Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2213-3356
  • E-ISSN: 2213-3364

Abstract

Silver-based nanoparticles (AgNps) have recently gained traction for versatile applications in biotechnology. However, selecting the suitable synthesis method remains a challenge, as current techniques often suffer from slow reaction rates, high costs, low efficacy, and limited reproducibility. Therefore, it is deemed necessary to choose a method that will offer furtherance of the current technologies to address these drawbacks. One promising approach is microwave (MW) irradiation, which is a one-step, simple, cost-effective, reproducible, and sustainable than conventional methods. MW irradiation enables the rapid formation of highly stable nanoparticles as small as ~2 nm, achieving energy savings of up to 70%. Additionally, using biological agents as reducing agents in MW-assisted synthesis promotes an eco-friendly, low-cost, and straightforward approach. This critical review presents the mechanism behind various biological applications and their efficiencies, anticipating research toward synthesizing high-quality nanoparticles. It encourages adapting the use of MW technology for the facile synthesis of high-quality metal and metal oxide nanoparticles, providing a new way for sustainable applications.

Loading

Article metrics loading...

/content/journals/cmic/10.2174/0122133356351195250106113909
2025-01-29
2025-09-02
Loading full text...

Full text loading...

References

  1. MeenakshiS. DeviS. PandianK. ChitraK. TharmarajP. Aniline-mediated synthesis of carboxymethyl cellulose protected silver nanoparticles modified electrode for the differential pulse anodic stripping voltammetry detection of mercury at trace level.Ionics20192573431344110.1007/s11581‑019‑02858‑0
    [Google Scholar]
  2. KhanI. AnburajanP. KumarG. YoonJ-J. BahugunaA. de MouraA.G.L. PugazhendhiA. KimS.H. KangS.C. Comparative effect of silver nanoparticles (AgNPs) derived from actinomycetes and henna on biohydrogen production by Clostridium beijerinckii (KTCC1737).Int. J. Energy Res.20214512172691727810.1002/er.6076
    [Google Scholar]
  3. JeevanandamJ. BarhoumA. ChanY.S. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.98
    [Google Scholar]
  4. NathanaelK. PicoP. KovalchukN.M. LavinoA.D. SimmonsM.J.H. MatarO.K. Computational modelling and microfluidics as emerging approaches to synthesis of silver nanoparticles – A review.Chem. Eng. J.202243613517810.1016/j.cej.2022.135178
    [Google Scholar]
  5. KowalczykP. SzymczakM. MaciejewskaM. LaskowskiŁ. LaskowskaM. OstaszewskiR. SkibaG. Franiak-PietrygaI. All that glitters is not silver—A new look at microbiological and medical applications of silver nanoparticles.Int. J. Mol. Sci.202122285410.3390/ijms22020854 33467032
    [Google Scholar]
  6. ZahoorM. NazirN. IftikharM. NazS. ZekkerI. BurlakovsJ. UddinF. KamranA.W. KallistovaA. PimenovN. AliK.F. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment.Water20211316221610.3390/w13162216
    [Google Scholar]
  7. SaripN.A. AminudinN.I. DanialW.H. Green synthesis of metal nanoparticles using Garcinia extracts: A review.Environ. Chem. Lett.202220146949310.1007/s10311‑021‑01319‑3
    [Google Scholar]
  8. SadiqH. SherF. SeharS. LimaE.C. ZhangS. IqbalH.M.N. ZafarF. NuhanovićM. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications.J. Mol. Liq.202133511656710.1016/j.molliq.2021.116567
    [Google Scholar]
  9. AbdelghanyT.M. Al-RajhiA.M.H. Al AbboudM.A. AlawlaqiM.M.G. MagdahA. HelmyE.A.M. MabroukA.S. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review.Bionanoscience20188151610.1007/s12668‑017‑0413‑3
    [Google Scholar]
  10. VijayaraghavanK. AshokkumarT. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications.J. Environ. Chem. Eng.2017554866488310.1016/j.jece.2017.09.026
