesium perchlorate.J. Org. Chem.20077241263127010.1021/jo062140i 17253748
    [Google Scholar]
  20. PudovikA.N. Addition of dialkyl phosphites to imines. New method of synthesis of esters of amino phosphonic acids.Dokl. Akad. Nauk SSSR195283865869
    [Google Scholar]
  21. (a HeH. WuY.J. Synthesis of diaryl ethers through the copper-catalyzed arylation of phenols with aryl halides using microwave heating.Tetrahedron Lett.200344173445344610.1016/S0040‑4039(03)00703‑2
    [Google Scholar]
  22. (b PerreuxL. LoupyA. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations.Tetrahedron200157459199922310.1016/S0040‑4020(01)00905‑X
    [Google Scholar]
  23. (c LidströmP. TierneyJ. WatheyB. WestmenJ. Microwave reactors: A brief review on its fundamental aspects and applications tetrahedron.Tetrahedron20015792239283
    [Google Scholar]
  24. (d ChaouchiM. LoupyA. MarqueS. PetitA. Solvent-free microwave-assisted aromatic nucleophilic substitution − Synthesis of aromatic ethers.Eur. J. Org. Chem.2002200271278128310.1002/1099‑0690(200204)2002:7<1278::AID‑EJOC1278>3.0.CO;2‑B
    [Google Scholar]
  25. (e BuxaderasE. AlonsoD.A. NájeraC. Copper‐free oxime–palladacycle‐catalyzed sonogashira alkynylation of deactivated aryl bromides and chlorides in water under microwave irradiation.Eur. J. Org. Chem.20132013265864587010.1002/ejoc.201300785
    [Google Scholar]
  26. (f BrogginiG. BarberaV. BeccalliE.M. ChiacchioU. FasanaA. GalliS. GazzolaS. Selective intramolecular palladium(II)‐catalyzed Aminooxygenation vs. diamination of alkenylureas: Efficient microwave‐assisted reactions to bicyclic piperazinones.Adv. Synth. Catal.201335581640164810.1002/adsc.201300104
    [Google Scholar]
  27. (g NguyenH.H. KurthM.J. Microwave-assisted synthesis of 3-nitroindoles from N-aryl enamines via intramolecular arene-alkene coupling.Org. Lett.201315236236510.1021/ol303314x 23268775
    [Google Scholar]
  28. (h QianW. ZhangL. SunH. JiangH. LiuH. Microwave‐assisted one‐step synthesis of acetophenones via palladium‐catalyzed regioselective arylation of Vinyloxytrimethylsilane.Adv. Synth. Catal.2012354173231323610.1002/adsc.201200334
    [Google Scholar]
  29. (i BaghbanzadehM. PilgerC. KappeC.O. Palladium-catalyzed direct arylation of heteroaromatic compounds: Improved conditions utilizing controlled microwave heating.J. Org. Chem.201176198138814210.1021/jo201516v 21851080
    [Google Scholar]
  30. (j CívicosJ.F. AlonsoD.A. NájeraC. Oxime palladacycle‐catalyzed suzuki–miyaura alkenylation of aryl, heteroaryl, benzyl, and allyl chlorides under microwave irradiation conditions.Adv. Synth. Catal.2011353101683168710.1002/adsc.201100019
    [Google Scholar]
  31. (k BeccalliE.M. BernasconiA. BorsiniE. BrogginiG. RigamontiM. ZecchiG. Tunable Pd-catalyzed cyclization of indole-2-carboxylic acid allenamides: Carboamination vs. microwave-assisted hydroamination.J. Org. Chem.201075206923693210.1021/jo101501u 20863085
    [Google Scholar]
  32. (l MiljanuicO.S. VolhardK.P.C. WhitenerG.D. An alkyne metathesis-based route to ortho-dehydrobenzannulenes.Synlett200312934
    [Google Scholar]
  33. (m HorikoshiS. NakamuraT. KawaguchiM. SerponeN. Enzymatic proteolysis of peptide bonds by a metallo-endoproteinase under precise temperature control with 5.8-GHz microwave radiation.J. Mol. Catal., B Enzym.2015116525910.1016/j.molcatb.2015.03.007