    [Google Scholar]
  11. Paiva-SantosA.C. HerdadeA.M. GuerraC. PeixotoD. Pereira-SilvaM. ZeinaliM. Mascarenhas-MeloF. ParanhosA. VeigaF. Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications.Int. J. Pharm.202159712031110.1016/j.ijpharm.2021.120311 33539998
    [Google Scholar]
  12. GhasemiS. DabirianS. KariminejadF. KoohiD.E. NemattalabM. MajidimoghadamS. ZamaniE. YousefbeykF. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells.Sci. Rep.2024141413010.1038/s41598‑024‑54702‑9 38374139
    [Google Scholar]
  13. LiuH. ZhangH. WangJ. WeiJ. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis.Arab. J. Chem.20201311011101910.1016/j.arabjc.2017.09.004
    [Google Scholar]
  14. LagashettyA. HavanoorV. BasavarajaS. BalajiS.D. VenkataramanA. Microwave-assisted route for synthesis of nanosized metal oxides.Sci. Technol. Adv. Mater.20078648449310.1016/j.stam.2007.07.001
    [Google Scholar]
  15. VanlalveniC. LallianrawnaS. BiswasA. SelvarajM. ChangmaiB. RokhumS.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature.RSC Advances20211152804283710.1039/D0RA09941D 35424248
    [Google Scholar]
  16. ChakravartyA. AhmadI. SinghP. Green synthesis of silver nanoparticles using fruits extracts of syzygium cumini and their bioactivity.Chem. Phys. Lett.2022795139493
    [Google Scholar]
  17. KaranT. GonulalanZ. ErenlerR. KolemenU. EminagaogluO. Green synthesis of silver nanoparticles using Sambucus ebulus leaves extract: Characterization, quantitative analysis of bioactive molecules, antioxidant and antibacterial activities.J. Mol. Struct.2024129613683610.1016/j.molstruc.2023.136836
    [Google Scholar]
  18. HuqM.A. AshrafudoullaM. RahmanM.M. BalusamyS.R. AkterS. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles.Polymers202214474210.3390/polym14040742 35215655
    [Google Scholar]
  19. WojnarowiczJ. ChudobaT. LojkowskiW. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphologies.Nanomaterials2020106108610.3390/nano10061086 32486522
    [Google Scholar]
  20. GawandeM.B. ShelkeS.N. ZborilR. VarmaR.S. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics.Acc. Chem. Res.20144741338134810.1021/ar400309b 24666323
    [Google Scholar]
  21. ChenJ. WangJ. ZhangX. JinY. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate.Mater. Chem. Phys.20081082-342142410.1016/j.matchemphys.2007.10.019
    [Google Scholar]
  22. KouJ. VarmaR.S. Beet juice-induced green fabrication of plasmonic AgCl/Ag nanoparticles.ChemSusChem20125122435244110.1002/cssc.201200477 22945662
    [Google Scholar]
  23. RagunathanV.K.C. Sequential microwave-ultrasound-assisted silver nanoparticles synthesis: A swift approach, their antioxidant, antimicrobial, and in-silico studies.J. Mol. Liq.202234711795410.1016/j.molliq.2021.117954
    [Google Scholar]
  24. AliK. AhmedB. DwivediS. SaquibQ. Al-KhedhairyA.A. MusarratJ. Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates.PLoS One2015107e013117810.1371/journal.pone.0131178 26132199
    [Google Scholar]
  25. BaraniH. MahltigB. Microwave-assisted synthesis of silver nanoparticles: Effect of reaction temperature and precursor concentration on fluorescent property.J. Cluster Sci.202233110111110.1007/s10876‑020‑01945‑x
    [Google Scholar]
  26. BoxG.E.P. BehnkenD.W. Some new three level designs for the study of quantitative variables.Technometrics19602445547510.1080/00401706.1960.10489912
    [Google Scholar]
  27. Vázquez-DelfínE. RobledoD. Freile-PelegrínY. Microwave-assisted extraction of the Carrageenan from Hypnea musciformis (Cystocloniaceae, Rhodophyta).J. Appl. Phycol.201426290190710.1007/s10811‑013‑0090‑8
    [Google Scholar]
  28. DąbrowskaS. ChudobaT. WojnarowiczJ. ŁojkowskiW. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review.Crystals201881037910.3390/cryst8100379
    [Google Scholar]
  29. XuL. WangY.Y. HuangJ. ChenC.Y. WangZ.X. XieH. Silver nanoparticles: Synthesis, medical applications and biosafety.Theranostics202010208996903110.7150/thno.45413 32802176
    [Google Scholar]
  30. KumarA. KuangY. LiangZ. SunX. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review.Materials Today Nano20201110007610.1016/j.mtnano.2020.100076
    [Google Scholar]
  31. CravottoG. CintasP. The combined use of microwaves and ultrasound: improved tools in process chemistry and organic synthesis.Chemistry20071371902190910.1002/chem.200601845 17245792
    [Google Scholar]
  32. ChinC.D.W. TreadwellL.J. WileyJ.B. Microwave synthetic routes for shape-controlled catalyst nanoparticles and nanocomposites.Molecules20212612364710.3390/molecules26123647 34203788
    [Google Scholar]
  33. TsujiM. Microwave-assisted synthesis of metallic nanomaterials in liquid phase.Chem. Select.201722805819
    [Google Scholar]
  34. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—A review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  35. WojnickiM. Luty-BłochoM. KwolekP. GajewskaM. SochaR.P. PędzichZ. CsapóE. HesselV. The influence of dielectric permittivity of water on the shape of PtNPs synthesized in high-pressure high-temperature microwave reactor.Sci. Rep.2021111485110.1038/s41598‑021‑84388‑2 33649494
    [Google Scholar]
  36. LuX. XiB. ZhangY. AngelidakiI. Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency.Bioresour. Technol.2011102177937794010.1016/j.biortech.2011.06.065 21742488
    [Google Scholar]
  37. PriecelP. Lopez-SanchezJ.A. Advantages and limitations of microwave reactors: From chemical synthesis to the catalytic valorization of biobased chemicals.ACS Sustain. Chem.& Eng.20197132110.1021/acssuschemeng.8b03286
    [Google Scholar]
  38. ShibataniA. KanH. AsakumaY. Intensified nanoparticle synthesis using hybrid microwave and ultrasound treatments: Consecutive and concurrent modes.Crystal Res. Technol.20205541900199
    [Google Scholar]
  39. AppletonT.J. ColderR.I. KingmanS.W. LowndesI.S. ReadA.G. Microwave technology for energy-efficient processing of waste.Appl. Energy20058118511310.1016/j.apenergy.2004.07.002
    [Google Scholar]
  40. BasuS. MukhopadhyayC. Microwave-activated synthetic route to various biologically important heterocycles involving transition metal catalysts.Curr. Microw. Chem.20231029712110.2174/0122133356267427231120062925
    [Google Scholar]
  41. AkinteluS.A. YaoB. FolorunsoA.S. Green synthesis, characterization, and antibacterial investigation of synthesized gold nanoparticles (AuNPs) from garcinia kola pulp extract.Plasmonics202116115716510.1007/s11468‑020‑01274‑9
    [Google Scholar]
  42. DanialW.H. AminudinI. KhaleedaH. Plant extracts: A promising source for the green synthesis of copper nanoparticles towards agriculture and environmental applications.MJChem2021232136151
    [Google Scholar]
  43. NoronhaV.T. PaulaA.J. DuránG. GalembeckA. Cogo-MüllerK. Franz-MontanM. DuránN. Silver nanoparticles in dentistry.Dent. Mater.201733101110112610.1016/j.dental.2017.07.002 28779891
    [Google Scholar]
  44. DuvalR.E. GouyauJ. LamourouxE. Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: Fact and opinion.Nanomaterials2019912177510.3390/nano9121775 31847133
    [Google Scholar]
  45. KluehU. WagnerV. KellyS. JohnsonA. BryersJ.D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation.J. Biomed. Mater. Res.200053662163110.1002/1097‑4636(2000)53:6<621:AID‑JBM2>3.0.CO;2‑Q 11074419
    [Google Scholar]
  46. A. AhmadS. Sachi DasS. KhatoonA. T. AnsariM. AfzalM. S. HasnainM. K. NayakA. Bactericidal activity of silver nanoparticles: A mechanistic review.Mater Sci Energy Technol.2020375676910.1016/j.mset.2020.09.002
    [Google Scholar]