    [Google Scholar]
  34. (n SlocombeD. PorchA. Microwaves in chemistry. IEEE J. MW, 2021, 1, 32-42.(o) Vala, R.M.; Patel, H.M. Recent developments in the Hantzsch synthesis of dihydropyridines.Adv. Heterocycl. Chem.202314117920810.1016/bs.aihch.2023.04.001
    [Google Scholar]
  35. PettersenD. MarcoliniM. BernardiL. FiniF. HerreraR.P. SgarzaniV. RicciA. Direct access to enantiomerically enriched α-amino phosphonic acid derivatives by organocatalytic asymmetric hydrophosphonylation of imines.J. Org. Chem.200671166269627210.1021/jo060708h 16872218
    [Google Scholar]
  36. KondoY. HirazawaY. KadotaT. YamadaK. MorisakiK. MorimotoH. OhshimaT. One-pot catalytic synthesis of α-tetrasubstituted amino acid derivatives via in situ generation of N -Unsubstituted Ketimines.Org. Lett.202224366594659810.1021/acs.orglett.2c02587 36053018
    [Google Scholar]
  37. YadavJ.S. Subba ReddyB.V. MadanC. Montmorillonite clay-catalyzed one-pot synthesis of α-amino phosphonates.Synlett2001200171131113310.1055/s‑2001‑15162
    [Google Scholar]
  38. KabachnikM.M. ZobninaE.V. BeletskayaI.P. Microwave-assisted reactions of schiff bases with diethyl phosphonate in the presence of CdI2.Russ. J. Org. Chem.200541450550710.1007/s11178‑005‑0194‑y
    [Google Scholar]
  39. ZhanZ.P. YangR.F. LiJ.P. Microwave-assisted one-pot synthesis of α-amino phosphonates via three component coupling on a silica gel support.Chem. Lett.20053471042104310.1246/cl.2005.1042
    [Google Scholar]
  40. MuX.J. LeiM.Y. ZouJ.P. ZhangW. Microwave-assisted solvent-free and catalyst-free Kabachnik–Fields reactions for α-amino phosphonates.Tetrahedron Lett.20064771125112710.1016/j.tetlet.2005.12.027
    [Google Scholar]
  41. KabachnikM.M. ZobninaE.V. BeletskayaI.P. Catalyst-free microwave-assisted synthesis of α-aminophosphonates in a three-component system: R1C (O) R2-(EtO)2P(O)H-RNH2.Synlett2005200591393139610.1055/s‑2005‑868519
    [Google Scholar]
  42. XuY. YanK. SongB. XuG. YangS. XueW. HuD. LuP. OuyangG. JinL. ChenZ. Synthesis and antiviral bioactivities of α-aminophosphonates containing alkoxyethyl moieties.Molecules200611966667610.3390/11090666 17971740
    [Google Scholar]
  43. KuznetsovaT. YashinN. VillemsonE. ChemaginA. AverinaE. KabachnikM. Synthesis of novel α-Aminophosphonates containing small rings.Synthesis20082008346446810.1055/s‑2008‑1032019
    [Google Scholar]
  44. RaoA.J. RaoP.V. RaoV.K. MohanC. RajuC.N. ReddyC.S. Microwave assisted one-pot synthesis of novel α-aminophosphonates and heir biological activity.Bull. Korean Chem. Soc.20103171863186810.5012/bkcs.2010.31.7.1863
    [Google Scholar]
  45. LiuJ.Z. SongB.A. BhaduryP.S. HuD.Y. YangS. Synthesis and bioactivities of α-aminophosphonate derivatives containing benzothiazole and thiourea moieties.Phosphorus Sulfur Silicon Relat. Elem.20121871617010.1080/10426507.2011.575422
    [Google Scholar]
  46. BaiS. SongB. BhaduryP.S. YangS. HuD. XueW. [BMIM]Cl catalyzed one‐pot synthesis of α ‐Aminophosphonate derivatives containing a 4‐Phenoxyquinazoline moiety under microwave irradiation.Chin. J. Chem.201129110911710.1002/cjoc.201190035
    [Google Scholar]