  47. VirmaniI. SasiC. PriyadarshiniE. KumarR. SharmaS.K. SinghG.P. PachwaryaR.B. PaulrajR. BarabadiH. SaravananM. MeenaR. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles.J. Cluster Sci.202031486787610.1007/s10876‑019‑01695‑5
    [Google Scholar]
  48. SambalovaO. ThorwarthK. HeebN.V. BleinerD. ZhangY. BorgschulteA. KrollA. Carboxylate functional groups mediate interaction with silver nanoparticles in biofilm matrix.ACS Omega20183172473310.1021/acsomega.7b00982 30023786
    [Google Scholar]
  49. FrancisS. JosephS. KoshyEP Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications.Artif. Cells Nanomed. Biotechnol.201746479580410.1080/21691401.2017.1345921
    [Google Scholar]
  50. KaplanÖ. G. TosunN. ÖzgürA. E. TayhanS. BilginS. Türkekulİ. Gökceİ Microwave-assisted green synthesis of silver nanoparticles using crude extracts of Boletus edulis and Coriolus versicolor: Characterization, anticancer, antimicrobial and wound healing activities.J Drug Deliv Sci Technol.20216410264110.1016/j.jddst.2021.102641
    [Google Scholar]
  51. SepehriN. IrajiA. YavariA. AsgariM.S. ZamaniS. HosseiniS. BahadorikhaliliS. PirhadiS. LarijaniB. KhoshneviszadehM. HamedifarH. MahdaviM. KhoshneviszadehM. The natural-based optimization of kojic acid conjugated to different thio-quinazolinones as potential anti-melanogenesis agents with tyrosinase inhibitory activity.Bioorg. Med. Chem.20213611604410.1016/j.bmc.2021.116044 33640246
    [Google Scholar]
  52. SekuK. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities.J. Nanostruct. Chem.20188179188
    [Google Scholar]
  53. I. TormenaRP RosaE.V. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract.RSC Adv.202010352067620681
    [Google Scholar]
  54. PereraB.R. KandiahM. Microwave assisted one-pot green synthesis of silver nanoparticles using leaf extracts from vigna unguiculate. Evaluation of antioxidant and antimicrobial activities.Int. J. Multidiscip. Stud.20185278
    [Google Scholar]
  55. Sarathi KannanD. MahboobS. Al-GhanimK.A. VenkatachalamP. Antibacterial, antibiofilm and photocatalytic activities of biogenic silver nanoparticles from Ludwigia octovalvis.J. Cluster Sci.202132225526410.1007/s10876‑020‑01784‑w
    [Google Scholar]
  56. AygünA. ÖzdemirS. GülcanM. CellatK. ŞenF. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications.J. Pharm. Biomed. Anal.202017811297010.1016/j.jpba.2019.112970 31722822
    [Google Scholar]
  57. LatgéJ.P. The cell wall: A carbohydrate armour for the fungal cell.Mol. Microbiol.2007662279290
    [Google Scholar]
  58. MaddiA. FreeS.J. α-1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa.Eukaryot. Cell20109111766177510.1128/EC.00134‑10 20870880
    [Google Scholar]
  59. LaraH.H. Romero-UrbinaD.G. PierceC. Lopez-RibotJ.L. Arellano-JiménezM.J. Jose-YacamanM. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study.J. Nanobiotechnology20151319110.1186/s12951‑015‑0147‑8 26666378
    [Google Scholar]
  60. NakamuraY. MochidaA. ChoykeP.L. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer?Bioconjug. Chem.2016271022252238
    [Google Scholar]
  61. DuH. LoT.M. SitompulJ. ChangM.W. Systems-level analysis of Escherichia coli response to silver nanoparticles: The roles of anaerobic respiration in microbial resistance.Biochem. Biophys. Res. Commun.2012424465766210.1016/j.bbrc.2012.06.134 22771582
    [Google Scholar]
  62. MansoorS. ZahoorI. BabaT.R. PadderS.A. BhatZ.A. KoulA.M. JiangL. Fabrication of silver nanoparticles against fungal pathogens.Front. Nanotechnol.2021367935810.3389/fnano.2021.679358
    [Google Scholar]
  63. DawoudT.M. YassinM.A. El-SamawatyA.R.M. ElgorbanA.M. Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity.Saudi J. Biol. Sci.20212831847185210.1016/j.sjbs.2020.12.036 33732071
    [Google Scholar]
  64. RaoS.S. SaptamiK. VenkatesanJ. RekhaP.D. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity.Int. J. Biol. Macromol.202016374575510.1016/j.ijbiomac.2020.06.230 32599248