  47. RajasekharD. RaoD.S. SrinivasuluD. RajuC.N. BalajiM. Microwave assisted synthesis of biologically active α-aminophosphonates catalyzed by nano-BF3·SiO2 under solvent-free conditions.Phosphorus Sulfur Silicon Relat. Elem.201318881017102510.1080/10426507.2012.723656
    [Google Scholar]
  48. LuoH. HuD. WuJ. HeM. JinL. YangS. SongB. Rapid synthesis and antiviral activity of (quinazolin-4-ylamino)methyl-phosphonates through microwave irradiation.Int. J. Mol. Sci.20121366730674610.3390/ijms13066730 22837660
    [Google Scholar]
  49. TibheG.D. Reyes-GonzálezM.A. CativielaC. OrdóñezM. Microwave-assisted high diastereoselective synthesis of α-aminophosphonates under solvent and catalyst free-conditions.J. Mex. Chem. Soc.201756218318710.29356/jmcs.v56i2.319
    [Google Scholar]
  50. VaralakshmiM. SrinivasuluD. RajasekharD. RajuC.N. SreevaniS. CeCl37H2O catalyzed, microwave-assisted high-yield synthesis of α-aminophosphonates and their biological studies.Phosphorus Sulfur Silicon Relat. Elem.2014189110611210.1080/10426507.2013.798785
    [Google Scholar]
  51. WanR. WangP. HanF. WangY. ZhangJ. Microwave-assisted synthesis of propesticides 1,3,4-thiadiazole aminophosphonates.Synth. Commun.201141686487010.1080/00397911003707030
    [Google Scholar]
  52. ChinthaparthiR.R. BhatnagarI. GangireddyC.S.R. SyamaS.C. CirandurS.R. Green synthesis of α-aminophosphonate derivatives on a solid supported TiO2 -SiO2 catalyst and their anticancer activity.Arch. Pharm.2013346966767610.1002/ardp.201300214 23959690
    [Google Scholar]
  53. BálintE. TakácsJ. DrahosL. JuranovičA. KočevarM. KeglevichG. α‐aminophosphonates and α‐aminophosphine oxides by the microwave‐assisted kabachnik–fields reactions of 3‐amino‐6‐methyl‐2 H ‐pyran‐2‐ones.Heteroatom Chem.201324322122510.1002/hc.21086
    [Google Scholar]
  54. ReddyG.S. RaoK.U.M. SundarC.S. SudhaS.S. HarithaB. SwapnaS. ReddyC.S. Neat synthesis and antioxidant activity of α-aminophosphonates.Arab. J. Chem.20147583383810.1016/j.arabjc.2013.01.004
    [Google Scholar]
  55. DevineniS.R. DoddagaS. DonkaR. ChamarthiN.R. CeCl37H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates.Chin. Chem. Lett.201324875976310.1016/j.cclet.2013.04.037
    [Google Scholar]
  56. BhattacharyaA.K. RautD.S. RanaK.C. PolankiI.K. KhanM.S. IramS. Diversity-oriented synthesis of α-aminophosphonates: A new class of potential anticancer agents.Eur. J. Med. Chem.20136614615210.1016/j.ejmech.2013.05.036 23792352
    [Google Scholar]
  57. ChandraS.R.G. RadhaR.C. VeeraN.R.M. SureshR.C. An elegant microwave assisted one-pot synthesis of di(α-aminophosphonate) pesticides.Arch. Pharm.20143471181982410.1002/ardp.201400213 25142415
    [Google Scholar]
  58. ReddyK.M.K. SanthisudhaS. MohanG. PeddannaK. RaoC.A. Suresh ReddyC. Nano Gd2O3 catalyzed synthesis and anti-oxidant activity of new α-aminophosphonates.Phosphorus Sulfur Silicon Relat. Elem.2016191693393810.1080/10426507.2015.1119139
    [Google Scholar]
  59. ThaslimB.S. SudhamaniH. RasheedS. VenkateswarluN. VijayaT. NagaR.C. Microwave-assisted neat synthesis of α-aminophosphonate/phosphinate derivatives of 2-(2-aminophenyl)benzothiazole as potent antimicrobial and antioxidant agents.Phosphorus Sulfur Silicon Relat. Elem.2016191101339134310.1080/10426507.2016.1192629
    [Google Scholar]
  60. KissN.Z. RádaiZ. MucsiZ. KeglevichG. Synthesis of α‐aminophosphonates from α‐hydroxyphosphonates; a theoretical study.Heteroatom Chem.201627526026810.1002/hc.21324