    [Google Scholar]
  65. AshrafH. AnjumT. RiazS. NaseemS. Microwave-assisted green synthesis and characterization of silver nanoparticles Using Melia azedarach for the management of fusarium wilt in tomato.Front. Microbiol.20201123810.3389/fmicb.2020.00238 32210928
    [Google Scholar]
  66. EshghiM. Kamali-ShojaeiA. VaghariH. NajianY. MohebianZ. AhmadiO. Jafarizadeh-MalmiriH. Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties.Green Processing and Synthesis202110160661310.1515/gps‑2021‑0062
    [Google Scholar]
  67. VajraguptaO. BoonchoongP. BerlinerL.J. Manganese complexes of curcumin analogues: Evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis.Free Radic. Res.200438330331410.1080/10715760310001643339 15129738
    [Google Scholar]
  68. KumarH. BhardwajK. NepovimovaE. KučaK. S. DhanjalD. BhardwajS. BhatiaS.K. VermaR. KumarD. Antioxidant functionalized nanoparticles: A combat against oxidative stress.Nanomaterials2020107133410.3390/nano10071334 32650608
    [Google Scholar]
  69. HalliwellB. Biochemistry of oxidative stress.Biochem. Soc. Trans.20073551147115010.1042/BST0351147 17956298
    [Google Scholar]
  70. GeierD.A. KernJ.K. GarverC.R. AdamsJ.B. AudhyaT. NatafR. GeierM.R. Biomarkers of environmental toxicity and susceptibility in autism.J. Neurol. Sci.20092801-210110810.1016/j.jns.2008.08.021 18817931
    [Google Scholar]
  71. GilesG.I. JacobC. Reactive sulfur species: An emerging concept in oxidative stress.Biol. Chem.20023833-437538810.1515/BC.2002.042 12033429
    [Google Scholar]
  72. GeierD.A. KernJ.K. GarverC.R. AdamsJ.B. AudhyaT. GeierM.R. A prospective study of transsulfuration biomarkers in autistic disorders.Neurochem. Res.200934238639310.1007/s11064‑008‑9782‑x 18612812
    [Google Scholar]
  73. HuB. LiuX. ZhangC. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols.J. Food Drug Anal.2017251315
    [Google Scholar]
  74. KumarH. BhardwajK. KučaK. KaliaA. NepovimovaE. VermaR. KumarD. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance.Nanomaterials202010476610.3390/nano10040766 32316212
    [Google Scholar]
  75. LüJ.M. LinP.H. YaoQ. ChenC. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems.J. Cell. Mol. Med.201014484086010.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  76. LiuW. WormsI. SlaveykovaV.I. Interaction of silver nanoparticles with antioxidant enzymes.Environ. Sci. Nano2020751507151710.1039/C9EN01284B
    [Google Scholar]
  77. FangW. ChiZ. LiW. ZhangX. ZhangQ. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: From the aspects of antioxidant enzyme activities and molecular interaction mechanisms.J. Nanobiotechnology20191716610.1186/s12951‑019‑0502‑2 31101056
    [Google Scholar]
  78. ParveenM. AhmadF. MallaA.M. AzazS. Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay.Appl. Nanosci.20166226727610.1007/s13204‑015‑0433‑7
    [Google Scholar]
  79. DengJ. XuS. HuW. XunX. ZhengL. SuM. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer.Biomaterials2018154243310.1016/j.biomaterials.2017.10.048 29120816
    [Google Scholar]
  80. CurtisR.E. RowlingsP.A. DeegH.J. Solid cancers after bone marrow transplantation.N. Engl. J. Med.199733613897904
    [Google Scholar]
  81. McleodD.G. Hormonal therapy: Historical perspective to future directions.Urology2003612Suppl. 13710.1016/S0090‑4295(02)02393‑2 12667881
    [Google Scholar]
  82. TsimberidouA.M. Targeted therapy in cancer.Cancer Chemother. Pharmacol.20157661113113210.1007/s00280‑015‑2861‑1 26391154
    [Google Scholar]
  83. HuangC.Y. JuD.T. ChangC.F. M. ReddyP. VelmuruganB.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer.Biomedicine (Taipei)2017742310.1051/bmdcn/2017070423 29130448
    [Google Scholar]
  84. MellmanI. CoukosG. DranoffG. Cancer immunotherapy comes of age.Nature2011480737848048910.1038/nature10673
    [Google Scholar]
  85. El-NaggarN.E.A. HusseinM.H. El-SawahA.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity.Sci. Rep.2017711084410.1038/s41598‑017‑11121‑3 28883419
    [Google Scholar]
  86. Al-SheddiE.S. FarshoriN.N. Al-OqailM.M. Al-MassaraniS.M. SaquibQ. WahabR. MusarratJ. Al-KhedhairyA.A. SiddiquiM.A. Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA).Bioinorg. Chem. Appl.2018201811210.1155/2018/9390784 30515193
    [Google Scholar]
  87. ShyamalagowriS. CharlesP. ManjunathanJ. KamarajM. AnithaR. PugazhendhiA. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines.Process Biochem.2022116172510.1016/j.procbio.2022.02.022
    [Google Scholar]
  88. HeY. DuZ. MaS. LiuY. LiD. HuangH. JiangS. ChengS. WuW. ZhangK. ZhengX. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.Int. J. Nanomedicine2016111879188710.2147/IJN.S103695 27217750
    [Google Scholar]
  89. RatanZ.A. HaidereM.F. NurunnabiM. ShahriarS.M. AhammadA.J.S. ShimY.Y. ReaneyM.J.T. ChoJ.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects.Cancers202012485510.3390/cancers12040855 32244822
    [Google Scholar]
  90. BarabadiH. VahidiH. MahjoubM.A. KosarZ.D. KamaliK. PonmuruganK. HosseiniO. RashediM. SaravananM. Emerging antineoplastic gold nanomaterials for cervical cancer therapeutics: A systematic review.J. Cluster Sci.20203161173118410.1007/s10876‑019‑01733‑2
    [Google Scholar]
  91. BarabadiH. WebsterT.J. VahidiH. SaboriH. D. KamaliK. J. ShoushtariF. MahjoubM.A. RashediM. MostafaviE. CruzD.M. HosseiniO. SaravanaM. Green nanotechnology-based gold nanomaterials for hepatic cancer therapeutics: A systematic review.Iran. J. Pharm. Res.2020193317 33680005
    [Google Scholar]
  92. ChughH. SoodD. ChandraI. Role of gold and silver nanoparticles in cancer nano-medicine.Artif. Cells Nanomed. Biotechnol.201846sup11210122010.1080/21691401.2018.1449118
    [Google Scholar]
  93. ParkE.J. YiJ. KimY. ChoiK. ParkK. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism.Toxicol. In Vitro201024387287810.1016/j.tiv.2009.12.001 19969064
    [Google Scholar]
  94. Valenzuela-SalasL.M. Girón-VázquezN.G. García-RamosJ.C. Torres-BugarínO. GómezC. PestryakovA. Villarreal-GómezL.J. Toledano-MagañaY. BogdanchikovaN. Antiproliferative and antitumour effect of nongenotoxic silver nanoparticles on melanoma models.Oxid. Med. Cell. Longev.2019201911210.1155/2019/4528241 31428226
    [Google Scholar]
  95. AshaRaniP.V. HandeM.P. ValiyaveettilS. Anti-proliferative activity of silver nanoparticles.BMC Cell Biol.20091016510.1186/1471‑2121‑10‑65 19761582
    [Google Scholar]
  96. ButtacavoliM. AlbaneseN.N. Di CaraG. AlduinaR. FaleriC. GalloM. PizzolantiG. GalloG. FeoS. BaldiF. CancemiP. Anticancer activity of biogenerated silver nanoparticles: An integrated proteomic investigation.Oncotarget20189119685970510.18632/oncotarget.23859 29515763
    [Google Scholar]
  97. CollinsK. JacksT. PavletichN.P. The cell cycle and cancer.Proc. Natl. Acad. Sci. USA19979472776277810.1073/pnas.94.7.2776 9096291
    [Google Scholar]
  98. ChangY.J. TaiC.J. KuoL.J. WeiP.L. LiangH.H. LiuT.Z. WangW. TaiC.J. HoY.S. WuC.H. HuangM.T. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma.Ann. Surg. Oncol.20111882395240310.1245/s10434‑011‑1597‑3 21347788
    [Google Scholar]
  99. MaoX. SeidlitzE. TruantR. HittM. GhoshH.P. Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth.Oncogene200423335632564210.1038/sj.onc.1207756 15184878
    [Google Scholar]
  100. SofiA.M. SunithaS.A. SofiM.K. PashaS.K. ChoiD. An overview of antimicrobial and anticancer potential of silver nanoparticles.J. King Saud Univ. Sci.202234210179110.1016/j.jksus.2021.101791
    [Google Scholar]