    [Google Scholar]
  61. KraichevaI. TsachevaI. NikolovaR. Topashka-AnchevaM. StoinevaI. ShivachevB. Microwave assisted synthesis and X-ray structure of a novel anthracene-derived aminophosphonate. Enantioseparation of two α-aminophosphonates and genotoxicity in vivo.Phosphorus Sulfur Silicon Relat. Elem.2017192440340910.1080/10426507.2016.1247086
    [Google Scholar]
  62. GundluruM. SarvaS. KandulaM.K.R. NetalaV.R. TartteV. CirandurS.R. Phosphosulfonic acid‐catalyzed green synthesis and bioassay of α‐aryl‐α ′ ‐1,3,4‐thiadiazolyl aminophosphonates.Heteroatom Chem.201627526927810.1002/hc.21325
    [Google Scholar]
  63. KaurT. SahaD. SinghN. SinghU.P. SharmaA. A rapid one‐pot five component sequential access to novel Imidazo[2,1‐b]thiazinyl‐α‐aminophosphonates.ChemistrySelect20161343443910.1002/slct.201600070
    [Google Scholar]
  64. XieD. ZhangA. LiuD. YinL. WanJ. ZengS. HuD. Synthesis and antiviral activity of novel a -aminophosphonates containing 6-fluorobenzothiazole moiety.Phosphorus Sulfur Silicon Relat. Elem.201719291061106710.1080/10426507.2017.1323895
    [Google Scholar]
  65. SujathaB. MohanS. SubramanyamC. RaoK.P. Microwave-assisted synthesis and anti-inflammatory activity evaluation of some novel α-aminophosphonates.Phosphorus Sulfur Silicon Relat. Elem.2017192101110111310.1080/10426507.2017.1331233
    [Google Scholar]
  66. ReddyK.M.K. SadikS.M. PeddannaK. ReddyN.B. SravyaG. v, Z.G.; Reddy, C.S. Microwave assisted synthesis and Anti-microbial activity of new Diethyl ((dialkoxyphosphoryl) (2-hydroxyphenyl) methyl) phosphoramidates.Phosphorus Sulfur Silicon Relat. Elem.2018193532933410.1080/10426507.2017.1418348
    [Google Scholar]
  67. BálintE. TajtiÁ. KalocsaiD. MátravölgyiB. KaraghiosoffK. CzuglerM. KeglevichG. Synthesis and utilization of optically active α-aminophosphonate derivatives by Kabachnik-Fields reaction.Tetrahedron201773385659566710.1016/j.tet.2017.07.060
    [Google Scholar]
  68. ReddyK.M.K. SadikS.M. SaichaithanyaN. PeddannaK. ReddyN.B. SravyaG. V, Z.G.; Reddy, C.S. One-pot green synthesis and cytotoxicity of new α-aminophosphonates.Res. Chem. Intermed.201743127087710310.1007/s11164‑017‑3060‑y
    [Google Scholar]
  69. SadikS.M. SanthisudhaS. MohanG. ReddyN.M. LakshmiP.S. RajasekharA. RaoC.A. ReddyC.S. Palladium acetate-catalysed one-pot green synthesis of bis α-aminophosphonates.Res. Chem. Intermed.20194531401142010.1007/s11164‑018‑3685‑5
    [Google Scholar]
  70. ChukkaG. MuppuruK.M. BanothuV. BattuR.S. AddepallyU. GandavaramS.P. ChamarthiN.R. MandavaR.V.B. Microwave‐assisted one‐pot synthesis of new α‐Aminophosphonates using ZnBr2‐SiO2 as a catalyst under solvent‐free conditions and their anticancer activity.ChemistrySelect20183349778978410.1002/slct.201801965
    [Google Scholar]
  71. TajtiÁ. SzatmáriE. PerdihF. KeglevichG. BálintE. Microwave-assisted Kabachnik–Fields reaction with amino alcohols as the amine component.Molecules20192481640165310.3390/molecules24081640 31027303
    [Google Scholar]
  72. TripolszkyA. ZobokiL. BálintE. KótiJ. KeglevichG. Microwave-assisted synthesis of α-aminophosphine oxides by the Kabachnik-Fields reaction applying amides as the starting materials.Synth. Commun.20194981047105410.1080/00397911.2019.1584675