  101. KarimiS.M. ShahriM. Medical and cytotoxicity effects of green synthesized silver nanoparticles using Achillea millefolium extract on MOLT‐4 lymphoblastic leukemia cell line.J. Med. Virol.20219363899390610.1002/jmv.26694 33236797
    [Google Scholar]
  102. HembramK.C. KumarR. KandhaL. ParhiP.K. KunduC.N. BindhaniB.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent.Artif. Cells Nanomed. Biotechnol.201846sup3385110.1080/21691401.2018.1489262 30001158
    [Google Scholar]
  103. Aydin AcarC. PehlivanogluS. YesilotS. Y. UzunerS. Microwave-assisted biofabrication of silver nanoparticles using Helichrysum arenarium flower extract: Characterization and biomedical applications.Biomass Convers. Biorefin.20231315142111422310.1007/s13399‑023‑03833‑6
    [Google Scholar]
  104. PfefferC. SinghA. Apoptosis: A target for anticancer therapy.Int. J. Mol. Sci.201819244810.3390/ijms19020448 29393886
    [Google Scholar]
  105. GopinathV. MubarakAli, D.; Vadivelu, J.; M. Kamath, S.; Syed, A.; Elgorban, A.M. Synthesis of biocompatible chitosan decorated silver nanoparticles biocomposites for enhanced antimicrobial and anticancer property.Process Biochem.20209934835610.1016/j.procbio.2020.09.011
    [Google Scholar]
  106. VinmathiV. P. JacobS.J. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.Bull. Mater. Sci.201538362562810.1007/s12034‑015‑0916‑x
    [Google Scholar]
  107. NarasimhaR. HublikarL.V. PatilS.M. Microwave assisted biosynthesis of silver nanoparticles using banana leaves extract: Phytochemical, spectral characterization, and anticancer activity studies.J. Water Environ. Nanotechnol.2021614961
    [Google Scholar]
  108. PriyadharshiniR.I. PrasannarajG. GeethaN. VenkatachalamP. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.Appl. Biochem. Biotechnol.201417482777279010.1007/s12010‑014‑1225‑3 25380639
    [Google Scholar]
  109. YallappaS. ManjannaJ. DhananjayaB.L. VishwanathaU. RavishankarB. GururajH. NiranjanaP. HungundB.S. Phytochemically functionalized Cu and Ag nanoparticles embedded in MWCNTs for enhanced antimicrobial and anticancer properties.Nano-Micro Lett.20168212013010.1007/s40820‑015‑0066‑0 30460271
    [Google Scholar]
  110. WongK.K.Y. CheungS.O.F. HuangL. NiuJ. TaoC. HoC.M. CheC.M. TamP.K.H. Further evidence of the anti-inflammatory effects of silver nanoparticles.ChemMedChem2009471129113510.1002/cmdc.200900049 19405063
    [Google Scholar]
  111. XiangY. ZhangM. JiangD. SuQ. ShiJ. The role of inflammation in autoimmune disease: A therapeutic target.Front. Immunol.202314126709110.3389/fimmu.2023.1267091 37859999
    [Google Scholar]
  112. WongrakpanichS. WongrakpanichA. MelhadoK. RangaswamiJ. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly.Aging Dis.20189114315010.14336/AD.2017.0306 29392089
    [Google Scholar]
  113. LeeC.G. LinkH. BalukP. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung.Nat. Med.2004101010951103
    [Google Scholar]
  114. BarnesP.J. Th2 cytokines and asthma: An introduction.Respir. Res.200122646510.1186/rr39
    [Google Scholar]
  115. SheikpranbabuS. KalishwaralalK. VenkataramanD. EomS.H. ParkJ. GurunathanS. Silver nanoparticles inhibit VEGF-and IL-1β-induced vascular permeability via Src dependent pathway in porcine retinal endothelial cells.J. Nanobiotechnology200971810.1186/1477‑3155‑7‑8 19878566
    [Google Scholar]
  116. LinN. SimonM.C. Hypoxia-inducible factors: Key regulators of myeloid cells during inflammation.J. Clin. Invest.2016126103661367110.1172/JCI84426 27599290
    [Google Scholar]
  117. JangS. ParkJ.W. ChaH.R. JungS.Y. LeeJ.E. JungS.S. KimJ.O. KimS.Y. LeeC.S. ParkH.S. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation.Int. J. Nanomedicine2012713291343 22457593
    [Google Scholar]
  118. FrankováJ. PivodováV. VágnerováH. JuráňováJ. UlrichováJ. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model.J. Appl. Biomater. Funct. Mater.201614213714210.5301/jabfm.5000268 26952588
    [Google Scholar]
  119. SinghP. AhnS. KangJ.P. VeronikaS. HuoY. SinghH. ChokkaligamM. El-Agamy FarhM. AceitunoV.C. KimY.J. YangD.C. In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: A green synthetic approach.Artif. Cells Nanomed. Biotechnol.201846820222032 29190154
    [Google Scholar]
  120. AnithaP. SakthivelP. Microwave assisted synthesis and characterization of silver nanoparticles using citrullus lanatus leaf extract and its anti-inflammatory activity against human blood cells.Int. J. Adv. Eng. Nano Technol.20163323476389
    [Google Scholar]
  121. Microwave assisted synthesis and characterization of silver nanoparticles using tridax procumbens and its anti-inflammatory activity against human blood cells.J. Nanomater. Mol. Nanotechnol.201545
    [Google Scholar]
  122. GunasekaranT. NigusseT. DhanarajuM.D. Silver nanoparticles as real topical bullets for wound healing.J. Am. Coll. Clin. Wound Spec.201134829610.1016/j.jcws.2012.05.001 24527370
    [Google Scholar]
  123. PaladiniF. PolliniM. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends.Materials20191216254010.3390/ma12162540 31404974
    [Google Scholar]
  124. TyavambizaC. ElbagoryA.M. MadieheA.M. MeyerM. MeyerS. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract.Nanomaterials2021115134310.3390/nano11051343 34065254
    [Google Scholar]
  125. ChakrabartiS. ChattopadhyayP. IslamJ. RayS. RajuP.S. MazumderB. Aspects of nanomaterials in wound healing.Curr. Drug Deliv.2018161264110.2174/1567201815666180918110134 30227817
    [Google Scholar]
  126. TianJ. WongK.K.Y. HoC.M. LokC.N. YuW.Y. CheC.M. ChiuJ.F. TamP.K.H. Topical delivery of silver nanoparticles promotes wound healing.ChemMedChem20072112913610.1002/cmdc.200600171 17075952
    [Google Scholar]
  127. ArtucM. HermesB. StckelingsU.M. GrützkauA. HenzB.M. Mast cells and their mediators in cutaneous wound healing – Active participants or innocent bystanders?Exp. Dermatol.19998111610.1111/j.1600‑0625.1999.tb00342.x 10206716
    [Google Scholar]
  128. VeeraraghavanV.P. PeriaduraiN.D. KarunakaranT. HussainS. SurapaneniK.M. JiaoX. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929).Saudi J. Biol. Sci.20212873633364010.1016/j.sjbs.2021.05.007 34220213
    [Google Scholar]
  129. RigoC. FerroniL. ToccoI. RomanM. MunivranaI. GardinC. CairnsW. VindigniV. AzzenaB. BarbanteC. ZavanB. Active silver nanoparticles for wound healing.Int. J. Mol. Sci.20131434817484010.3390/ijms14034817 23455461
    [Google Scholar]
  130. YouC. LiQ. WangX. WuP. HoJ.K. JinR. ZhangL. ShaoH. HanC. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation.Sci. Rep.2017711048910.1038/s41598‑017‑10481‑0 28874692
    [Google Scholar]
  131. SharmaP. Navneet; Kaushal, A. Green nanoparticle formation toward wound healing, and its application in drug delivery approaches.Eur. J. Med. Chem. Rep.2022610008810.1016/j.ejmcr.2022.100088
    [Google Scholar]
  132. HiepN.T. KhonH.C. NiemV.V.T. ToiV.V. Ngoc QuyenT. HaiN.D. Ngoc Tuan AnhM. Microwave-assisted synthesis of chitosan/polyvinyl alcohol silver nanoparticles gel for wound dressing applications.Int. J. Polym. Sci.2016201611110.1155/2016/1584046
    [Google Scholar]
  133. SanitàG. CarreseB. LambertiA. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization.Front. Mol. Biosci.2020758701210.3389/fmolb.2020.587012 33324678
    [Google Scholar]
  134. SaleemQ. TorabfamM. FidanT. KurtH. YüceM. ClarkeN. BayazitM.K. Microwave-promoted continuous flow systems in nanoparticle synthesis—A perspective.ACS Sustain. Chem.& Eng.202193099881001510.1021/acssuschemeng.1c02695
    [Google Scholar]
/content/journals/cmic/10.2174/0122133356351195250106113909
Loading
/content/journals/cmic/10.2174/0122133356351195250106113909
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test