    [Google Scholar]
  73. SudiletiM. ChinthaV. NagaripatiS. GundluruM. YasminS.H. WudayagiriR. CirandurS.R. Green synthesis, molecular docking, anti-oxidant and anti-inflammatory activities of α-aminophosphonates.Med. Chem. Res.201928101740175410.1007/s00044‑019‑02411‑8
    [Google Scholar]
  74. Loredo-CalderónE.L. Velázquez-MartínezC.A. Ramírez-CabreraM.A. Hernández-FernándezE. Rivas-GalindoV.M. Arredondo EspinozaE. López-CortinaS.T. Synthesis of novel α-aminophosphonates under microwave irradiation, biological evaluation as antiproliferative agents and apoptosis inducers.Med. Chem. Res.201928112067207810.1007/s00044‑019‑02436‑z
    [Google Scholar]
  75. SanthisudhaS. Calcium bromide catalysed synthesis and anticoagulant activity of bis(α-aminophosphonates).AIP Conf Proc.2020228004004310.1063/5.0018177
    [Google Scholar]
  76. RajkoomarN. MurugesanA. PrabuS. GenganR.M. Synthesis of methyl piperazinyl-quinolinyl α-aminophosphonates derivatives under microwave irradiation with Pd–SrTiO 3 catalyst and their antibacterial and antioxidant activities.Phosphorus Sulfur Silicon Relat. Elem.2020195121031103810.1080/10426507.2020.1799366
    [Google Scholar]
  77. KundeS.P. KanadeK.G. KaraleB.K. AkolkarH.N. ArbujS.S. RandhavaneP.V. ShindeS.T. ShaikhM.H. KulkarniA.K. Nanostructured N doped TiO 2 efficient stable catalyst for Kabachnik–Fields reaction under microwave irradiation.RSC Adv.20201045269972700510.1039/D0RA04533K 35515785
    [Google Scholar]
  78. AitaS. BadavathV.N. GundluruM. SudiletiM. NemallapudiB.R. GundalaS. ZyryanovG.V. ChamartiN.R. CirandurS.R. Novel α-Aminophosphonates of imatinib Intermediate: Synthesis, anticancer activity, human Abl tyrosine kinase inhibition, ADME and toxicity prediction.Bioorg. Chem.202110910471810472910.1016/j.bioorg.2021.104718 33618257
    [Google Scholar]
  79. KandulaM.K.R. GundluruM. NemallapudiB.R. GundalaS. KothaP. ZyryanovG.V. ChadiveS. CirandurS.R. Synthesis, antioxidant activity, and α‐glucosidase enzyme inhibition of α‐aminophosphonate derivatives bearing piperazine‐1,2,3‐triazole moiety.J. Heterocycl. Chem.202158117218110.1002/jhet.4157
    [Google Scholar]
  80. TlidjaneH. ChafaiN. ChafaaS. BensouiciC. BenbouguerraK. New thiophene-derived α-aminophosphonic acids: Synthesis under microwave irradiations, antioxidant and antifungal activities, DFT investigations and SARS-CoV-2 main protease inhibition.J. Mol. Struct.2022125013185310.1016/j.molstruc.2021.131853 36341473
    [Google Scholar]
  81. AltaffS.M. RajeswariT.R. SubramanyamC. In silico ADMET, molecular docking study, and nano Sb2O3 -catalyzed microwave-mediated synthesis of new α-aminophosphonates as potential anti-diabetic agents.Main Group Met. Chem.202245122524110.1515/mgmc‑2022‑0023
    [Google Scholar]
  82. HkiriS. Mekni-ToujaniM. ÜstünE. HosniK. GhramA. TouilS. SamaratA. SémerilD. Synthesis of novel 1,3,4-oxadiazole-derived α-aminophosphonates/α-aminophosphonic acids and evaluation of their in vitro antiviral activity against the avian coronavirus infectious bronchitis virus.Pharmaceutics202215111413410.3390/pharmaceutics15010114 36678743
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356396585250804101212
Loading
/content/journals/cmic/10.2174/0122133356396585250804101212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test